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Abstract: In the smart grid, residential consumption scheduling in demand-side management (DSM)
is one of the key technologies to facilitate utility companies and users in order to achieve systems
optimality such as minimizing energy cost and demand peak. The success of DSM implementation
depends on the level of user participation. While most of the prior works on DSM have reported
good optimal results, they show a lack of focus towards user-centric issues such as user preferences,
consumption deviation, and system fairness. Failure to account for such issues may lead to lower
user participation in DSM programs. To address this problem, we propose user-centric consumption
scheduling and fair billing mechanism for DSM program which consider economic as well as comfort
aspects. First, a user’s discomfort cost is integrated into price incentives for determining consumption
schedules. Second, consumption rescheduling mechanism is designed to allow users to change their
preferences if necessary, and request new schedules. Finally, to improve the level of system fairness
and avoid strategic players who try to manipulate the consumption profile for their benefit, a fair
billing mechanism is proposed at the end of the scheduling period which takes into account both
rescheduling users and user’s consumption deviation level. Simulation results show the effectiveness
of the proposed method in terms of energy cost saving and improving fairness in the user’s billing.

Keywords: billing mechanism; consumption scheduling; demand-side management; smart grid

1. Introduction

In the past decade, the world energy crisis has received greater attention as the concerns about
climate change, greenhouse gas emissions, and increasing global electricity demand rise [1]. Electricity
utility companies are forced to find newer and more efficient ways of electricity generation and
delivery since the current electricity system design is out-of-date [2]. To solve the limitation of the
traditional electricity grid, the concept of the smart grid had been proposed. The smart grid integrates
information technology and automation control to meet the current and future demand requirements.
The smart grid is an electricity network that is able to collect information at various stages, starting
from the energy generation phase all the way to end-user power consumption, and take intelligent
control decisions in order to keep a stable and efficient operation of the system [3]. One of the
important applications in the smart grid that recently gained attention in both academia and industry
is residential demand-side management (DSM) [4] The main concept of DSM is related to activities
that reshape the user’s consumption profile to match the supply, reduce peak-to-average ratio (PAR),
and minimize energy cost. Home energy management system (HEMS) solutions can be deployed to
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connect with the utility company through a smart meter for autonomously scheduling and managing
the consumption using real-time price signal. From the perspective of the utility company, a shifting
of load consumption can reduce peak demand and thus total energy cost in the grid. However, only
considering user’s economic incentives may not be enough to motivate users to actively participate
and contribute in the DSM program, leading to an unsuccessful DSM deployment [5]. According to
the CHANGING BEHAVIOUR project [5], both theoretical and empirical works have shown insights
regarding crucial conditions to make DSM programs more successful. Three disciplinary perspectives
(economics, psychological, and sociological) have been identified and suggest various approaches
for reducing energy demand. Therefore, it is important to design a DSM program that focuses on
improving user participation and involvement. Such a DSM program should give users freedom of
choice and ability to specify the level of participation in the community grid. Also, system fairness
should be maintained among participants, especially in determining users’ electricity bills. A system
without considering a proper billing fairness would result in a lack of user participation and may not
be successful in achieving the program objectives.

1.1. Background Research and Limitations

Numerous works in the literature have proposed DSM algorithms to manage user flexibility [6–17].
In [6], automated demand response algorithms running at home is proposed to schedule home
electric devices. Different demand response approaches including a flat price, a real-time price, or
a maximum allowable power are presented. The results show that the algorithms are resilient to
different approaches and can flat out the electricity usage, thus lower the total energy cost. In [7],
the authors modeled household electricity consumers as a price-responsive user using stochastic finite
impulse response models which account for uncertainties in their consumption pattern and responses
to price variations. The optimal price signal is used to motivate change in consumption profiles,
an approach which helped to smooth the consumption peak. In [8], various household appliance
types are considered for consumption scheduling problem. They proposed the scheduling algorithm
to maximize the total utility of appliances while satisfying a budget limit. The results show that
different appliance types are effectively scheduled according to their constraints and user preferences.
Agent-Based Control approach for DSM is proposed in [9] to manage smart home demand consumption
on the large scale. The proposed scheduling mechanisms aim to reduce demand peak and carbon
emission which the participants receive economic incentives. A game-theoretic framework-based
consumption scheduling algorithm, a promising tool to manage the customer’s load profile and the
interaction between utility companies and consumers, is proposed in [10]. The authors originally
formulated the energy consumption scheduling for a residential community. A user has preferences
regarding the use of flexible appliances and also tries to find an energy consumption schedule that
minimizes his own electricity bills. The user’s energy cost is affected not only by his consumption but
also by the total energy cost of the community.

Different viewpoints on system fairness also have been examined in the DSM consumption
scheduling. In [11], a billing mechanism is proposed in which different electricity prices are applied
to the users based on income and type. However, these assumptions are not considered practical in
real-world scenarios. In [12], appliance operation delay is considered as a fairness index. A scheduling
algorithm based on the water-filling method is proposed in order to assign schedules to the users with
the same average delay. In [13], the authors attempt to improve energy cost allocation fairness by
considering network congestion and load share ratio. The results show that their method is effective in
allocating energy costs in proportion to benefit gained from participation. In [14], the Shapley value
concept is used to fairly distribute revenue gained from DSM program among participants based on
the level of user’s contribution to the overall cost. The authors proposed a reinforcement learning
heuristic technique to estimate the amount of cost distribution. In [15,16], hourly billing mechanisms
are proposed. Instead of calculating the bill based on daily consumption, the user’s bills are determined
hourly. This improves the level of fairness in the user’s payment by determining users’ electricity bills
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in proportion to their consumption and flexibility. In [17], the authors consider a billing mechanism
when users violate the optimal schedules. The proposed mechanism penalizes the users who increase
their consumption from the optimal schedules but do not consider other possible variations.

However, there are several limitations which still need to be addressed. First, focusing on energy
cost saving may not be a suitable approach for addressing the needs of the residential community sector.
The residential users are more aware of their quality of life than in other sectors and thus, the aspect
of welfare should be incorporated into the decision making when determining the consumption
schedules. In addition, an ideal DSM program should give participating users the freedom to choose
how much they want to contribute towards the community and receive incentives according to their
action while maintaining the level of comfort they preferred. Moreover, one of the important aspects of
fairness which is often overlooked is a consideration of users deviating from the optimal consumption
schedules after their assignment. In the conventional approach, an identical price is applied to all
users regardless of individual behavior or commitment to the assigned schedules. However, in the
case when a user deviates from his schedule, the total community load profile changes. This change
affects the electricity bills of other users in the community and thus may raise fairness concerns.

1.2. Addressing Limitations: Our Approach

In this paper, we address the limitations stated above by designing a user-centric consumption
scheduling model with a fair billing mechanism for DSM program. First, we propose a user utility
cost function that incorporates energy cost and discomfort measure into the consumption scheduling
problem. The discomfort cost, which caused by shifting appliance consumption, will influence the
scheduling decision based on the user’s preference. In addition, users can make a choice on how much
they would contribute to the community while maintaining their preferred level of comfort. Second,
a consumption rescheduling algorithm that copes with the users who change their appliance preference
during the operation period is proposed based on our previous work in [18]. This algorithm provides
the users with a chance to reevaluate their consumption promises. At the same time, the algorithm
uses information regarding the energy consumption of other users in order to generate consumption
schedules that still achieve reduced demand peaks and overall community energy cost. Finally, a fair
billing mechanism is introduced and integrated into the DSM program. As an extension of our previous
work in [19], we proposed rescheduling compensation bill and consumption deviation bill which accounts
for rescheduling and consumption deviating users respectively. Any cost differences (i.e., differences
between hourly scheduled and actual consumption) are distributed among the members of the
community based on their individual actions and contributions. This billing mechanism maintains
the level of fairness in determining users’ electricity bill as well as preventing strategic players from
manipulating the consumption profile for their own benefit.

The main contributions of our work can be listed as follows:

• The proposed consumption scheduling model provides participating users with an intuitive way
to specify the balance between their personal comfort and their level of participation in the energy
saving efforts of the community. This allows users to maintain their preferred daily lifestyle while
also receiving lower electricity bills due to reductions in the total community energy cost.

• The rescheduling algorithm provides an opportunity to reevaluate consumption schedules even
in the case of last-minute preference changes, such that demand peaks and unnecessary energy
costs are avoided.

• The billing mechanism improves fairness in DSM program. The impact from rescheduling users
and consumption deviation are taken into account when distributing the total energy cost to all
user based on their individual action.

The combination of increased freedom of choice for the user, reduced community costs through
the rescheduling algorithm as well as improved fairness due to the proposed billing mechanism results
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in a user-centric DSM program design which will help increase the level of participation and lead to a
successful implementation of the program.

1.3. Paper Organization

The rest of this paper is organized as follows. Section 2 presents an overview of the residential
community model. In Section 3, the details and solution of scheduling optimization problems are
discussed. User billing mechanisms are proposed in Section 4. Numerical simulation results and
discussion are given in Section 5. The conclusion of the paper is drawn in Section 6.

2. Overview of Residential Community System Model

In this paper, a residential community that consists of a set of users associate with each house
N = {1, . . . , N} is considered. All users are sharing the same energy source from the utility grid.
Each user is equipped with a HEMS for consumption scheduling. Moreover, it can change the
schedules on behalf of appliances autonomously based on the time preference by users. The residential
community is assumed to have a two-way communication network infrastructure that can provide
communication among user’s HEMS and also connected to the utility company. The detailed of the
system model is shown in Figure 1. The time during the operation period is represented by time slot
h (e.g., hours in a day) such that h ∈ H = {1, . . . , H}. Without loss of generality and for simplicity
purpose, we use h = 1 h.

Figure 1. Residential community model.

2.1. User Profile Model

Each user has various appliances which consume energy on a daily basis, classified into two types.

• Non-flexible: Appliances which their operation schedule cannot be shifted is called non-flexible
appliances. Their consumption schedules must be kept as their original schedules. The examples
of such appliances are a refrigerator, lighting, etc.

• Flexible: Appliances which can shift their operation time form their original schedules, respected
to some constraints, are called flexible appliances such as washing machine, dishwasher, etc.

Let a set of non-flexible appliances of user n identified as ANF,n = {1, . . . , ANF,n} and a set of
flexible appliances is denoted as AF,n = {1, . . . , AF,n}. To simplify the notation, we use fn ∈ AF,n to
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denote a flexible appliance of user n. For each hour h, the total consumption schedule contains sum
of non-flexible and flexible appliance power levels, in which power levels by non-flexible appliance
always kept as base power level, are expressed as follows:

lh
NF,n = ∑

aNF,n∈ANF,n

lh
aNF ,n (1)

lh
F,n = ∑

fn∈AF,n

lh
fn

(2)

lh
n = lh

aNF ,n + lh
fn

(3)

Thus, total residential community consumption in hour h is the sum of consumption profile of all
user that can be expressed as

Lh =
N

∑
n=1

lh
n. (4)

For each flexible appliance fn, a daily energy requirement to fulfill its task is denoted as

e fn =
H

∑
h=1

lh
fn

. (5)

Each flexible appliance is also restricted by maximum and minimum operating power limit in
each time slot as

eh,min
fn

≤ lh
fn
≤ eh,max

fn
. (6)

2.2. User Preference Model

User time preference for using each flexible appliance fn ∈ AF,n is modeled using parameters
which specify a range of starting and ending hours that user n prefers the appliance to be operated as

[α fn , β fn ] (7)

where α fn , β fn are the mentioned hours of the day in the range of H = {1, . . . , H} and α fn < β fn .
For example, the user may set α fn = 13:00 and β fn = 17:00 for a dishwasher to finish be for dinner time.

In addition, users also rank their flexible appliances with priority values k fn (k fn > 0).
The appliance priority value indicates how important the appliance is and would affect how much the
appliance operation can be shifted. The large value of k fn means that the importance of an appliance is
high and thus, causes high discomfort to the user when the appliance is shifted from the preferred time.

2.3. Energy Cost Model

An energy generation cost function, denoted as Ch(Lh), is used to indicate the cost of required
energy to serve all the residential user load during hour h. The widely accepted assumption is that
marginal generation costs increase with load demand [10]. Thus, it is intuitive to assume properties of
the cost function as follows:

Assumptionm 1. The cost function is an increasing function with the total load. That is,

Ch
(

Lh
1

)
≤ Ch

(
Lh

2

)
, ∀Lh

1 ≤ Lh
2, h ∈ H. (8)

Assumptionm 2. The cost function is strictly convex [20]. That is,

Ch
(

aLh
1 + (1− a)Lh

2

)
< aCh(Lh

1) + (1− a)Ch(Lh
2) (9)
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where Lh
1, Lh

2 > 0, Lh
1 6= Lh

2 and 0 < a < 1.

An example of the cost function that satisfies the above assumptions is a smooth differentiable
quadratic function, as also used in the thermal generation [21].

Ch
(

Lh
)
= ah(Lh)2 + bhLh + ch (10)

where ah > 0, bh ≥ 0, and ch ≥ 0 are coefficients of the cost function at each h ∈ H. Therefore, we
adopt the same cost function in this paper. Please note that this cost function is general and can
represent the actual energy cost or an artificial cost signal used by the utility company to impose a
proper consumption scheduling. The electricity price, represented as an energy cost in terms of unit
price per kWh, in each hour h can be calculated as

ph =
Ch(Lh)

Lh . (11)

Electricity bill of user n in hour h can be calculated as

bh
n = phlh

n. (12)

By substituting Equations (3), (4) and (11), we get the electricity bill as

bh
n =

Ch(Lh)

(lh
aNF ,n + lh

fn
) + lh

−n
(lh

aNF ,n + lh
fn
). (13)

where lh
−n is sum of the load of all users in the community other than user n.

2.4. Discomfort Cost Function

An important factor of energy consumption scheduling in demand side is the user’s discomfort
to shift flexible appliance load, as their value toward load shifting is different among users. For users,
if they do not concern about the reduction of electricity bill, offered by the DSM incentive, the load
profile of the flexible appliances will be within their time preference. Otherwise, their load profile will
be scheduled in response to the price and will affect their comfort such that the appliances would
be operated outside their specified time preferences. The discomfort caused by shifting appliance
load outside its preferred time is measured by the time changes from its time preference and the
corresponding power consumption. We propose the equivalent discomfort cost of user n and define as

Dn = ∑
h∈H

∑
fn∈AF,n


k fn

((
α fn − h

)
lh

fn

)2
, h ∈ [1, α fn)

k fn

((
h− β fn

)
lh

fn

)2
, h ∈ (β fn , H]

0 , h ∈ [α fn , β fn ]

(14)

where Dn is the cost of discomfort in shifting the flexible appliances. The discomfort cost indicates
that when the appliance fn is scheduled to operate in its time preference [α fn , β fn ], the user n will be
satisfied and his discomfort is zero. However, if the schedule lies outside the time preference range,
the discomfort cost is increased proportional to the time and amount of consumption being scheduled,
taking into account both before and after. Moreover, if the appliance operation time is shifted further
away from the preferred time and/or the shifted consumption amount is higher, an increasing rate
of discomfort is even higher as indicated by the squared term in Equation (14). For the choice of k fn ,
as mentioned, the large value of k fn means that the appliance aF is important to user n and the user is
not willing to trade the discomfort caused by shifting the appliance with a lower electricity bill.
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2.5. User’s Utility Cost Functions

The utility cost of user n is the integration of the electricity bill and the discomfort cost, which is
defined as

Uh
n = (1− Kn) bh

n + KnDn (15)

Un =
H

∑
h=1

Uh
n (16)

where the utility cost consists of two terms: electricity bill bh
n and discomfort cost Dn. The parameter

Kn ∈ [0, 1] is a user’s weight factor which uses for quantifying the user consideration between
electricity bill and discomfort cost. A small Kn means that user n concerns more about the electricity
bill reduction than the discomfort caused by load shifting. The weight factor Kn can also be interpreted
as a community point of view of the users which they value between personal and community interest.
For example, Kn = 0 means that the user’s interest is toward the community benefit in reducing
the energy cost and not concern about discomfort in shifting the appliances. On the other hand,
Kn = 1 indicates that the user only cares about personal interest and prefers the most comfort without
considering the community overall energy cost. The value Kn = 0.5 shows that the user balances
the consideration between overall community energy cost and personal comfort. Thus, the proposed
user’s utility cost function gives participating users a choice to contribute to the overall community
objective, in which the degree of contribution can be different among users in the shared energy
community environment.

3. Optimization Problem Formulation

In this section, we present the optimization problems and solutions for determining users’
consumption schedules. The detail of a day-ahead scheduling algorithm is presented which determine
all user consumption schedules the night before. Then, a rescheduling algorithm is proposed
to find consumption schedules when users have changed their original preferences during the
operation period.

3.1. Day-Ahead Consumption Scheduling

An optimization problem for day-ahead consumption scheduling that minimizes user’s utility
cost function, which consists of electricity bill and discomfort cost is formulated. The purpose of this
model is to determine schedule of energy consumption for each user in the community in order to
achieve optimal electricity bill savings and preserve the user’s comfort while reducing total energy
generation cost of the whole community. Let us define user n’s energy consumption scheduling
vector as

xn =
[
l1

fn
, l2

fn
, . . . , lH

fn

]
(17)

and denote

Xn =

{
xn | e fn =

H

∑
h=1

lh
fn

, eh,min
fn

≤ lh
fn
≤ eh,max

fn
, ∀h ∈ H

}
(18)

for a feasible strategy set of user n ∈ N . The optimization problem for user n is formulated as

minimize
xn∈Xn

Un(xn, x−n)

subject to e fn =
H

∑
h=1

lh
fn

eh,min
fn

≤ lh
fn
≤ eh,max

fn
, ∀h ∈ H

(19)
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where x−n denotes the energy consumption scheduling vectors of all users other than user n.
The constraints express that a fixed daily amount of energy is required for each flexible appliance
of user n and appliance physical power limitation is bounded in each time slot h. In the user’s
utility objective function Un(xn, x−n), the electricity bill of user n depends not only to his own energy
consumption xn but also energy consumption from all other users in the community x−n. Thus, there
is a dependency among users in the community which shared a common energy source.

To solve the optimization problem in Equation (19), a distributed iterative algorithm is used.
The overall process is implemented in a closed-loop iterative fashion and summarized in Algorithm 1.

Algorithm 1 Day-ahead consumption scheduling: executed by each user n ∈ N

1: choose any feasible starting point x0
n and randomly initialize x0

−n, ∀n ∈ N
2: repeat
3: when receive execute command from the utility
4: solve local problem in Equation (19)
5: if xn changes compare to the current consumption schedule then
6: update xn to the current consumption schedule solution
7: broadcast xn to all other users
8: end if
9: if receive updated consumption schedule solution from other user then

10: update to current x−n information
11: end if
12: until no consumption schedule is updated or reach maximum iteration threshold

For each user n ∈ N , chooses any starting point x0
n in the feasible set Xn for initial energy

consumption vectors. Since no information about other user is available at the beginning of the process,
the user also randomly initializes vector x−n of all other users energy consumption vectors. The utility
company can provide coordination of execution time for all user so that no user simultaneously
solving the optimization problem at the same time. For simplicity, a round-robin scenario is used.
Once, the user receives execution command allow for scheduling, the user’s HEMS locally solves
the optimization problem in Equation (19). That is, each user tries to minimize its utility function
assuming that energy consumption of all other users is fixed. Once the schedule solution has been
found, the user compares the utility cost with the previous solution and updates if the new solution
is better or otherwise keep the old solution. If the user updates new schedule, then he broadcasts
the aggregated consumption vector xn to all other users in the community. In this way, a detail of
each appliance consumption schedule is not revealed to other users and the privacy of the user is
preserved. For other users, once received the consumption vector, they also update their community
consumption knowledge for further scheduling. The algorithm terminates once no update is received
or reached a maximum number of iteration threshold. Please note that the iterative algorithm is
intended to schedule the energy consumption of a local community. To achieve nation-wide scaling,
a divide-and-conquer approach can be used; it is possible to have clusters of communities running
separate instances of the local energy consumption scheduling.

3.2. Energy Consumption Rescheduling

Most of the works in the literature assumed that every user would fully commit to the schedules,
that is, during the operation period no user changes the time preference of flexible appliance and its
operation will be fulfilled according to the assigned consumption level. However, in practical scenarios,
some users may not be able to commit to the schedules determined in the previous day. Those users
may want to change their preferences. To accommodate such last-minute changes, an algorithm that
allows the users to reschedule their consumption is required. Based on these assumptions, we extend
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our previous work [18] regarding an energy consumption rescheduling algorithm so that it takes into
account the user’s discomfort, using the discomfort cost function presented in Section 2.4.

Let us consider an event after the day-ahead consumption schedules are determined. From the
mentioned assumptions, we assume that a user m ∈ M, where M is a set of users who changed
appliance time preference during the operation period and alter their schedules while the energy
consumption schedules of all other users remain the same. During this period, at time h = t ∈ H,
let us assume user m changes time preference of a flexible appliance fm ∈ AF,m, which not yet starts its
operation, from [α fm , β fm ] to new time preference [α

′
fm

, β
′
fm
]. The new user preference reflected in the

HEMS. Then, the HEMS locally calculates new energy consumption schedule x
′
m constrained by the

new preference with scheduling periodH′ = {t + 1, . . . , H} based on current energy consumption of
the community as in the following optimization problem:

minimize
x′m∈X

′
Um(x

′
m, x−m) =

H

∑
h=t+1

Uh
m(x

′h
m , xh

−m)

subject to e fm =
H

∑
h=t+1

lh
fm

eh,min
fm

≤ lh
fm
≤ eh,max

fm
, ∀h ∈ H′

(20)

where a set of feasible energy consumption for the user is updated as

X ′m =

{
x
′
m | e fm =

H

∑
h=t+1

lh
fm

, eh,min
fm

≤ lh
fm
≤ eh,max

fm
, ∀h ∈ H′

}
. (21)

The updated energy consumption vector is then announced to the utility company and all other
users. The rescheduling algorithm provides an opportunity for users to change their time preferences
while also selecting the best possible schedule for the appliance corresponding to the new time
preference. Please note that when a user reschedules other users electricity bills may be affected.
However, the schedules of other users remain unaffected from this individual rescheduling event.
The cost discrepancy will be addressed in the following section. The summary of the rescheduling
algorithm is shown in Algorithm 2.

Algorithm 2 Individual rescheduling for user m

for t ∈ H do
2: if user m ∈ M requests for rescheduling then

update time preference [α fm , β fm ] of appliance fm to new time preference [α
′
fm

, β
′
fm
]

4: solve local rescheduling problem in Equation (20)
broadcast x

′
m to all other users and the utility company

6: end if
end for

4. User Billing Mechanism

In this section, the details of the proposed fair billing mechanism are explained. As mentioned
before, an optimal consumption schedule for each user is computed using Equation (19). Equations (11)
and (13) are used to determine the user’s electricity bill which is proportional to the amount of energy
consumed. However, this billing mechanism is fair for all users only when there is no consumption
deviation. In practice, deviation is likely to occur, e.g., when users change their preferences and
thus violate the schedules. This would have a negative fairness impact on the traditional billing.
An alternative fair billing mechanism which takes a user’s action into consideration is required.
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The proposed billing mechanism consists of two parts: rescheduling compensation and
consumption deviation bills. In the first part, energy cost differences from rescheduling process are
calculated. The rescheduling user will take responsibility for the corresponding change of electricity
bill from all other users. In the second part, the actual consumption profile of each user is compared
with the assigned schedule to calculate our defined penalty and reward metric. Then, in order to
determine the user’s final electricity bill, the amount of penalty or reward is given to each user based
on these metrics.

4.1. Rescheduling Compensation Bill

The rescheduling compensation bill is designed to compensate any cost that affect other users
when rescheduling. That is, all other users bills should be kept the same as their day-ahead schedules
while the rescheduling user takes responsible for any cost differences. Considering each rescheduling
user m ∈ M, in each time slot h = [t + 1, H], we denote total load before user m reschedule as Lh

BF,m

and the corresponding energy cost as Ch
BF,m

(
Lh

BF,m

)
. The bill of user n before user m reschedule in

time slot h is

bh
BF,n,m = lh

n
Ch

BF,m

Lh
BF,m

(22)

Similarly, let us denote total load after user m reschedule as Lh
AF,m and the corresponding energy

cost as Ch
AF,m

(
Lh

AF,m

)
. The bill of user n after user m rescheduled in time slot h is

bh
AF,n,m = lh

n
Ch

AF,m

Lh
AF,m

(23)

The different in bill ∆bh
n,m of user n before and after user m rescheduled at time slot h is

calculated as
∆bh

n,m = bh
BF,n,m − bh

AF,n,m (24)

where ∆bh
n,m for h ∈ [1, t] is 0. Bill compensation for user n in time slot h is calculated as

bh
com,n =

{
∆bh

n,m , n 6= m
∑n∈N ,n 6=m−∆bh

n,m , n = m
(25)

Bcom,n =
H

∑
h=1

bh
com,n. (26)

The bill compensation bh
com,n adjusts electricity cost for all users such that the rescheduling user m

takes responsibility of the cost induced by his action. In Equation (25), the bill compensation of each
user n (n 6= m) is ∆bh

n,m and for the rescheduling user m is the sum of bill differences from all other
users. This bill compensation is calculated for all rescheduling user and will be added to the user’s
final electricity bill.

4.2. Consumption Deviation Bill

After the bill compensation is determined, all user will be billed based on a billing mechanism
extended from our work in [19] which takes into account any cost differences between actual and
assigned consumption schedules. The proposed consumption deviation bill aims to fairly determine
the user’s electricity bill based on the following fairness criteria:

• User’s electricity bills are determined proportional to their energy consumption.
• Users who consume energy according to their assigned day-ahead schedules will not pay more

than the estimated electricity bills.
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• In case when the users deviate their consumption from the assigned schedules, the cost differences
are distributed to the users proportional to the amount of deviation.

Based on the fairness criteria, we defined penalty and reward metrics and assign to the
users proportional to the amount of consumption they deviated from the assigned schedules.
Let LACT,n = ∑H

h=1 lh
ACT,n be the actual consumption and LASN,n = ∑H

h=1 lh
ASN,n be the assigned

consumption of user n for h ∈ H. Please note that the assigned schedule is including the schedule
updated after user reschedules. The energy generation cost calculated from the assigned schedule is

Ch
ASN = Ch(LASN,n). (27)

Thus, the estimated electricity price becomes

ph
ASN =

Ch
ASN

Lh
ASN

. (28)

Similarly, the actual energy generation cost calculated from the actual consumption is

Ch
ACT = Ch(LACT,n) (29)

and the actual electricity price is

ph
ACT =

Ch
ACT

Lh
ACT

. (30)

Let us define a penalty metric penh
n and assign to user n based on the amount of consumption

deviation relative to all other users in time slot h as

penh
n =

∆lh
n

∑N
n=1 ∆lh

n
(31)

where ∆lh
n =

∣∣∣lh
ACT,n − lh

ASN,n

∣∣∣. The penalty metric (0 ≤ penh
n ≤ 1) indicates how much the user n

deviates consumption in time slot h from the assigned schedule compare to the total community
consumption deviation. A large penh

n means that the user n relatively deviates more consumption in
time slot h than other users. We also define a reward metric rewh

n and assign to user n based on the
amount of consumption committed relative to all other users in time slot h as

rewh
n =

∆lh
max − ∆lh

n

∑N
n=1(∆lh

max − ∆lh
n)

(32)

where ∆lh
max = max(∆lh

1 , . . . , ∆lh
N) is the maximum amount of consumption deviation in time slot

h. The reward metric (0 ≤ rewh
n ≤ 1) indicates how much the user n commits to the assigned

consumption schedule compare to the total community schedule commitment. A large rewh
n means

that the user n relatively follows the assigned consumption in time slot h than other users. The energy
cost different caused by consumption deviation of all users can be calculated as

∆Ch = Ch
ACT −

N

∑
n=1

ph
ASN lh

ACT,n. (33)

Thus, the consumption deviation bill is calculated as follows

bh
n =

{
ph

ASN lh
ACT,n + penh

n∆Ch if Ch
ASN < Ch

ACT
ph

ASN lh
ACT,n + rewh

n∆Ch otherwise
(34)
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Bn =
H

∑
h=1

bh
n. (35)

In Equation (34), the first term of the consumption deviation bill is a base energy bill, which
users need to pay for their actual use of energy and being charged with the price ph

ASN . In the second
term, there are two cases. The first case is when the energy cost of the actual consumption (deviated
schedules) is higher than the energy cost of the assigned consumption Ch

ASN < Ch
ACT . This extra cost

is distributed to all users based on the amount of their deviated consumption, which is indicated
by the penalty metric penh

n. This means that the higher consumption deviation the more penalty is
given. The second case is when the actual energy cost is lower or equal to the energy cost of the
assigned consumption Ch

ASN ≥ Ch
ACT . In this case, rewards are given to users based on their schedule

commitments, which indicated by the reward metric rewh
n. That is, the more user commits to the

assigned schedules the more reward is given. Please note that the value of ∆Ch becomes negative in
the second case, and thus lower the bill. Moreover, the deviating users are penalized for consumption
deviation in both up and down direction to prevent strategic players who intentionally deviate from
their schedules for economic benefits. An example of such strategy includes a user who constantly
under-consume, a behavior that could otherwise be exploited to achieve cheaper electricity bills.

Finally, the final determination of user’s electricity bill B f inal,n for n ∈ N is calculated as the sum
of Bn and Bcom,n as

B f inal,n = Bn + Bcom,n. (36)

The summary of the proposed billing mechanism is shown in Algorithm 3. The utility company
calculates electricity bill for each user at the end of the operation period and before starting of the
next consumption scheduling. First, for each user n ∈ N , the bill compensation is initialized to zero.
Then, the compensation bill is calculated according to Equation (26) for each rescheduling user m ∈ M.
Once, the compensation bill is determined, the actual and assigned consumption level are compared
in each time slot to calculate the penalty and reward metrics for each user. The consumption deviation
bill is then calculated using Equations (33) and (34). Finally, the compensation bill is added to each
user for the final electricity bill as in Equation (36).

Algorithm 3 User Billing: calculate electricity bill for each user n ∈ N at the end of operation period

for each user n ∈ N do
initialize bh

com,n = 0
3: for each rescheduling user m ∈ M do

calculate reschedule bill difference ∆bh
n,m, ∀h ∈ H

compute bill compensation of user m and all other users in Equation (25)
6: update to the current bill compensation

end for
calculate the penalty metric penh

n and the reward metric rewh
n

9: calculate the energy cost different ∆Ch from Equation (33)
determine user’s electricity bill using Equation (34)
final electricity bill is calculated as Equation (36)

12: end for

Please note that we assume a budget-balanced billing system ∑H
h=1 Ch(LH) = ∑N

n=1 B f inal,n, i.e.,
the sum of the user’s bills equals the energy generation cost. It is possible for the utility to make a
profit by multiplying the energy generation cost with some weight factor (e.g., w > 1). Then, the
difference between the total charges to the users and the total energy cost would indicate the profit
of the utility. The proposed fair billing mechanism also retains this budget-balanced scheme; it only
redistributes the generation cost more fairly based on the user’s actions and deviations. The users
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receive economic benefits from scheduling the consumption profiles more efficiently and by avoiding
the use of energy during high demand periods.

5. Simulation Results

In this section, various simulation scenario and performance analysis of our proposed energy
consumption scheduling algorithms and billing mechanisms are presented.

5.1. Simulation Setting

In the simulations that follow, the CREST demand model [22] was used as the residential user
demand consumption. This model is a high-resolution (one-minute resolution) stochastic model
of domestic electricity demand that incorporates appliance composition, human occupancy model
and electrical parameters derived from time-use survey data. In the simulations, a population of
20 households (N = 20) on one ordinary weekend day in winter was considered. Please note that this
number was chosen just for demonstration purposes. Simulating a larger number of users is possible.
Appliance types and power rating parameters, the human occupancy and user demand were gathered
by randomly sampling from the CREST model. Example of non-flexible appliances (i.e., critical
appliances that their energy consumption cannot be shifted and must keep the power level as the
original schedules) include refrigerator, television, personal computer, and lighting. Flexible appliances,
including dishwasher, washing machine and electric shower, were modeled by Equations (5) and (6).
The full list of 34 appliances used in the simulation can be found in Appendix A. The number of
appliances each user own is determined by the result of sampling from a given probability distribution
based on realistic statistics from a time-use survey. Please note that not all appliances in the list are
occupied by every user. We assumed the daily energy requirement for each appliance corresponds to
the data sampled. For appliance power constraints, we set eh,min

fn
= 0 and eh,max

fn
equal to the maximum

observed value. The user time preference is randomly assigned for each flexible appliance considering
the original schedule. The coefficients of energy generation cost function are set as ah = 1, bh = 6,
and ch = 0 for ∀h ∈ H and the cost function is given in Japanese Yen. We assumed all users equally
value their flexible appliances needs and set the appliance priority value k fn = 10 for all fn ∈ AF,n and
balanced consideration between electricity bill and discomfort cost with the weight factor Kn = 0.5,
unless otherwise stated. With consideration to electric vehicles, EV charging is possible and can be
viewed as a consumption load. However, the use of EV as an energy source (i.e., a battery that can be
scheduled for discharging) is not considered in this paper and is left as future work. The optimization
in Equations (19) and (20) were solved using MATLAB optimization toolbox with a limiting number of
100 iterations, which in practice was sufficient for convergence.

5.2. Results of Consumption Scheduling Algorithm

First, the convergence of the proposed DSM consumption scheduling algorithm is investigated.
Figure 2a,b show aggregated community and 20 individual users energy cost as the iteration number
increases. The results show that the algorithm converges in less than 60 iterations in total, that is, each
user approximately computes its consumption schedule for 3 times.
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Figure 2. The convergence of the proposed DSM consumption scheduling algorithm. (a) Aggregated
energy cost of 20 users; (b) Individual energy cost of 20 users.

Figure 3 illustrates different aggregated consumption profiles Lh = ∑N
n=1 lh

n without and with the
proposed DSM consumption scheduling. We consider the base case of not using DSM consumption
scheduling. In this case, the users use their appliances according to the original schedules without
considering the energy price signal from the utility. Comparing this base case to a case that uses the
proposed DSM consumption scheduling, the result shows that peak consumption was reduced by
shifting consumption to the off-peak periods. The PAR value of 20 users has been reduced from 1.83 to
1.40 (−23.5%) by the proposed DSM consumption scheduling. The corresponding energy generation
cost of the community also reduced from 4359.17 Yen to 4088.21 Yen (−6.22%). The reason for cost and
PAR reduction is because the energy consumption of the users are scheduled more efficiently based on
other users load information. Please note that the proposed scheduling mechanism also preserves the
user’s preferred lifestyle by considering the discomfort caused by shifting appliance according to the
user’s choice of preferences.
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Figure 3. Aggregated consumption profiles of 20 users.

The weight factor parameter Kn is used to quantify the user’s point of view in the community
toward energy cost saving and individual comfort. With a different value of Kn, the result of the
aggregated energy cost of the community is shown in Figure 4a under different appliance’s priority
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value of 1, 5, and 10. As the value of Kn increases, the optimal energy cost increased in all cases. This is
due to the fact that as the users concern more about their comfort, the system has less flexibility in
shifting appliances in order to reduce the energy cost. Similarly, Figure 4b shows how the overall
community PAR changes in response to different values of Kn. The results show a similar trend as
PAR increases when Kn increases. In both results, the smaller value of ka causes the discomfort cost to
be relatively low when compared to the electricity bill of users and thus, reducing energy cost and
PAR more than the case of high ka values.
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Figure 4. Impact of Kn for ka = 1, 5, 10. (a) Aggregated energy cost of the community; (b) PAR of
the community.

5.3. Results of Rescheduling Algorithm

In this section, the performance of rescheduling algorithm is demonstrated in 3 different scenarios.
In the day-ahead schedules, the consumption profile is used as the optimal consumption schedules
determined a day before. The deviated schedules referred to the case when users have changed their
time preference of appliances. Without applying the rescheduling algorithm, users will change the
operation time of the appliances and use them as early as possible according to their new preferences.
For the schedule with rescheduling, the user requests for a new appliance schedule with the new
preference considering other users consumption profiles. For the purpose of demonstration, we set
10 out of 20 users to randomly change a single flexible appliance’s time preference and request for
rescheduling during 5:00 to 14:00. Figure 5 shows the corresponding aggregated consumption of
the community in different scenarios. As we can see, when the user changes appliance operation
time without considering other users load in the community, a high peak demand occurred and
increased the total energy cost of the community. When rescheduling algorithm is applied, the resulting
consumption profile is flattened with lower PAR, resulting in similar profile with the optimal day-ahead
schedule. This is because of the rescheduling algorithm schedules devices in such a way as to reduce
peak consumption.

We further show the impact of the proposed rescheduling algorithm by varying a different number
of rescheduling users. The normalized aggregated energy cost is shown in Figure 6 for the case of with
and without rescheduling algorithm as the number of rescheduling user increases. The result shows
that when the number of rescheduling users increased, the greater cost reduction of the proposed
rescheduling algorithm can be achieved when compared to the without-rescheduling scenario. This is
because the rescheduling algorithm has even more chances to optimize various consumption loads,
avoiding further consumption peaks. These results demonstrate the effectiveness of the proposed
rescheduling algorithm when it comes to avoiding consumption peaks and thus flattening the total
consumption profiles, resulting in lower total energy costs.
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Figure 5. Aggregated consumption profile of 20 users in the case of day-ahead schedules, deviated
schedules without and with rescheduling.
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Figure 6. Aggregated energy cost (normalized) per number of rescheduling users.

5.4. Results of Billing Mechanism

In this section, results of the proposed billing mechanism are investigated for the rescheduling
and consumption deviation scenarios. The optimal day-ahead billing uses Equation (13) to calculate
the user’s electricity bill. The rescheduling billing added bills compensation from Equation (26) to
compensate the cost different caused by rescheduling users. Figure 7 shows the electricity bill of users
for the optimal day-ahead and rescheduling billings with users 1–10 rescheduled their appliances.
The results illustrate that the electricity bill of the rescheduling users are adjusted such that the
electricity bill of non-rescheduling users (users 11–20) remain the same as their optimal day-ahead
bills and those users who reschedule their appliance take responsibility for the bill discrepancies they
caused. Thus, the proposed billing provides fairness to the non-rescheduling users.



Energies 2019, 12, 156 17 of 20

2 4 6 8 10 12 14 16 18 20

User

100

150

200

250

300

E
le

ct
ri

ci
ty

 b
il

l 
(Y

en
)

Optimal day-ahead electricity bills

Electricity bills with compensation

Figure 7. User’s electricity bill before and after rescheduling.

As mentioned before, in a practical scenario we cannot assume that every user will follow the
assigned schedules and consumption deviation is possible at any time after the schedules have been
determined. Thus, in this scenario, energy costs are changed by changes in consumption, which in
turn, affects all user’s electricity bills. To demonstrate the effect of deviated schedules, we set users
11–20 to deviate their consumption from the assigned schedules. The amount of deviation for each
user is randomly selected from a uniform distribution in the range [−0.3, 0.3] kWh in each time slot.
Figure 8a shows the electricity bill of 20 users with consumption deviation using billing Equation (13).
The results show that the electricity bill of non-deviating users (users 1–10) are increased from their
predetermined electricity bills although they committed to the assigned schedules which considered
unfair. This is because the actual consumption is different from the assigned schedules caused by users
who deviate the consumption. In the same setting, Figure 8b shows the results of the proposed billing
mechanism in Equation (36). The electricity bill of non-deviating users (users 1–10) are reduced as
they received rewards for being committed to the assigned schedules while the bill of deviating users
(users 11–20) are subjected to the penalty according to the amount of consumption deviation. That is,
the proposed billing mechanism calculates users’ bills based on their consumption level compared to
the assigned schedule in each time slot while the bills of non-deviating users are reduced from the
given rewards. Electricity bills of deviating users are proportionally calculated based on the amount of
deviation. Therefore, the proposed billing mechanism improves the fairness level in the billing process
and prevents the strategic players from manipulating schedule for their economic benefits. This will
motivate the users to participate in DSM program by maintaining fairness among users in the shared
energy community.
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Figure 8. User’s electricity bill with consumption deviation. (a) Conventional billing mechanism;
(b) Proposed billing mechanism.

6. Conclusions

In this paper, we proposed user-centric consumption scheduling and fair billing mechanism for
DSM program which consider economic incentives and user comfort. First, consumption scheduling
is determined in a distributed iterative fashion in order to maximize individual user electricity bill
savings while preserving the preferred level of discomfort caused by load shifting. Moreover, users also
have a choice to determine the amount of contribution toward the community as a trade-off for their
comfort. In addition, the rescheduling algorithm is proposed to cope with the users who have changed
their preference and request new schedules whenever necessary. Finally, a fair billing mechanism is
designed to improve the fairness level in determining final electricity bills of the users which considers
both rescheduling users and the amount of consumption deviation from the assigned schedules.

The simulation results have shown the effectiveness of the proposed DSM mechanism, in the
aspects of cost saving and PAR reduction in both day-ahead scheduling and rescheduling cases.
The algorithm is shown to converge within a reasonable iteration count and able to achieve significant
energy cost savings. The impact of different user’s weight factor and appliance priority values to the
aggregated energy cost and PAR are analyzed. Finally, the results of the proposed billing mechanism
shown an improvement in fairness level of the DSM program.

The integration of the proposed features result in a user-centric DSM program which is expected
to attain higher levels of user participation and achieve a practical DSM deployment in the future
smart grid. Future work could address the integration of distributed generation as well as further
research on peer-to-peer energy sharing.
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Appendix A

The list of appliance is taken from CREST model specification sheet [22] as shown in Table A1.
Please note thatthe classification of activities as shiftable or non-shiftable may be perceived as arbitrary.
However, by applying different user preferences, an activity can be effectively reclassified as to fulfill
the user’s needs.
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Table A1. List of appliances.

Non-Flexible Appliance Flexible Appliance

Chest freezer Iron
Fridge freezer Vacuum
Refrigerator Hob

Upright freezer Oven
Answer machine Microwave

Cassette/CD player Kettle
Hi-Fi Small cooking group
Clock Dish washer

Cordless telephone Tumble dryer
Fax Washing machine

Personal computer Washer dryer
Printer Electric shower
TV 1
TV 2
TV 3

VCR/DVD
TV receiver box

Electric space heating
Storage heaters

Domestic Electric Storage Water Heater
Electric instantaneous water heater

Lighting
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