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Abstract: Biogas is an alternative source of energy for fossil fuels. In the process of transforming
organic materials into biogas significant amounts of valuable digestate are produced. In order to
make the whole process sustainable digestate should be utilized this is a constraining factor in the
development of the biogas industry. Consequently, there is an on-going search for new technologies
to process digestate, allowing to broaden the range of possible ways of digestate utilization. One of
such possibilities is technology of nitrogen (N) and phosphorus (P) recovery from the anaerobic
digestate. In this study results of physicochemical analysis of materials flowing through the farm-scale
bio-refinery producing struvite (STR) and ammonium sulphate (AS) are presented. Struvite was
precipitated from the liquid fraction of digestate (LFDS). Ammonia was bound by sulphuric acid
resulting in obtaining ammonium sulphate. The STR obtained was of medium purity and contained
other macronutrients and micronutrients that further enhanced its agronomic value. The P recovery
effectiveness, counted as the difference between the Ptot content in the material before and after STR
precipitation was 43.8%. The AS was characterized by relatively low Ntot and Stot content. The Ntot

recovery efficiency reached 43.2%. The study showed that struvite precipitation and ammonia
stripping technologies can be used for processing digestate however, the processes efficiency should
be improved.

Keywords: biogas plant; struvite precipitation; ammonia stripping; circular bioeconomy; digestate
treatment

1. Introduction

The progressing concentration of animal production causes a growing problem of environmental
pollution. The problem is so serious that in some European countries systemic solutions began to be
introduced forcing farmers to implement technologies aimed at the export of nitrogen and phosphorus
(P) from farms [1]. This is exemplified by Dutch agriculture [2]. Due to a large excess of phosphorus
occurring in farms with intensive livestock production, the Dutch government introduced legislation
to limit the amount of phosphate used in agriculture. Farmers are eligible for state-founded payments
when they exported phosphorus from their farm.

Proper allocation of nitrogen (N) and P from manure between areas with excess of the components
and those where their deficits are supplemented with mineral fertilizers will provide measurable
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benefits in the form of limiting water eutrophication and reduction of N2O emissions from the soil [3].
The closing of the N and P cycle by recovering and recycling can be implemented through farm
expansion and creating a system of the organic materials treatment consisting in the struvite (STR)
(MgNH4PO4·6H2O) precipitation and subsequent stripping of ammonia. The obtained products: STR
and ammonium sulphate (AS) can be used as substitutes for currently used artificial fertilizers which
corresponds with the idea of the circular bioeconomy. One of its objectives is to increase efficiency
of natural resources use and to decrease the dependence European agriculture on imports of raw
materials necessary for fertilizer production [4]. This implies a necessity to search for new N and P
sources for fertilizer use [5].

Nowadays anaerobic digestion has become an increasingly important source of renewable
energy. During the anaerobic digestion, organic compounds are subject to degradation, leading
to the accumulation of mineral forms of N and P in the remaining digestate [6–8]. Digestate is
usually subject to solid-liquid separation [9]. The solid fraction is applied on fields managing large
amounts of liquid fraction, which contains 3–5% dry matter is difficult to achieve [10]. Further
processing of the liquid fraction of digestate permits a recovery of nutrients. They can be exported
from the farms over large distances to places where the soil is deficient in these nutrients [11,12].
This allows for obtaining additional income from the sale of the obtained product [13]. It is
possible to apply several technologies of the digestate liquid fraction processing, such as struvite
precipitation, ammonia stripping, evaporation, or membrane separation, resulting in the nutrient
recovery and production of nutrient-rich products [14–17]. Struvite precipitation and ammonia
stripping are promising methods for recovering the nitrogen and phosphorus from the liquid fractions
of digestate. However, these processes are still at an experimental level [18]. According to Rahaman
et al. [19], equi-molar concentration (1:1:1) of magnesium (Mg), phosphorus (P) and ammonium
(NH4

+) with alkaline (optimal pH value 8.5–9.0) are required to precipitate struvite. Depending
on the chemical reaction conditions, struvite may be formed at reactants ratios different from the
optimal molar ones [20–22]. Czajkowska and Siwiec [23] proved that at pH ≤ 7.5 struvite precipitates
from a solution at the concentration of substrates: ≥300 mg PO4

3−·kg−1, ≥250 mg NH4
+·kg−1 and

≥111.5 mg Mg·kg−1. Results of the cited research indicate that increase in phosphate concentration
up to 1000 mg PO4

3−·kg−1 allows crystallization of struvite with a lower content of other substrates
(49.4 mg Mg·kg−1 and 100 mg NH4

+·kg−1). However, a decrease in the content of one substrate must
be accompanied by an increase in the concentration of the other substrate. At pH 8.0, struvite does
not crystallize from the solution at a concentration of 100 mg PO4

3−·kg−1, <200 mg NH4
+·kg−1

and <113 mg Mg·kg−1. However, in the pH range 8.5–9.0, the ion concentrations that do not
allow crystallization from the solution are as follows: 200 mg PO4

3−·kg−1, <100 mg NH4
+·kg−1

and <48 mg Mg·kg−1 [23]. A potentially high content of competing elements can inhibit struvite
crystallization. The content of potassium (K) [18], calcium (Ca) [17], and organic compounds [24] could
decrease the N and P removal efficiency from the liquid fraction of digestate. The ammonia stripping
process depends on pH, temperature and mass transfer area. The process is typically conducted at
a temperature higher than 20 ◦C and pH above 9 [25]. Guštinet et al. [26] reached high efficiency
of N removal (approximately 93%) from liquid fraction of digestate at pH 10.5 and temperature of
50 ◦C. The remaining material could still contain nutrients. However, it can be used in the agriculture
after pH neutralization [25]. An alternative method is cultivation of duckweed. Oron et al. [27] used
duckweed for domestic wastewater treatment to recycle the nutrients. Additionally production of
duckweed is aimed at the recovery of nutrients, especially ammonium and phosphorus, from swine
lagoon water [28]. Duckweed is well known for its high productivity and high protein content, ranging
between 15% and 45% of the dry mass [29,30]. Considering the above, production of duckweed
can substitute imported fodders and therefore limit the inflow of another portion of nitrogen and
phosphorus within protein-rich fodders to the farm.
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Thus far N and P has been recovered mainly from municipal sludge digester effluent and swine
wastewater [17]. Moreover, the growing problem of point accumulation of these nutrients in digestate
from biogas plants encourages the undertaking of research aiming at N and P recovery.

The aim of the study was to assess the possibility of using digestate processing technology in
biogas plants, designed for N and P recovery and production of innovative substances that could be
transported over long distances and used as mineral fertilizers.

2. Materials and Methods

2.1. The Farm Biogas Plant Scheme

The bio-refinery was located at the Experimental Dairy Farm ‘De Marke’ in Hengelo (Gld), the
Netherlands (52◦03”N, 6◦18”E). In the bio-refinery (Figure 1), cattle slurry (S) was subject to anaerobic
digestion (1), and the obtained biogas was used to produce energy (2). The CHP (Combined Heat
and Power) installation consisted of a gas engine (MAN E0824 E302) and generator. The electrical
capacity is 36 kWe and thermal capacity is 51 kWth. The produced heat is being used to maintain the
temperature of the digestion process. Electricity is being used to cover the own electricity consumption
at the Experimental Dairy Farm De Marke and the surplus is being sold over the public electricity grid.
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Figure 1. Scheme of the integrate bio-refinery system on farm scale.

The remaining digestate (DS) after sanitation (3) was separated into the solid (SFDS) and liquid
fractions (LFDS) (4). Digestate was hygienized in order to reduce the amount of pathogens and to
prevent infections. In this case the standard method of sanitation was used—pasteurization, which
involves keeping the material at 70 ◦C for at least 60 min. The first stage of LFDS processing was
struvite (STR) precipitation (5). MgCl2 was added to the LFDS as a source of magnesium. Moreover,
the pH of LFDS was adjusted to 9 by means of continuous 5N NaOH addition. At the second stage,
ammonium sulphate (AS) was produced at 70 ◦C in the ammonia stripping installation: H2SO4 vessel,
stripping tower and reactor (6). in order to increase the N recovery efficiency from the liquid fraction
of digestate. (6). The liquid fraction after STR precipitation was alkalised by means of 5N NaOH,
reaching a pH of 10.5. In such conditions, the released ammonium was bound by sulphuric acid
resulting in obtaining AS. At the third stage, the effluent (EFL) after ammonia stripping was directed
to the duckweed pond, where duckweed was cultivated (7). The produced duckweed served as fodder
for cattle on the farm. The concept of our installation assumes that the duckweed will be kept in the
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pond and will absorb the nutrients until they reach a level that is acceptable for dumping the pond
water to the surface waters.

2.2. Analytical Methods

The samples were collected in 2017. The chemical analysis of the S, DS, LFDS, SFDS, EFL, STR
and AS was carried out in triplicate. The S, DS, LFDS, SFDS and EFL samples were dried out at
60◦C using drier PREMED (Marki, Poland) to estimate Total Solids content (TS). The Volatile Solids
(VS) content was measured in accordance with the Polish Standard PN-Z-15011-3:2001 after roasting
samples at 550 ◦C in a muffle furnace model FCF 12SHM (Czylok, Jastrzębie Zdrój, Poland). The
pH value was measured by the potentiometric method using a pH meter (Schott, Mainz, Germany).
The total N content (Ntot) was measured by means of the Kjeldahl method using a Vapodest analyzer
model VAP 30 (Gerhardt, Bonn, Germany). The NH4

+-N content was measured using the Skalar San
Plus analyzer (Breda, Netherlands), after wet basis samples extraction in 0.01 mol·dm−3 CaCl2 with
sample/extractant ratio of 1:10. The total phosphorus (Ptot), potassium (Ktot), magnesium (Mgtot),
calcium (Catot), sodium (Natot), zinc (Zn), manganese (Mn), copper (Cu) and iron (Fe) content were
determined after digestion in HNO3 and HClO4 acids using a Model DK 20 digestion unit (VELP
Scientifica, Usmate, Italy). Ktot, Mgtot, Catot, Natot, Zn, Mn, Cu and Fe were measured by AAS (Atomic
Absorption Spectrometry) method using a spectrometer SOLAAR (Thermo Elemental, Cambridge,
UK). The total content of sulphur (Stot) was measured by inductively coupled plasma atomic emission
spectrometry (ICP-AES) (IRYS Advantage ThermoElementar, Cambridge, UK). Ptot was determined
by the molybdenum-blue ascorbic method using the spectrophotometer Genesys 10 UV-VIS (Thermo
Electron Corporation, Madison, USA). Water-soluble forms of Pws, Mgws and Caws were determined
in water/the samples solution with ratio of 1:100. The crystal morphology of the STR deposit was
observed using an optical polarization microscope (Model MN-800, POL OPTA-TECH) with a 5MP
digital camera (OPTA-TECH) and Opta View software. X-ray Diffraction (XRD) measurements were
performed on a diffractometer by PANalyticalEmpyreanin Bragg-Brentano geometry equipped with a
PIXcel3D detector. The measurements were performed on a Cu lamp with parameters I = 40 mA and
U = 40 kV. The analysis of the diffractogram was performed in HighScorePlus software.

2.3. Statistical Analysis

Statistical analysis was carried out using the Statistica PL 13.0 software (Tulsa, USA). The data
were subjected to ANOVA and the differences between the means were determined according to
Tukey’s test (P < 0.05).

3. Results and Discussion

The total content of studied macronutrients was similar in raw (S) and digestated slurry (DS)
(Table 1). After anaerobic digestion the relation between total and water soluble forms of nutrients
changed, especially concerning P. In the S the content of Pws was 41.6 mg·kg−1 WB, whereas in the DS
it was 212.6 mg·kg−1 WB. It constituted of 10.6% and 56.8% of Ptot, respectively. After mechanical DS
separation, the remaining SFDS contained a significantly higher content of Ntot, Ptot, Ktot, Mgtot and
Catot compared to the LFSD. However, the contribution of water-soluble nutrients in total forms was
higher in the LFDS (Table 1).

The chemical composition of LFDS was not optimal for struvite precipitation. In the LFSD,
the content of NH4-N was 3000.0 mg·kg−1 WB, Pws 183.0 mg·kg−1 WB and Mgws 239.4 mg·kg−1

WB (Table 1). According to Kataki et al. [31] and Jia et al. [32], the highest effectiveness of struvite
precipitation is achieved in solutions where pH is 9.0, whereas the pH of LFSD was 7.8; thus in order
to increase the pH NaOH, was added. STR crystals obtained in the bio-refinery were very small. Their
linear dimensions reached 1400 µm (Figure 2). They were colored brown, which indicated the presence
of organic pollutants. The content of organic matter in the STR was estimated for 51.3 g VS kg−1.
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Additionally Achat et al. [33] found the presence of organic matter between 19.3 and 165.0 g·kg−1 in
recycled P-products.

Table 1. The physicochemical properties of organic materials flowing through the farm scale
bio-refinery.

Parameters S DS SFDS LFDS EFL

pH 7.0 a 7.8 b 7.7 b 7.8 b 12.2 c

TS (%) 7.7 ± 0.1 b 6.8 ± 0.2 b 25.7 ± 1.1 c 3.3 ± 0.03 a 2.1 ± 0.1 a

Ntot (g·kg−1 WB) 3.6 ± 0.1 c 3.4 ± 0.01 bc 4.3 ± 0.2 d 3.2 ± 0.01 b 1.8 ± 0.1 a

NH4-N (g·kg−1 WB) 2.9 ± 0.1 b 3.0 ± 0.1 b 3.0 ± 0.1 b 3.0 ± 0.03 b 1.4 ± 0.05 a

Ptot (g·kg−1 WB) 0.4 ± 0.01 a 0.4 ± 0.01 a 1.3 ± 0.1 c 0.3 ± 0.0 ab 0.2 ± 0.0 b

Ktot (g·kg−1 WB) 4.6 ± 0.1 b 4.7 ± 0.2 b 4.6 ± 0.1 b 3.8 ± 0.2 a 3.8 ± 0.2 a

Mgtot (g·kg−1 WB) 0.7 ± 0.04 cd 0.6 ± 0.05 bc 0.9 ± 0.2 d 0.5 ± 0.01 b 0.3 ± 0.02 a

Catot (g·kg−1 WB) 1.0 ± 0.1 c 0.9 ± 0.1 bc 1.6 ± 0.3 d 0.6 ± 0.06 b 0.4 ± 0.01 a

Natot (g·kg−1 WB) 0.8 ± 0.05 a 0.7 ± 0.06 a 0.9 ± 0.01 a 0.7 ± 0.01 a 9.2 ± 0.2 a

Pws (mg·kg−1 WB) 41.6 ± 3.4 a 212.5 ± 9.8 d 543.5 ± 7.5 e 183.0 ± 10.0 c 127.7 ± 11.5 b

Mgws (mg·kg−1 WB) 311.6 ± 27.6 c 293.7 ± 19.9 c 200.8 ± 4.3 ab 239.4 ± 7.5 b 178.8 ± 20.9 a

Caws (mg·kg−1 WB) 348.4 ± 35.8 c 230.8 ± 15.6 b 193.6 ± 31.4 b 238.3 ± 32.8 b 173.7 ± 19.7 a

Cu (mg·kg−1 WB) 18.2 ± 0.4 b 15.3 ± 2.3 b 22.8 ± 1.2 c 7.3 ± 0.3 a 4.4 ± 0.9 a

Mn (mg·kg−1 WB) 12.2 ± 0.3 c 11.0 ± 0.1 c 22.2 ± 0.9 d 9.6 ± 0.1 b 7.5 ± 0.4 a

Zn (mg·kg−1 WB) 18.0 ± 1.8 c 16.4 ± 0.7 bc 25.8 ± 2.3 d 13.1 ± 1.7 ab 10.7 ± 0.9 a

Data (means ± standard deviation, n = 3) followed by different letters (a, b, c and d) in same rows are significantly
different at P < 0.05. S—slurry, DS—digested slurry, SFDS—solid fraction of digested slurry, LFDS—liquid fraction of
digested slurry, EFL –effluent from biogas plant after struvite precipitation and ammonia stripping. WB—Wet Basis,
Ntot, Ptot, Ktot, Mgtot, Catot, Natot—total forms of nutrients, Pws, Mgws, Caws—water-soluble forms of nutrients.
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Figure 2. Microscopic image of the struvite precipitated in the farm scale bio-refinery (STR).

The applied X-ray Diffraction (XRD) analysis allowed for the determination of the type of
crystalline phases occurring in the sample (Figure 3). The analyzed sample is characterized by
well-formed crystallographic phases. The presence of the struvite crystallographic phase is clearly
evidenced by a series of characteristic diffraction lines with the highest intensities at 2θ 15.00 (hkl
110), 15.81 (hkl 020), 16.47 (hkl 011), 20.85 (100% intensity, hkl 111), 21.45 (hkl 021) and 30.60 (hkl 211).
In addition to struvite, monohydroxycalcite (CaCO3·H2O) and quartz (SiO2) were found.
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Figure 3. X-ray diffraction pattern of the product from the bio-refinery with struvite (STR) evidence:
struvite (MgNH4PO4·6H2O)-green, monohydroxycalcite (CaCO3·H2O)-blue, and quartz (SiO2)-red;
the reference diffractogram of struvite is shown below the diffractogram of the analyzed sample.

Organic and mineral pollutants detected in the STR resulted in a low content of main nutrients
(23.1 g Ntot·kg−1 WB, 39.4 g Ptot·kg−1 WB and 32.3 g Mgtot·kg−1 WB) (Figures 4 and 5). Much
higher nutrient content occurs in the struvite fertilizer Crystal Green®, Ostara: 50.0 g Ntot·kg−1;
122.0 g Ptot·kg−1, and 100.0 g Mgtot·kg−1, produced from sewage sludge sediment [34,35]. However,
struvite composition depends on different factors; particularly, on the characteristics of raw
materials [36]. According to Kataki et al. [31], struvite from yeast anaerobic effluent contained
35 g N·kg−1, 108 g P·kg−1 and 79.7 g Mg·kg−1, from municipal wastewater 29 g N·kg−1, 91 gP·kg−1

and 99 g Mg·kg−1 and from human urine 29 g N·kg−1 and 71 g P·kg−1.
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Figure 4. Macronutrients content in STR from the farm scale bio-refinery plant.

The P recovery efficiency, calculated as the difference between the Ptot content in the LFSD and
the EFL, reached 43.8%. Low P recovery efficiency could be caused by the Ca, K, Na, Cu, Mn and Zn
content in the LFSD (Table 1) as these elements are considered to be STR precipitation inhibitors [18].
Moreover, the total solids in the LFSD could hinder STR precipitation. Taddeo et al. [18] proved a
strong correlation between the content of total solids in raw materials used to struvite precipitation
and process efficiency.

The total ammonia nitrogen (sum of NH3 and NH4
+), which remained in the effluent after

STR precipitation, was bound to (NH4)2SO4 by sulphuric acid in the ammonia stripping process.
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The obtained AS was characterized by a low content of Ntot (14.1 g·kg−1 WB) and Stot (16.8 g·kg−1 WB).
The content of pure (NH4)2SO4 was only 66.0 g·kg WB (Table 2). In the research conducted
by Laureni et al. [37], the ammonium sulphate solution obtained from pig manure contained
400.0–600.0 g·kg−1 (NH4)2SO4. A low AS pH (2.1) can affect the reduction of its fertilizer value.
It is possible to increase AS pH value using CaCO3 [38] or caustic magnesite [39]. The N recovery
efficiency, calculated as the difference between the Ntot content in the LFSD and the EFL, was 43.2%.
Depending on flow rate and alkalinity, the total ammonia removal from the digestate might reached
42–80% [40].Energies 2018, 11, x FOR PEER REVIEW  7 of 10 
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Figure 5. Micronutrients content in STR from the farm scale bio-refinery.

Table 2. Composition of ammonium sulphate (AS) from the farm scale bio-refinery.

Product Ntot Stot Pure (NH4)2SO4 Free H2SO4 pH

(g·kg−1 WB) (g·kg−1 WB) (g·kg−1 WB) (g·kg−1 WB)

AS 14.1 ± 0.1 16.8 ± 0.3 66.4 ± 0.6 2.2 ± 0.1 2.1

Data (means ± standard deviation, n = 3).

4. Conclusion

The disadvantage of biogas production being a renewable energy source is the remaining
significant amount of digestate. Because of its constraints, limiting potential use of digestate as
a natural fertilizer spread on agricultural land, there is a search for technologies allowing further
treatments of digestate to make exporting beyond farms where biogas is processed to energy possible.
The digestate can be a substrate for the production of valuable mineral fertilizers. Considering
problems of exhaustion of phosphate rock reserve the construction of a bio-refinery recovering N
and P as struvite and ammonium sulphate from digestate seems to be fully justified—both may
substitute commercial N-P or N fertilizers. The results indicate that the products obtained in the
bio-refinery contain smaller amounts of nutrients compared to mineral fertilizers that reduce their
fertilizing value. However, besides the main nutrients (N, P, Mg), recovered, struvite contains organic
matter and other macro- and micronutrients important for plant growth (K, Ca, Na, Cu, Mn, Zn,
Fe) that increase fertilizing value of struvite. Biogas plants can be transformed into a bio-refinery
using innovative processes; however, it is necessary to improve nutrient recovery efficiency. Further
vegetation experiments are required in order to determine the fertilizer value and optimal doses and
methods of application of these recycled products considering their specific properties.
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Abbreviations

TS Total Solids
WB Wet Basis
S Slurry
DS Digested slurry
SFDS Solid fraction of digested slurry
LFDS Liquid fraction of digested slurry
EFL Effluent after struvite precipitation and ammonia stripping
STR Struvite from bio-refinery
AS Ammonium sulphate
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