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Abstract: This paper studies a repetitive controller design scheme for a bridgeless single-ended
primary inductor converter (SEPIC) power factor correction (PFC) converter to mitigate input current
distortions. A small signal modeling of the converter is performed by a fifth-order model. Since the
fifth-order model is complex to be applied in designing a current controller, the model is approximated
to a third-order model. Using the third-order model, the repetitive controller is designed to reduce the
input current distortion. Then, the stability of the repetitive controller is verified with an error transfer
function. The proposed controller performance is validated by simulation, and the experiment results
show that the input current total harmonic distortion (THD) is improved by applying the proposed
controller for an 800 W bridgeless SEPIC PFC converter prototype.

Keywords: AC-DC converters; bridgeless SEPIC PFC converter; repetitive controller; current
distortion; current controller design

1. Introduction

Until now, many power conversion systems (PCS) are connected to grid and harmonic pollution
becomes an issue [1,2]. General PCS needs AC-DC conversion to operate with the grid, and the easiest
way is using a diode rectifier. However, it can decrease the power quality due to harmonics of the
input current of the diode rectifier [3]. Thus, to improve the quality of the input current, the grid-tied
power factor correction (PFC) converter can be applied. The PFC converter can achieve a unity power
factor operation with the sinusoidal input current, which has low harmonics. Generally, the boost PFC
converter is used, due to the simplicity, efficiency and low cost [4–6].

There are many systems using the PFC converter, such as switching mode power supply (SMPS)
and LED applications, etc. [7–9]. These applications demand a low DC output voltage while the input
voltage is relatively high. However, the general boost PFC converter only generates higher output
voltage than the grid peak-voltage, and it needs two stages for step-down operation. It is difficult to
expect the high efficiency because the number of PCS has been increased. In this case, the step-down
PFC converter which has only one stage can be used. There are step-down PFC converters such
as buck, buck-boost, Cuk and single-ended primary inductor converter (SEPIC) [10–28]. The buck
PFC converter is simple as boost PFC converter with high efficiency, but it only can generate the
lower voltage than the input voltage and does not create the input current around in zero-crossing
point. On the other hand, the buck-boost, Cuk, and SEPIC have no limit to generate the input current
and can operate in both step-up and step-down modes. So, the output voltage with wide range can
be generated.
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Recently, there have been continuing researches of the buck-boost, Cuk, and SEPIC PFC converters.
The buck-boost PFC converter needs an input filter due to pulsating input current. On the contrary,
the Cuk and SEPIC converters generate the continuous input current, and do not need an additional
input filter which can decrease the efficiency of the system. However, the Cuk converter’s output
voltage is inversed comparable table [19].

In [20–22], SEPIC and Cuk PFC converter topologies utilize the diode bridge at input side, which
causes additional conduction losses. On the other hand, bridgeless SEPIC and Cuk PFC converter
topologies are proposed in [23–28]. A Cuk PFC converter in [23,24] consists of 2 switches and 3 diodes.
A SEPIC PFC converter in [25,26] has 2 switches and 3 diodes. The circuits using more switches have
also been introduced in [27,28]. In this paper, a bridgeless SEPIC PFC converter with single switch and
5 diodes is utilized in Figure 1 [29]. Accordingly, the converter has low switching loss.

In general, the PFC converter has a unidirectional power transfer characteristic, because it is
operated in unity power factor condition. Therefore, the PFC converter works in continuous conduction
mode (CCM) and discontinuous conduction mode (DCM). The DCM operation is the cause of the input
current distortion in low power condition. The input current distortion due to the DCM operation
includes high-order harmonics, which are higher than the bandwidth of a typical current controller
such as a proportional-integral (PI) controller or a proportional-resonant (PR) controller. To reduce
the input current distortion, the current controller should be designed considering the plant model in
DCM as well as in CCM [27,30,31]. In [27], the feed-forward is utilized in the SEPIC PFC converter
for compensating the input current distortion. However, deriving an accurate DCM model is more
difficult than a CCM model, which is relatively easy to interpret.

A repetitive controller can be applied to compensate the harmonic components caused by DCM
operation. The repetitive controller has a high gain for the harmonics corresponding to multiples of the
fundamental frequency [32–35]. Thus, if a stable repetitive controller design is guaranteed, the current
distortion can be improved without the complicated analysis under DCM condition. In this paper,
the design method of the current controller with repetitive controller is introduced. Also, a simplified
third-order model of the SEPIC PFC converter is proposed.

This paper is organized as follows. Section 2 provides an analysis of the operating modes and the
transfer function of the bridgeless SEPIC PFC converter. In Section 3, the proposed current controller
design is described. The results of the simulations and the experiments are presented in Sections 4
and 5 to verify the performance of the proposed current controller.

2. Bridgeless SEPIC PFC Converter with RC Damping Circuits

2.1. Circuit Structure and Mode Analysis

Figure 1 shows the bridgeless SEPIC PFC converter dealt in this paper. A RC damping circuit
is equipped to suppress the high-order resonance of the converter which will be described in a later
section. Compared to a traditional SEPIC DC–DC converter, the bridgeless SEPIC PFC converter
contains the blocking diodes, D1 and D2, and the freewheeling diodes, Dp and Dn. With this
configuration, only the single switching device Sc can be utilized for both positive and negative
input voltage cycles.
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Figure 1. Topology of the bridgeless SEPIC PFC converter with the RC damping circuits. SEPIC: 
single-ended primary inductor converter; PFC: power factor correction. 

Figure 2 represents the operation mode analysis of the bridgeless SEPIC PFC converter under a 
positive input voltage cycle. In Figure 2a, the current conduction paths are indicated when Sc turns 
on. In this case, Dn, D2, and Do are biased reversely. In this case, four paths are existent. Path 1 consists 
of the input source, L1, D1, Sc, and Dp. In this path, the input energy is stored in L1. Through path 2, C1 
is charged by the energy stored in Lo. The RC damping circuit existing in this path dampens the 
resonant peak caused by C1, L1, and Lo. So, it can increase the stability of the circuit in the control 
viewpoint. For path 3, the energy exchange occurs between C1, C2, and L2. Again, C1 is charged while 
C2 is discharged. Unlike Lo, the input source does not contribute charging of the energy for L2. In this 
interval, the load Ro is supplied by Co via path 4. When Sc is opened, the current conduction paths 
change as shown in Figure 2b. In this case, Do turns on, and D1, D2, Sc, and Dn are blocked and the 
energy stored in L1, L2, C1, C2, and Lo is transferred to the load side including Co and Ro. Similarly, the 
analyses for negative input voltage cycles which are not discussed here can be also performed. 
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Figure 1. Topology of the bridgeless SEPIC PFC converter with the RC damping circuits. SEPIC:
single-ended primary inductor converter; PFC: power factor correction.

Figure 2 represents the operation mode analysis of the bridgeless SEPIC PFC converter under
a positive input voltage cycle. In Figure 2a, the current conduction paths are indicated when Sc

turns on. In this case, Dn, D2, and Do are biased reversely. In this case, four paths are existent.
Path 1 consists of the input source, L1, D1, Sc, and Dp. In this path, the input energy is stored in L1.
Through path 2, C1 is charged by the energy stored in Lo. The RC damping circuit existing in this path
dampens the resonant peak caused by C1, L1, and Lo. So, it can increase the stability of the circuit
in the control viewpoint. For path 3, the energy exchange occurs between C1, C2, and L2. Again, C1

is charged while C2 is discharged. Unlike Lo, the input source does not contribute charging of the
energy for L2. In this interval, the load Ro is supplied by Co via path 4. When Sc is opened, the current
conduction paths change as shown in Figure 2b. In this case, Do turns on, and D1, D2, Sc, and Dn are
blocked and the energy stored in L1, L2, C1, C2, and Lo is transferred to the load side including Co

and Ro. Similarly, the analyses for negative input voltage cycles which are not discussed here can be
also performed.
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Figure 2. Operation modes of the bridgeless SEPIC PFC converter under positive voltage cycles:
(a) when Sc is turned on; (b) when Sc is turned off.

2.2. Control Model Derivation of the Bridgeless SEPIC PFC Converter

Figure 3 illustrates the equivalent circuits of the bridgeless SEPIC PFC converter with the damping
circuit according to the switching operations. Since paths 3 and 7 are the leakage current paths and
the leakage current is very smaller than the input current, it can be ignored. So, the operation of
the converter is basically identical to traditional SEPIC PFC converters except the RC damping
circuit is included. In order to see the effect of the damping circuit and design the controller,
the control-to-inductor current model for the SEPIC PFC converter is derived.

When Sc is turned on, the following equations can be obtained. At this moment, the voltages of
L1 and Lo are derived as follows:

Vin = L1
diL1

dt
(1)

vC1 = Lo
diLo
dt

(2)

The capacitor currents iC1, iCo and iCd are represented as follows:
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− iLo −
vC1 − vCd

Rd
= C1

dvC1

dt
(3)

vC1 − vCd
Rd

= Cd
dvCd

dt
(4)

− vCo
Ro

= Co
dvCo

dt
= −Vo

Ro
(5)

When Sc is turned off, the voltages of L1 and Lo are expressed as below:

Vin − vC1 − vCo = L1
diL1

dt
(6)

− vCo = Lo
diLo
dt

(7)

and the currents of C1, Cd and Co are written as:

iL1 −
vC1 − vCd

Rd
= C1

dvC1

dt
(8)

vC1 − vCd
Rd

= Cd
dvCd

dt
(9)

iL1 + iLo −
VCo
Ro

= Co
dvCo

dt
(10)

Using Equations (1)–(5), then state–space matrix for Sc on time can be rewritten as follows:

A1 =


0 0 0 0 0
0 0 1

Lo
0 0

0 − 1
Co
− 1

RdC1
1

RdC1
0

0 0 1
RdCd

− 1
RdCd

0
0 0 0 0 − 1

RoCo

 B1 =


1
L1

0
0
0
0

 (11)

and, the state–space matrix for Sc off time can be derived as below:

A2 =


0 0 − 1

L1
0 − 1

L1

0 0 0 0 − 1
Lo

1
C1

0 − 1
RdC1

1
RdC1

0
0 0 1

RdCd
− 1

RdCd
0

1
Co

1
Co

0 0 − 1
RoCo

 B2 =


1
L1

0
0
0
0

 (12)
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x =


iL1

iLo
vC1
vCd
vCo

 u = [Vin]
.
x =



diL1
dt

diLo
dt

dvC1
dt

dvCd
dt

dvCo
dt

 (13)

x(s)
d(s)

= (sI − A)−1{(A1 − A2)X + (B1 − B2)Vin} (14)

The control-to-inductor current model can be obtained by Equations (11)–(14) as a fifth-order
model. Similarly, the control-to-inductor current model without the RC damping also can be derived
as a fourth-order model [29]. Figure 4 compares the control models of the bridgeless SEPIC PFC
converters with the RC damping and without damping in frequency domain with parameters in
Table 1. The model with the RC damping has only one resonant frequency in 800 Hz and the resonance
at higher frequency is damped. On the contrary, the model without the RC damping has two resonance
points in about 800 Hz and 5 kHz with high Q factor. This second resonance point with high frequency
which is over than the current control bandwidth cannot be controlled and oscillates the system current
unexpectedly. Therefore, the RC damping should be included to damp the second resonant peak.

Table 1. System Parameters.

Parameters Values

Switching frequency (fsw) 72 kHz
Sampling frequency (fs) 24 kHz

Input root mean square (RMS) voltage (vg) 120 V/60 Hz
Output voltage (Vo) (buck/boost) 80 V/220 V

Input filter inductance (L1, L2) 1 mH
Output inductance (Lo) 1 mH

Damping resistance (Rd) 60 Ω
Energy transfer capacitance (C1, C2) 0.47 µF

Damping capacitance (Cd) 2.2 µF
Output capacitance (Co) 2.6 mFEnergies 2018, 11, x FOR PEER REVIEW  7 of 17 
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2.3. Control Model Approximation of the Bridgeless SEPIC PFC Converter

The control-to-inductor current model with the RC damping is the fifth-order model. Since the
original undamped model is the fourth model, it became more complexed than the original undamped
model. Thus, it is difficult to analyze the frequency response of the controller with the fifth model so,
approximation needs to be adapted to design the controller easily. Since the capacitance of C1 and Cd
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is much lower value than the other components, the multiple of C1 and Cd is sufficiently small to be
ignored. Similarly, the multiple of the L1 and Lo is low value as Cd or C1, so C1L1Lo and CdL1Lo also can
be substituted with zero. With these processes, the approximate model can be represented as follows:

Gid(s) =
ig(s)
d(s)

=
N1s3 + N2s2 + N3s + N4

D1s3 + D2s2 + D3s + D4
(15)

N1 = CoLoRo{(C1 + Cd)(VC1 + VCo) + CdRdD′(IL1 + ILo)}
N3 = LoD′(IL1 + ILo) + D(CdRd + CoRo)(VC1 + VCo) + CdRdRoD′(IL1 + ILo)

N3 = LoD′(IL1 + ILo) + D(CdRd + CoRo)(VC1 + VCo) + CdRdRoD′(IL1 + ILo)

N4 = D(VC1 + VCo) + RoD′(IL1 + ILo)

(16)

D1 = CdCoRdRo
{

Lo(1− 2D) + D2(L1 + Lo)
}

D2 = Ro(L1D2 + LoD′2)(C1 + Cd + Co) + L1Ro(1− 2D)(C1 + Cd) + CdRd
{

Lo(1− 2D) + D2(L1 + Lo)
}

D3 = Lo(1− 2D) + D2(L1 + Lo) + CdRdRoD′2

D4 = RoD′2

D′ = 1− D

(17)

The frequency responses of the original fifth-order model and the approximated third-order
model in buck and boost modes are represented in Figure 5. As can be seen, the third-order model is
very well matched with the fifth-order model until 600 Hz. Where the frequency is beyond 600 Hz,
the fifth-order model contains the damped resonance and phase delay, which do not appear in the
third-order model. However, the third-order model is enough to design the current controller, because
the current control bandwidth is not very high.Energies 2018, 11, x FOR PEER REVIEW  8 of 17 
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Figure 5. Frequency responses of the third- and the fifth-order RC damped models: (a) Buck mode;
(b) Boost mode.

3. Proposed Current Controller

3.1. Traditional Current Controller Design

In order to control the bridgeless SEPIC PFC converter, a digital controller is implemented.
Therefore, the approximated Gid(s) is transformed on the z-domain and delays due to unit calculation
and digital pulse-width modulation (PWM) update should be also considered [36]. The z-domain
control-to-inductor current model Gid(z) is derived as follows:

Gid(z) = z−1 Gid(s)|s=(z−1)/Ts
(18)

where Ts is the sampling period. The digital delay is represented by a unit delay.
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The controller structure for regulating the current is shown in Figure 6. The input current reference
ig* and the input current ig are input to the controller as absolute values. The duty reference dref is
generated by the current controller Gcc(z) and the feed-forward duty dff. The feed-forward duty
compensates for the disturbance caused by the input voltage [37], and is calculated as below:

d f f =
Vo∣∣vg
∣∣+ Vo

(19)

where vg is the input voltage, and Vo is the output voltage.
For the stable current controller design, the frequency response of the open-loop gain Ti(z)

consisting of Gcc(z) and Gid(z) should be analyzed. The open-loop gain Ti,P(z) and Ti,PI(z) of a
proportional (P) controller and a proportional-integral (PI) controller are obtained as:

Ti,P(z) = KpGid(z) (20)

Ti,PI(z) =
(

Kp + Ki
Tsz

z− 1

)
Gid(z) (21)

where Kp is a proportional gain, and Ki is an integral gain. Since the approximated Gid(s) is consistent
with the original fifth-order model up to about 600 Hz, the controller is designed accordingly. Figure 7
shows the frequency response of Ti,P(z) and Ti,PI(z) when Kp and Ki are selected as 0.01 and 60,
respectively. In the buck mode, the crossover frequency of Ti,P(z) is 269 Hz, which is the bandwidth of
the controller. The phase margin Φpm at the crossover frequency is 96.7 deg. For Ti,PI(z), the crossover
frequency is 530 Hz and the phase margin is 45.3 deg. Thus, both controllers designed are stable in the
buck mode. Also, Ti,p(z) and Ti,PI(z) of the boost mode are stable, but the crossover frequency is wider
than the buck mode. As a result, characteristic of the controller can be superior in the boost mode.
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3.2. Repetitive Controller Design

The repetitive controller has excellent performance in eliminating periodic errors [32–35].
The proposed current controller is shown in Figure 8, which consists of the repetitive controller
and the P controller in parallel. The repetitive controller is composed of repetitive controller gain
Krp, the number of samples N, the number of samples for phase leading L, and stabilization filter q(z).
The transfer function of the repetitive controller is derived as below:

Grp(z) =
drp

ierr
= Krp

zL

zN − q(z)
(22)
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The number of samples N of the repetitive controller is determined by the fundamental frequency
fr of the current reference to be controlled and the sampling frequency fs as follows:

N =
fs

fr
(23)

As shown in Figure 6, the current controller regulates the absolute value of the input current.
Thus, compared with the frequency of the input current reference, the fundamental frequency of
the repetitive controller is doubled. The number of samples for phase leading L is chosen as 2 to
compensate for the digital delay of 1.5 Ts. The stabilization filter q(z) is used to ensure the stability of
the repetitive controller for the very high order harmonics that cannot be regulated [32]. In general,
the following zero-phase delay low pass filter is selected as q(z):

q(z) = 0.25z−1 + 0.5 + 0.25z (24)

The remaining parameter of the repetitive controller is Krp, which determines the stability of the
repetitive controller. In order to select Krp, the transfer function of the input current reference to error
Ge(z) should be considered, and it is obtained as:

Ge(z) =
ierr

i∗g
= Gep(z)Gerp(z) (25)

where Gep(z) and Gerp(z) are expressed as below:

Gep(z) =
1

1 + Ti,P(z)
(26)

Gerp(z) =
zN − q(z)
zN − H(z)

(27)

where H(z) is defined as follows:

H(z) = q(z)− KrpzL Gid(z)
1 + Ti,P(z)

(28)
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For Ge(z) to be stable, all poles must be located within the unit circle in the z-domain. If the P
controller is designed to be stable, the poles of Gep(z) are in the unit circle. It can be ensured by selecting
an appropriate Kp through the open-loop gain analysis as described above. Therefore, in order for
Ge(z) to be stable, the stability of Gerp(z) must be guaranteed. According to the small gain theorem,
Gerp(z) is stable if the magnitude of H(z) is less than 1 [35]. Figure 9 shows the root trajectories of H(z)
depending on Krp up to the Nyquist frequency in buck and boost modes. When Krp is 0.021, Gerp(z) is
unstable because the root trajectories of H(z) deviate from the unit circle in both modes. When Krp is
0.02, the magnitude of H(z) is smaller than 1 in buck mode, but not in boost mode. Therefore, Krp must
be less than 0.02 for Ge(z) to be stable in both modes. The frequency response of Ge(z) is illustrated in
Figure 10 when Krp is 0.01. Since the fundamental frequency is 120 Hz, it can be seen that the errors of
the multiples of fundamental frequency are removed.
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4. Simulation Results

In order to verify the performance of the proposed controller, the simulation studies have been
performed using the simulation software package PSIM. All parameters used in the simulation are
shown in Table 1.

Figures 11 and 12 show the input current and the current error when operating in buck mode and
boost mode at the full load condition under 800 W and light load condition under 100 W.
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Figure 11. Simulation results applying repetitive controller at 0.2 s in buck mode: (a) Input current and
current error at load = 800 W; (b) Input current and current error at load = 100 W.

Before t = 0.2 s, the input current is regulated with the PI controller. At t = 0.2 s, the PI controller
is substituted with the repetitive controller in parallel with P controller. In Figure 11, before applying
the repetitive controller, the magnitude of the current error is less than 1 A. However, after applying
the repetitive controller, the magnitude of the current error is limited to 0.5 A. The current errors
considerably decrease after t = 0.2 s in both load conditions. Especially, under the light load condition,
the distortion of the input current is significantly reduced. Also, the total harmonic distortion (THD)
of the input current is improved from 4.3% to 2.8% at the full load condition and from 41.7% to 12.2%
at light load condition.

Figure 12 depicts the input current and the current error when operating in boost mode at the
full load condition under 800 W and light load condition under 100 W. In boost mode, after applying
the repetitive controller the magnitude of the input current error is similar with that in buck mode.
The THD of the input current under heavy and light load conditions improved 4.4% to 4.3% and 45.8%
to 34.8%, respectively. In boost mode, the input current ripple is larger than in buck mode, because the
voltage across L1 is higher due to output voltage according to Equation (6). So, the THD of the input
current is higher than in buck mode.
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5. Experimental Results

The parameter values for hardware are the same values in Figure 1, and a TMS320F28335 digital
signal processor (DSP) of Texas Instruments (Dallas, TX, USA) was adopted to implement the digital
controller. The bridgeless SEPIC PFC converter consists of a silicon carbide (SiC) MOSFET C2M004120D
and four SiC schottky diodes C4D20120D, C3D16065A which are manufactured from Cree. The input
voltage of the converter is supplied by Programmable AC power source model 61704. The SEPIC PFC
prototype system has been tested from 100 W to 800 W in both buck and boost mode. The output
voltages of buck and boost mode are 80 V and 220 V each.

Figures 13 and 14 illustrate the experimental results without the repetitive controller and with
the repetitive controller. Figure 13 shows the input current and the current error under 100 W load
condition in buck mode and in boost mode. In Figure 13a, without the repetitive controller, the input
current is regulated in phase with the input voltage. However, there is the current distortion near
the zero-crossing point of the input current, and the peak-to-peak value of the current error is less
than 1.8 A. On the other hand, with the repetitive controller the current error is reduced to 0.39 A and
the waveform of the input current is significantly improved in Figure 13b. Figure 13c,d shows the
experimental results in boost mode without and with the repetitive controller, respectively. In boost
mode, the magnitude of current error is 1.53 A without the repetitive controller, but only 0.47 A is
measured by applying the repetitive controller.
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Figure 13. Experimental results under the 100 W condition in buck/boost mode under vg = 120 Vrms,
Vo = 80 V(buck)/Vo = 220 V(boost): (a) without the repetitive controller in buck mode; (b) with the
repetitive controller in buck mode; (c) without the repetitive controller in boost mode; (d) with the
repetitive controller in boost mode.

Figure 14 represents the input current and the current error under 800 W load condition in buck
mode and boost mode. Figure 14a,c shows that the PI controller works well, and the addition
of repetitive controller can be seen to reduce both size of current error and the input current
THD as shown in Figure 14b,d. In Figure 14a that is buck mode operation, the current error is
1.35 A but after adding the repetitive controller, the current error is changed to 1.32 A as shown in
Figure 14b. Similarly, Figure 14c which is the boost mode shows the current error magnitude of 1.94 A.
But in Figure 14d, when the repetitive controller is applied, the current error was read as 1.12 A.
Accordingly, Figures 13 and 14 show that the proposed repetitive control method improves the input
current quality.
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Figure 14. Experimental results under the 800 W condition in buck/boost mode under vg = 120 Vrms,
Vo = 80 V(buck)/Vo = 220 V(boost): (a) without the repetitive controller in buck mode; (b) with the
repetitive controller in buck mode; (c) without the repetitive controller in boost mode; (d) with the
repetitive controller in boost mode.

Under various load conditions, the input current THD comparisons between the conventional PI
controller and the proposed control scheme are shown in Figure 15. Figure 15a shows the buck operation
mode and Figure 15b shows the boost operation mode in the bridgeless SEPIC PFC converter. It also shows
that the proposed repetitive controller has much improved THD than the conventional PI controller.
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6. Conclusions

The general PFC converters have been studied to boost the output voltage. On the other hand,
it only can operate in boost mode, not in buck mode. To step down the output voltage, the general
PFC converters must operate with the DC–DC converters. However, the SEPIC PFC converter can
operate in buck and boost mode itself, without another system. In this paper, the bridgeless SEPIC
PFC converter with RC damping topology has been discussed. The operation modes of the SEPIC
converter and the control-to-inductor current model are described in detail. Also, the approximation of
the current control model was proceeded, and it has been used to design and to analyze the stability of
the current controller. By using this approximation model, the repetitive control scheme was evaluated
with the error transfer function. The repetitive control parameters were derived by these analyses and
the implementation of the digital controller is also discussed. The simulation and the experimental
results verified the repetitive controller performance in 100 W to 800 W load conditions in buck mode
and boost mode. As a result, the THDs of the input current are significantly decreased by the proposed
repetitive controller in both buck and boost modes. Also, the experimental result shows that the
controller based on simplified model is well designed.
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