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Abstract: Carbon emissions and environmental protection issues have brought pressure from the
international community during Chinese economic development. Recently, Chinese Government
announced that carbon emissions per unit of GDP would fall by 60–65% compared with 2005
and non-fossil fuel energy would account for 20% of primary energy consumption by 2030.
The Beijing-Tianjin-Hebei region is an important regional energy consumption center in China, and its
energy structure is typically coal-based which is similar to the whole country. Therefore, forecasting
energy consumption related carbon emissions is of great significance to emissions reduction and
upgrading of energy supply in the Beijing-Tianjin-Hebei region. Thus, this study thoroughly analyzed
the main energy sources of carbon emissions including coal, petrol, natural gas, and coal power
in this region. Secondly, the kernel function of the support vector machine was applied to the
extreme learning machine algorithm to optimize the connection weight matrix between the original
hidden layer and the output layer. Thirdly, the grey prediction theory was used to predict major
energy consumption in the region from 2017 to 2030. Then, the energy consumption and carbon
emissions data for 2000–2016 were used as the training and test sets for the SVM-ELM (Support Vector
Machine-Extreme Learning Machine) model. The result of SVM-ELM model was compared with the
forecasting results of SVM (Support Vector Machine Algorithm) and ELM (Extreme Learning Machine)
algorithm. The accuracy of SVM-ELM was shown to be higher. Finally, we used forecasting output of
GM (Grey Prediction Theory) (1, 1) as the input of the SVM-ELM model to predict carbon emissions
in the region from 2017 to 2030. The results showed that the proportion of energy consumption
seriously affects the amount of carbon emissions. We found that the energy consumption of electricity
and natural gas will reach 45% by 2030 and carbon emissions in the region can be controlled below
96.9 million tons. Therefore, accelerating the upgradation of industrial structure will be the key task
for the government in controlling the amount of carbon emissions in the next step.

Keywords: carbon emissions forecasting; grey prediction theory; extreme learning machine; support
vector machine; energy consumption structure

Energies 2018, 11, 2475; doi:10.3390/en11092475 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/9/2475?type=check_update&version=1
http://dx.doi.org/10.3390/en11092475
http://www.mdpi.com/journal/energies


Energies 2018, 11, 2475 2 of 15

1. Introduction

Under the circumstance of Chinese energy planning program of “13th Five-Year Plan”, the energy
revolution was proposed to vigorously promote clean and low carbon energy supply. On 12 November
2014, it was announced that carbon emissions would peak around 2030 and that efforts would
be made to reach the peak at an earlier date. The Chinese government declared that non-fossil
energy would have a proportion of 20% by 2030 in the Sino-American Joint statement on Climate
change. Meanwhile, the consumer side was suggested to consume clean energy such as wind power,
photovoltaics and hydropower. Thus, the regional comprehensive energy system such as multi-energy
complementarity and multi-network integration system can be universally applied in the country [1].
The Beijing-Tianjin-Hebei region is a regional energy consumption center which plays a guiding
role in China during the energy structure reform. It mainly relies on coal and petroleum, and coal
consumption is 4–5 times that of petroleum in the Beijing-Tianjin-Hebei region according to the energy
consumption data [2]. The environmental problems in the Beijing-Tianjin-Hebei region have been
more and more prominent in recent years. The average monthly concentration of PM 2.5 reached
63.1 micrograms/cubic meter, which is 2.1 times that of the Pearl River Delta Region [3]. In 2014,
the Beijing-Tianjin-Hebei region was a heavily air polluted area with 175 polluted days in Beijing,
197 days in Tianjin, and 264 days in Shijiazhuang [4]. Therefore, it is crucial to thoroughly analyze
the energy consumption structure of the region and adopt scientific and rational methods to predict
carbon emissions. It is imperative to formulate corresponding policy recommendations according to
the forecasting result, which can directly guide the energy consumption study on power generation
side, grid side and sales side under the circumstance of a new generation of power system in China.
Therefore, it is meaningful to study this subject further.

Many scholars conducted in-depth studies on the factors that affect carbon emissions [5–8].
Many studies show that energy consumption is the main factor affecting carbon emissions [9–11].
There are some commonly used quantitative prediction methods such as grey prediction theory [12–14],
time series forecasting methods [15,16], linear regression prediction [17–19] and nonlinear
regression prediction [20,21]. Zhong [22] proposed a system dynamics theory to forecast carbon
emissions and energy demand in the view of energy consumption, population and economic
development. Zhao et al. [23] established a simple regression equation to forecast carbon emissions in
various situations.

With the advancement of intelligent algorithms, scholars applied intelligent algorithms to predict
carbon emissions. Fang et al. [24] used an improved Gaussian process regression method and particle
swarm algorithm to predict carbon emissions. Through empirical analysis, it can effectively optimize
the hyperparameter of the covariance function in Gaussian process regression. Zhao et al. [25]
combined the mixed-data sampling (MIDAS) model and Back Propagation Neural Network (BPNN) to
study effect of quarterly economic growth on annual carbon emissions. The empirical results show that
economic growth must affect carbon emissions. Wen et al. [26] proposed a novel methodology-symbolic
regression to investigate the relationship between carbon emissions and influential factors of Beijing
and Tianjin and presented several policy suggestions. Chang et al. [27] used the quantum harmony
search (QHS) algorithm to search the best beta value and optimized the average absolute error
percentage (MAPE). The method predicted the carbon emissions from the world’s top five carbon
emitters. Sun et al. [28] forecasted carbon emissions by regularized extreme learning machine (RELM)
with principal component analysis (PCA) method based on the data of China during 1978–2014.
The results show that RELM approaches saved computing time compared to Back Propagation Neural
Network (BPNN). Zhao et al. [29] proposed a Least squares support vector machine optimized
by Singular Spectrum Analysis (SSA-LSSVM) model which had a better forecasting performance
compared with single Least squares support vector machine (LSSVM) model, Least squares support
vector machine optimized by Particle Swarm Optimization (PSO-LSSVM) model and BPNN model.
Zhou et al. [30] constructed a combined forecasting model based on the Rough Set and Grey prediction
model as well as support vector machine (SVM) model to forecast carbon emissions from 2012 to
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2017 based on the data of the Chinese carbon emissions from 1992 to 2011. The results show that the
combined method could effectively analyze Chinese future carbon emissions.

Compared with neural networks, support vector machines and some other algorithms, Extreme
Learning Machine only needs to set the network structure, so it is more convenient to operate.
The extreme learning machine is essentially a single hidden layer neural network algorithm.
Meanwhile, the weights of the input layer to the hidden layer are determined randomly. No adjustment
is needed during the execution of the algorithm, and the weights from both the hidden and output
layer only need to solve a system of linear equations, thus improving the speed of calculations.
Many scholars applied extreme learning machine algorithms to solve prediction and optimization in
many fields. Sun et al. [31] used factor analysis theory to extract the latent factors essentially affecting
carbon emissions and selected eight factors finally. They proposed an Extreme Learning Machine
Optimized by Particle Swarm Optimization (PSO-ELM) model to predict carbon emissions, which
showed improved prediction accuracy compared to ELM and BPNN. Chon et al. [32] introduced a
new pattern classifier based on the Extreme Learning Machine model and used the ELM to complete
the wind speed predicting computation. The forecasting result is compared with the Persistent Model,
Autoregressive Integrated Moving Average Model (ARIMA) and SVM, indicating that Windows
Printer Description optimized by Empirical Mode Decomposition (WPD-EMD) model had the best
predicting performance. Liu et al. [33] established a burning zone temperature single-step model that
was based on Kernel extreme Learning Machine (KELM) algorithm. The empirical results proved that
average running time of the proposed model was much less than support vector regression, so the
proposed forecasting model was feasible.

This study constructed the optimized extreme learning machine forecasting model based
on grey prediction theory and support vector machine, which can improve the accuracy of the
forecasting result of carbon emissions. The kernel function mapping in SVM algorithm was applied
to replace the network output weights and thresholds of the ELM model instead of ELM hidden
layer mapping. Therefore, SVM-ELM model improves the accuracy of the original algorithm and
keeps the original high learning speed. The optimized SVM-ELM forecasting model was used to
achieve an accurate prediction of the amount of carbon emissions related to energy consumption in
the Beijing-Tianjin-Hebei region from 2017 to 2030.

The main innovations in this article are as follows:

1. A new forecasting model based on the extreme learning machine algorithm optimized by grey
prediction theory and support vector machine is proposed. Firstly, the grey prediction theory
was used to predict the amount of energy consumption in the Beijing-Tianjin-Hebei region from
2017 to 2030. Then, we used the forecasting result of the energy consumption from 2017 to 2030
as the input of the learning machine algorithm model optimized by the support vector machine
to obtain the carbon emissions forecasting result in the region from 2017 to 2030. Finally, it was
proven that SVM-ELM model has higher prediction accuracy than SVM model and ELM model
through the analysis of empirical research.

2. Because the accuracy of carbon emissions prediction is not only affected by the superiority
of the algorithm, but also affected by data collection of the influencing factors, while the
energy consumption is the main factor affecting carbon emissions in the Beijing-Tianjin-Hebei
region, this study focused on energy consumption to forecast carbon emissions, which may
not only improve accuracy but also help studying energy consumption structure and its
upgradation methods.

The main structure of this article is as follows: Section 2 summarizes the principles of support
vector machine algorithm, grey prediction theory and the optimized extreme learning machine
algorithm, which are the theoretical basis of the study. Section 3 builds a carbon emissions prediction
model based on the grey prediction theory. Based on historical data, it can predict carbon emissions
from 2017 to 2030. Then its accuracy is compared with the SVM and ELM algorithm, proving that the
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SVM-ELM model has higher accuracy. At the same time, the forecasting result is discussed from the
perspective of energy consumption structure. Section summarizes all the content of this article.

2. Materials and Methods

2.1. GM (1, 1) Forecasting Model

The grey prediction theory is used to find the laws of the system through processing raw data and
establishing the corresponding mathematical model. As a result, a scientific quantitative prediction
of the future state of the system is made. This theory has been applied to the research of multi-field
prediction problems. GM (1, 1) is a model most commonly used by scholars which consists of a
first-order differential equation that contains only univariate. It is also usually used to predict samples
with a small amount of data. Therefore, we used GM (1, 1) to predict the main types of energy
consumption in the Beijing-Tianjin-Hebei region from 2017 to 2030.

2.2. Basic Methodology of Extreme learning Machine Algorithm

Extreme learning machine is a new single hidden layer feed-forward neural network algorithm
invented by Huang [34] which has the advantages of high speed. During the training process, we only
need to set the number of hidden layer nodes. Thus, the input weights and hidden layer offsets are
initialized randomly. Finally, the corresponding output weights can be obtained, which overcomes
the disadvantages of local optimization of the traditional neural network algorithm and long learning
time. Based on guaranteeing the learning accuracy, the speed of calculation is also improved; therefore,
it has the advantages of high learning efficiency and strong fitting ability [35]. The innovation of
extreme learning machines is that the training process is transformed into the solution matrix by
Moore-Penrose generalized inverse problem instead of iteration. The topological structure of the
extreme learning machine is shown in Figure 1.
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The operation of the Extreme Learning Machine is as follows:
For a single hidden layer neural network (Figure 1), assuming there are N arbitrary samples

(Xi, Ti), where Xi = [xi1, xi2, . . . xin]
T ∈ Rn, Ti = [ti1, ti2, . . . tin]

T ∈ Rm, a neural network with L hidden
layers can be expressed as:

L

∑
i=1

γi f
(
Wi·Xj + bi

)
= Oj, j = 1, 2 . . . , n (1)
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where f (x) is the activation function, Wi = [wi1, wi2, . . . win]
T is input weight, γi is output weight,

and bi is the offset of the hidden layer unit.
The goal of extreme learning machine algorithm is to minimize the input error which can be

expressed as:
L

∑
j=1

Oj − Tj = 0 (2)

where βi, Wi and bi must make sure:

L

∑
i=1

γi f
(
Wi·Xj + bi

)
= Tj, j = 1, 2 . . . n (3)

The matrix is expressed as:
Mγ = T (4)

M(W1 . . . Wl , b1 . . . bl , X1 . . . Xl) =

 f (W1·X1 + b1) . . . f (Wl ·X1 + bl)
... . . .

...
f (W1·Xn + b1) . . . f (Wl ·Xn + bl)


n×l

γ =

 γT
1
...

γT
l


l×m

, T =

 TT
1
...

TT
n


n×m

(5)

where M is the output of the hidden node and T is the expected output.
To train samples, Wi must make sure:

M
(

Ŵi, b̂i

)
γ̂i − T = min

W,b,γ
M(Wi, bi)γi − T (6)

which is equal to minimizing the loss function:

N

∑
j=1

(
N

∑
i=1

γi f
(
Wi·Xj + bi

)
− Tj

)2

(7)

Training hidden-layer neural network can be transformed into solving: Mγ = T and the final
output weight γ is determined:

γ̂ = M+T (8)

where M+ is the Moore-Penrose generalized inverse of matrix M.

2.3. Basic Methodology of Support Vector Machines

The aim of SVM algorithm is to find a classification surface that can minimize the error of all
training samples from the optimal classification surface instead of finding the optimal classification
surface to separate samples when applied to regression fitting analysis. Many influencing factors
are involved in predicting carbon emissions, so it is a linearly inseparable problem and the kernel
function can be used to project the sample into the high-dimensional space and reduce the calculations
at high latitudes.

For a training sample (xi, yi), i = 1, 2, ..., n, mapping with a kernel function, the sample can be
mapped to a high dimensional linear space:

f (x) = ωKernel(x) + p (9)
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It is hard for computer to solve the strict constraint conditions, so the relaxation factor γi is added,
and the problem is transformed into a linear programming problem of the convex function.

max
(

1
2 |ω|

2
)
+ C

n
∑

i=1
γi

subject to yi × (ωxi + b) ≥ 1− γi, γi ≥ 0
(10)

Quoting Lagrange factor:

L(ω, b, γ) =

(
1
2
|ω|2

)
+ C

n

∑
i=1

γi −
n

∑
i=1

αi × (yi × (ωxi + b)− 1 + γi)−
n

∑
i=1

µi × γi (11)

Solving the derivative of Equation (11):

∂(ω) = |ω| −
n
∑

i=1
αi × yi × xi = 0

∂(b) =
n
∑

i=1
αi × yi = 0, αi ≥ 0

∂(γi) = C− αi − µi,αi ≥ 0, µi ≥ 0

(12)

To obtain the Lagrange dual problem, the problem is transformed into solving the equation αi.

min

(
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjKernel
(

xi × xj
)
−

n

∑
i=1

αi

)
, C ≥ αi ≥ 0 (13)

2.4. Primary Principal of the SVM-ELM Model for Carbon Emissions Forecasting

Because the single hidden layer map h(x) in extreme learning machine algorithm has the same
effect as the kernel function mapping in SVM, this study replaced the single hidden layer map h(x) in
extreme learning machine algorithm by Kernel function in SVM algorithm. When h(x) is unknown,
the following nuclear matrix is defined according to the Mercer condition [36]:

ΩELM = HHT = h(xi)h
(
xj
)
= K

(
xi, xj

)
(14)

Using the kernel function K
(

xi, xj
)

can enhance the stability of the original ELM algorithm.
According to the standard optimization principle, the original objective function can be expressed as:

minLp = 1
2 ω2 + 1

2 C
n
∑

i=1
ξi

2

s.t.ψ(xi)ω = yi − ξi, i = 1, 2 . . . , n
(15)

where C is a regular coefficient and ξi is a training error.
According to the KKT theory (Karush–Kuhn–Tucker conditions), the above problem can be

transformed into:

Lpkelm =
1
2

ω2 +
1
2

C
n

∑
i=1

ξi
2 −

n

∑
i=1

ηi(ψ(xi)ω− yi + ξi) (16)

where ηi is the Lagrange operator.
The output function of the SVM-ELM algorithm is:

ω =
n
∑

i=1
ηiψ(xi)

T = ψTη

Cξi = ηi
ψ(xi)ω− yi + ξi = 0

(17)

where η = [η1, η2, ..., ηn]
T
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Defining the kernel function K
(

xi, xj
)
= ψ(xi) ·ψ

(
xj
)T , i = 1, 2 . . . n, and SVM-ELM single hidden

layer output is:

f (x) = ψ(x)ω = ψ(x)ψT
(

ψψT +
1
C

)−1
Y (18)

Since the initial input weight and threshold of the single hidden layer of the original ELM are
arbitrarily given, the algorithm is unstable. The kernel function has a strong non-linear mapping
capability, which makes the SVM-ELM algorithm better approximate the function. Therefore,
the SVM-ELM algorithm owns the characteristics of high learning speed, high accuracy and the
generalization ability of the original model. RBF, wavelet, polynomial and other multi-core functions
can be used to solve SVM. We used RBF kernel as the function.

2.5. The Forecasting Model Based on Grey Prediction Theory and ELM Optimized by SVM Algorithm

Because energy consumption is the most important influencing factor of carbon emissions in
the Beijing-Tianjin-Hebei region, we forecasted the amount of energy consumption related carbon
emissions. The SVM-ELM model based on grey prediction was proposed to forecast the amount of
carbon emissions in this region. The main steps are as follows:

(1) Data collection and preprocessing.

We needed to collect four major influencing factors related to energy consumption: coal, petrol,
natural gas and coal power. We collected carbon emissions coefficients and calculation formulas to
calculate the amount of carbon emissions from 2000 to 2016 in the Beijing-Tianjin-Hebei region.

(2) Predicting the main types of energy consumption from 2017 to 2030 in the Beijing-Tianjin-Hebei
region based on the grey prediction theory.

By collecting the energy consumption from 2000 to 2016 in this region and using history
data as input of the grey prediction model, the amount of energy consumption from 2017 to 2030
was forecasted.

(3) Forecasting carbon emissions related to energy consumption in the Beijing-Tianjin-Hebei region
based on SVM-ELM Model.

The four types of energy consumption and carbon emissions data from 2000 to 2010 were used
as a model training set, and the data from 2011 to 2016 were used as a model test set. After a
multitude of training experiments, the optimal regular coefficients and kernel function parameters
were found. Therefore, the accuracy of the test set and the training set was the highest. Using the energy
consumption calculated from the grey prediction model as the input of the SVM-ELM algorithm, the
amount of carbon emissions related to energy consumption from 2017 to 2030 can be quickly predicted.

The flow chart of the SVM-ELM model based on grey prediction is shown in Figure 2.
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3. Empirical Simulation and Data Analysis

3.1. Coefficients of Carbon Emissions Related to Energy Consumption

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories [37] introduces a method
to calculate carbon emissions of energy consumption. Carbon emissions produced from energy



Energies 2018, 11, 2475 9 of 15

consumption mainly come from the burning of fossil fuels. Incomplete combustion of fuels often occurs
during the combustion process, which makes the carbon dioxide emissions and some emissions in the
form of methane monoxide or volatile organic compounds. We needed to consider the oxidation factors
and coefficients of oxidation of all types of energy. For the above reasons, this study used the formulas
published in the 2006 IPCC Guidelines which considered coefficients of oxidation as an important part
of carbon emissions coefficients to calculate the carbon emissions in the Beijing-Tianjin-Hebei region.
The specific formula is as follows:

E =
i

∑
n=1

Ei × CECi × NCV × COF× 44
12

(19)

where Ei is the amount of energy consumption (tons of standard coal); CECi is the carbon emissions
coefficient (100 million Tons/Trillion Joules); NCV is the energy low calorific value (100 million J/t);
and COF is a carbon oxidation factor. Therefore, coefficients of carbon emissions consist of NCV,
CEC and COF. Coefficients of carbon emissions related to energy consumption from 2006 IPCC
Guidelines for National Greenhouse Gas Inventories are shown in Table 1.

Table 1. Energy consumption carbon emissions coefficient.

Types Discounted Coal Standard
(kg/kg, kg/cm3)

CEC
(Tons/Trillion Joules)

NCV
(100 million J/t) COF (%)

raw coal 0.7143 26.8 209.08 99.8
clean coal 0.9 25.8 263.44 99.3

liquefied petroleum gas 1.7143 17.2 501.78 99.2
refinery dry gas 1.5714 18.2 460.55 99.2

natural gas 1.33 15.3 389.31 99.4
crude 1.4286 20.0 418.16 99.4
petrol 1.4714 18.9 430.7 99.5

kerosene 1.4714 19.5 430.7 99.4
diesel 1.4571 20.2 426.52 99.3

fuel oil 1.4286 21.1 418.16 99.2
coke 0.9714 29.2 284.55 99.1

coke oven gas 0.5714 12.1 173.53 99.7
electricity 1.229 10,069 (t/GWh) 35.96 (kwh/t) 100

heat 0.03412 9.46

3.2. Forecasting Energy Consumption Based on GM (1, 1)

According to China Energy consumption Statistics Yearbook, this article used the amount of
energy consumption in the Beijing-Tianjin-Hebei region from 2005 to 2016 as the input data of GM (1, 1).
Then, we forecasted the consumption of four types of energy sources from 2017 to 2030. The forecasting
results are shown in Figure 3.
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liquefied 

petroleum gas 
1.7143 17.2 501.78 99.2 

refinery dry gas 1.5714 18.2 460.55 99.2 

natural gas 1.33 15.3 389.31 99.4 

crude 1.4286 20.0 418.16 99.4 

petrol 1.4714 18.9 430.7 99.5 

kerosene 1.4714 19.5 430.7 99.4 

diesel 1.4571 20.2 426.52 99.3 

fuel oil 1.4286 21.1 418.16 99.2 

coke 0.9714 29.2 284.55 99.1 

coke oven gas 0.5714 12.1 173.53 99.7 

electricity 1.229 10,069 (t/GWh) 35.96 (kwh/t) 100 

heat 0.03412 9.46   

3.2. Forecasting Energy Consumption Based on GM (1, 1) 

According to China Energy consumption Statistics Yearbook, this article used the amount of 

energy consumption in the Beijing-Tianjin-Hebei region from 2005 to 2016 as the input data of GM 

(1, 1). Then, we forecasted the consumption of four types of energy sources from 2017 to 2030. The 

forecasting results are shown in Figure 3. 
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3.3. Forecasting Carbon Emissions Based on SVM-ELM Model

This study used the data for 2005–2012 as a training set and 2013–2016 as a test set. Then,
we applied SVM-ELM model to forecast carbon emissions related to energy consumption in the
Beijing-Tianjin-Hebei region. After 100 experiments, we found the optimal model parameters, as shown
in Table 2.

Table 2. SVM-ELM model parameter set.

Parameter Value

regularization coefficient C 17
RBF kernel parameter 0.1

number of node in hidden layer 100

The SVM-ELM model forecasting results and comparison of forecasting results of SVM, ELM and
SVM-ELM models are shown in the Figure 4.
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Figure 4. The forecasting results: (a) the comparison between original amount of carbon emissions and
forecasting output of SVM-ELM forecasting model; and (b) the comparison between original amount
of carbon emissions and forecasting output of forecasting model including SVM, ELM and SVM-ELM.

As shown in Figure 4b, SVM-ELM model has a high accuracy for predicting energy consumption
related carbon emissions in the Beijing-Tianjin-Hebei region. To prove the superiority, this article also
inputted the sample to support vector machine and extreme learning machine. The forecasting results
and relative errors are compared in Table 3.

Table 3. RE (residual error) of each model.

Year Actual Value Forecasting Result RE of SVM-ELM RE of SVM RE of ELM

2000 35,726.78 42,207.87 1.346569 7.935378 9.090909
2001 36,471.51 41,747.78 0.757491 6.354631 9.090909
2002 38,402.42 40,287.36 2.304398 3.551576 9.092880
2003 41,530.01 40,029.32 −1.20561 12.01801 9.092880
2004 46,828.24 45,316.87 −3.22747 7.035180 9.090909
2005 53,241.51 51,959.19 −2.40849 6.545364 9.090909
2006 55,868.82 56,310.56 0.79067 8.637444 9.090909
2007 61,360.13 63,480.21 0.68461 6.115011 5.835405
2008 62,511.46 63,623.06 1.77823 5.856977 5.891496
2009 66,640.81 69,829.08 0.43257 7.879682 6.089745
2010 72,472.94 71,993.97 −0.66090 6.311114 2.191782
2011 79,335.39 78,763.13 0.53915 1.487073 7.838322
2012 79,890.07 80,919.62 1.28871 0.438569 2.828369
2013 80,404.42 81,197.71 −0.25709 0.528436 1.765441
2014 81,132.76 82,741.96 0.01134 1.379333 2.800976
2015 82,694.21 80,743.88 −0.90735 2.781821 4.253811
2016 83,173.62 84,732.31 0.67171 1.21454 3.079388

To objectively compare the accuracy of a variety of models, common statistical indicators including
RMSE (root-mean-square error), R2 (coefficient of determination), and MRE (max relative entropy) [38]
were adopted and the calculation results for the three models are shown in Table 4.
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Table 4. The calculation results of the three models.

Model RMSE (100%) R2(100%) MRE

ELM 45.2721 99.5906 7.364145
SVM 40.5655 97.9671 6.049756

ELM-SVM 12.3356 99.7780 1.623347

In Table 4, the results of the three indicators of the ELM-SVM model are optimal, 12.34%, 99.78%
and 1.62 for RMSE, R2 and MRE, respectively. The result reflects the high accuracy of the proposed
forecasting model. Meanwhile, in view of RMSE and MRE indicators, the SVM model is superior to
the ELM model, while, for R2, the ELM model is superior.

We took the amount of energy consumption predicted by the grey prediction theory as the input
of the SVM-ELM model. Therefore, the amount of carbon emissions in the Beijing-Tianjin-Hebei region
from 2017 to 2030 was forecasted.

As shown in Figure 5, carbon emissions in the Beijing-Tianjin-Hebei region will gradually increase
from 2017 to 2030, but the rate of increase will gradually tighten. After 2027, carbon emissions will be
controlled below 97 million tons. Therefore, the government could take 100 million tons as a policy
ceiling for carbon emissions by 2030. The forecasting results of this article can serve as a basis for
further research on carbon emissions in the region, which means that energy consumption structure
can be upgraded according to the forecasting results.
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Figure 5. Forecasting values of carbon emissions: (a) the trend chart of carbon emissions from 2017 to
2030; and (b) forecasting values of carbon emissions from 2017 to 2030.

According to the forecasting results, changes in the proportion of energy consumption will affect
carbon emissions, which shows the significance of energy structure upgradation. The energy structure
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and carbon emissions in Beijing-Tianjin-Hebei Region have been shown in Figure 6. Therefore, it is
time China strengthens the application of clean energy and replaces coal with gas or other types of
energy to upgrade energy consumption structure.
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4. Conclusions

This article applied SVM-ELM model to forecast the carbon emissions related to energy
consumption in Beijing-Tianjin-Hebei region from 2017 to 2030 after predicting the amount of four
major energy consumptions, namely coal, petrol, natural gas, and coal power, by GM (1, 1) model.
Energy structure upgradation and carbon emissions policy research suggestions are put forward at
the end of the article. Firstly, the principles of the three algorithms ELM, SVM, and SVM-ELM were
described, and the superiority of the SVM-ELM algorithm was proven in principle. Then, we used GM
(1, 1) to forecast the consumption of major energy consumables from 2017 to 2030, which was used as
input of the SVM-ELM model, thereby the amount of carbon emissions related to energy consumption
from 2017 to 2030 was forecasted. By comparing with the prediction results of SVM and ELM algorithm,
the superiority of SVM-ELM model proposed in this article was proven by empirical cases.

Due to the increasingly deteriorating environment, it is time the government to upgrade the
energy consumption structure. Some policy suggestions are as follows:

(1) First, we must accelerate the upgradation of industrial structure. The secondary industry
including steel, electricity, building materials and chemical industry are key industries for energy
conservation and emission reduction. Therefore, it is necessary to speed up the elimination of
industries with high energy consumption and backward production capacity.

(2) The government must develop the tertiary industry vigorously, especially the energy service
industry. Since the Beijing-Tianjin-Hebei region is dominated by coal consumption, it is necessary
to expand the supply of natural gas and replace coal with gas.

(3) It is time China strengthens the use of renewable energy such as wind energy and solar energy.
The government should increase subsidies for clean energy power generation and promote the
trading mechanism in carbon market right now. For instance, “green certificates” can be applied
to reduce the coal-fired rate of power plant, and photovoltaic technology can be actively applied
in rural areas of the Beijing-Tianjin-Hebei region.

Finally, we will eventually achieve a multi-energy complementary energy consumption structure
to maintain economic growth and achieve emissions reduction targets in the next step.
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Although the forecasting model proposed in this article has a high degree of accuracy,
the traditional gray prediction method used in the prediction of energy consumer goods has certain
limitations. In future research, we will use Lagrange interpolation to reconstruct the background value,
which will eliminate the traditional pull and reach a higher forecasting level. Meanwhile, we will
apply the SVM-ELM forecasting model to predict carbon emissions of China’s eastern and western
regions and compare results with their energy structure. Based on the results, we will deeply study
the relationship between carbon emissions and energy structure by using data mining technology in
the future.
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