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Abstract: Forecasting dissolved gas content in power transformers plays a significant role in detecting
incipient faults and maintaining the safety of the power system. Though various forecasting models
have been developed, there is still room to further improve prediction performance. In this paper,
a new forecasting model is proposed by combining mixed kernel function-based support vector
regression (MKF-SVR) and genetic algorithm (GA). First, forecasting performance of SVR models
constructed with a single kernel are compared, and then Gaussian kernel and polynomial kernel
are retained due to better learning and prediction ability. Next, a mixed kernel, which integrates a
Gaussian kernel with a polynomial kernel, is used to establish a SVR-based forecasting model. Genetic
algorithm (GA) and leave-one-out cross validation are employed to determine the free parameters of
MKF-SVR, while mean absolute percentage error (MAPE) and squared correlation coefficient (r2) are
applied to assess the quality of the parameters. The proposed model is implemented on a practical
dissolved gas dataset and promising results are obtained. Finally, the forecasting performance of
the proposed model is compared with three other approaches, including RBFNN, GRNN and GM.
The experimental and comparison results demonstrate that the proposed model outperforms other
popular models in terms of forecasting accuracy and fitting capability.

Keywords: dissolved gas content forecasting; mixed kernel function; genetic algorithm; support
vector regression; power transformer

1. Introduction

Power transformers is some of the most vital and expensive devices in power grids. They play
a significant role in transferring energy and converting voltages to different levels. Any unexpected
malfunction or failure of a power transformer may jeopardize the continuity of the power supply,
cause catastrophic damages to electrical equipment and power system, and bring economic losses for
power utilities and society. Therefore, considerable efforts have been made to detect and monitor the
operating conditions of power transformers to keep transformers working under safe conditions [1–3].

Due to thermal stresses, electrical stresses and aging, the insulation systems (i.e., mineral oil,
cellulose and solid insulation) of power transformers inevitably deteriorate and decompose. As a result,
several kinds of gases are produced and dissolve in the mineral oil during the degradation process.
Numerous approaches and models based on dissolved gas concentration and gas characteristics have
been developed and utilized for the last decades [4–7]. The dissolved gas analysis (DGA) technique,
a simple and effective method, has been widely applied to interpret the working conditions and
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incipient faults of power transformers. Key gases, including hydrogen (H2), methane (CH4), acetylene
(C2H2), ethylene (C2H4) and ethane (C2H6), are commonly used by DGA methods to interpret working
conditions and identify potential faults in power transformers [8,9]. Consequently, if the concentration
of dissolved gas can be forecast exactly with historical data, incipient faults and their development
trends can be determined in advance to implement corresponding maintenance plans and minimize
latent losses.

Many approaches based on artificial intelligence (AI) have been proposed and applied for
forecasting the concentration of dissolved gases in power transformers, such as grey model (GM) [10],
artificial neural networks (ANN) [11–15], least squares support vector machine (LSSVM) [16–19] and
support vector regression (SVR) [20,21], etc. Each approach has its own advantages and disadvantages.
ANN methods, including back propagation neural network (BPNN), radial basis function neural
network (RBFNN) and generalized regression neural network (GRNN), have superior self-learning,
acceptable generalization, non-linear data handling capability. However, accurate forecasting of
dissolved gases in power transformers requires massive amounts of historical data, which is infeasible
in practice. Besides, the structure and related parameters of ANN need to be set properly to ensure
satisfactory performance. These requirements mentioned above have restricted the application of
ANN in the field of forecasting. The grey model method is capable of providing desirable forecasting
result with small-scale data and has been used to predict dissolved gas concentrations in power
transformers. However, grey models are only suitable to depict cases where the observed variables
change monotonously with time like exponential laws. In practice, the variation of dissolved gas
content in power transformers doesn’t follow the premise mentioned above owing to external factors.
Thus, an inherent error will always exist when GM is adopted to forecast dissolved gas content in
power transformers. Support vector regression (SVR) is regarded as an extended version of the support
vector machine method and has received increasing attention in function estimation. SVR is established
on the principle of structural risk minimization instead of empirical risk minimization, which makes it
have a simpler structure, higher forecasting accuracy and better generalization performance [22].

In general, forecasting of dissolved gas content of power transformers is a non-linear time series
problem. As one of the most important component of SVR, kernel functions convert non-linear and
inseparable problems into linear divisible ones. Mixed-kernel functions (MKF) have recently attracted
great attention since they are able to achieve better classification and regression performance [23,24].
According to literature reviews [10–22], previously proposed forecasting models are implemented
by a single kernel, and MKF-SVR model for dissolved gas content forecasting is rarely investigated.
Therefore, in this paper we intend to propose a novel forecasting model based on MKF-SVR to improve
prediction performance. In addition, genetic algorithm (GA) is also applied to tune the parameters of
MKF-SVR to further improve the forecasting performance.

The remainder of this paper is organized as follows: the methodology of MKF-SVR and GA is
introduced in Section 2; Section 3 describes the main process of the proposed approach. The forecasting
performance of the proposed approach is presented in Section 4. Finally, the conclusions are drawn
in Section 5.

2. Methodology

2.1. Support Vector Regression

The support vector machine (SVM) method, first proposed by Vapnik in the 1990s, has been
acknowledged worldwide as an effective and significant method for classification and regression.
The subdivision of SVM that tackles the regression problem and function estimation is known
as support vector regression (SVR). SVR has been applied in many different fields and obtained
remarkable progress due to its advantages of simple structure and convenient application [25–29].
Compared with other AI approaches, the computational complexity of SVR is determined by the
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number of the support vectors instead of the dimensions of input data, which not only prevents the
“dimension curse”, but also reduces computational cost.

Given a dataset D = {(xi, yi)}, (xi ∈ Rn, yi ∈ R, i = 1, 2, · · · n), where x is the n-dimensional
input variable and y is the corresponding output value. n represents the number of samples. A linear
problem can be described by the function shown below:

f (x) = 〈ω, x〉+ b (1)

where ω and b denote weight coefficient and constant coefficient, respectively; f (x) is the forecasting
value. When it comes to a non-linear problem, kernel function ϕ(x) is applied to transform the
low-dimension nonlinear problem to a high-dimension linear problem. The regression function is
shown as Equation (2):

f (x) = 〈ω, ϕ(x)〉+ b (2)

The parameters ω and b can be estimated by minimizing the regularized risk function:

min 1
2‖ω‖

2 + C
n

n
∑

i=1
ε(yi − f (xi))

s.t. ε(yi − f (xi)) =

{
0 |yi − f (x)| ≤ ε

|yi − f (x)| − ε, otherwise

(3)

where C is the penalty factor, which is used to balance empirical risk and confidence degree.
ε(·) denotes the ε -non sensitive loss function and ε represents for the ε -intensive loss parameter.
Two non-negative slack variable ξi and ξ∗i are introduced to facilitate the solving process and then the
optimization problem becomes:

min
ω,ξ,ξ∗

1
2‖ω‖

2 + C
n
∑

i=1

(
ξi + ξ∗i

)
s.t.


〈ω, ϕ(x)〉+ b− yi ≤ ε + ξi
yi − 〈ω, ϕ(x)〉 − b ≤ ε + ξ∗i i = 1, 2, · · · , n
ξi, ξ∗i ≥ 0

(4)

Lagrangian multipliers are introduced to convert the problem described above to a dual
optimization problem, which is shown as Equation (5):

min 1
2

n
∑

i,j=1

(
α∗i − αi

)(
α∗j − αj

)
K
(
xi · xj

)
+ ε

n
∑

i=1

(
α∗i + αi

)
−

n
∑

i=1
yi
(
α∗i − αi

)
s.t.


l

∑
i=1

(
α∗i − αi

)
= 0 i = 1, 2, · · · n

0 ≤ α∗i , αi ≤ C

(5)

where αi and α∗i are the Lagrangian multipliers, K
(
xi · xj

)
is kernel function. Then, the support vector

regression function f (x) can be obtained as follows:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b (6)

2.2. Multi-Kernel Funciton

The kernel function is the most significant component of SVR. It is used to project original low
dimensional data to a higher dimensional data space, and converts a nonlinear problem into a linear
problem [30]. Different kernel functions have different mapping capability, which results in different
prediction accuracy. Therefore, significant efforts have been made to choose proper kernels [31,32].
Four commonly applied kernel functions are listed below:
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(1) Linear kernel function:
k(xi, x) = xi · x (7)

(2) Polynomial kernel function:

k(xi, x) = (xi · x + 1)d (8)

(3) Gaussian kernel function (or RBF):

k(xi, x) = exp(−γ ‖ xi − x ‖)2 (9)

(4) Sigmoid kernel function:
k(xi, x) = tanh(γxi·x + θ) (10)

Generally, these kernel functions can be divided into two categories: local kernels and global
kernels. There are pronounced differences in the projecting ability of different kernel functions. For the
global kernel functions, such as linear kernel function and polynomial kernel function, data points far
away from each other affect the kernel value and a higher order of the polynomial kernel function
has better interpolation ability, while a lower order of the polynomial kernel function has better
extrapolation ability. On the contrary, the local kernel functions, including Gaussian kernel function
and sigmoid kernel function, allow data close to each other to have an impact on the kernel value [23,24].
The data distribution characteristics of polynomial kernel and Gaussian kernel are shown as Figures 1
and 2, respectively.

Considering the advantages and disadvantage of local kernels and global kernels, we try to
integrate different kernel functions to obtain one mixed-kernel function (MKF), which is shown as
Equation (11). According to Mercer’s conditions, when k1 and k2 are allowable kernel function, then the
combined kernel k is also an admissible kernel.

k(xi, x) = C1k1(xi, x) + C2k2(xi, x) (C1 ≥ 0, C2 ≥ 0) (11)
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A prevalent MKF is a mixture of the Gaussian kernel and polynomial kernel, which is defined
as Equation (12):

kmix(xi, x) = ω · exp(−γ‖xi − x‖)2 + (1−ω) · (xi · x + 1)d (0 ≤ ω ≤ 1) (12)

where γ and d are the kernel width and power exponent, respectively, and ω is the mixing coefficient.
Obviously, a single kernel method can be regarded as a specific case of the MKF. That is, the MKF will
be polynomial kernel when ω = 0, and a Gaussian kernel if ω = 1. Figure 3 depicts the effect of the
mixing of a polynomial kernel and Gaussian kernel when test point X = 0.3, d = 1 and γ = 50. It can be
seen that the mixed kernel function possesses the merits of both the local kernel and global kernel,
and able to promote fitting and generalization ability.
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2.3. Genetic Algorithm

The genetic algorithm (GA), initially developed by John Holland in the 1970s, is a global heuristic
searching and optimization technique. GA is inspired by Darwin’s principle of the “survival of the
fittest” and natural evolution. GA has been applied to various optimization problems in many diverse
fields and has achieved substantial progresses [33–36]. Compared with other optimization algorithms,
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GA is easier to converge, its calculation is more efficient and it gets a better global view of the search
space because of its effective exploitation and exploration technique [37].

In general, GA starts with a randomly produced population, which represents the candidate
solutions of a specific problem. Each candidate solution is called as chromosome or individual.
A chromosome is composed of all concerned parameters that need to be optimized. The quality
of a chromosome is assessed by a fitness function, which is established according to the objective
function of the optimization problems. Genetic operations, including selection, crossover and mutation,
are employed to manipulate the genetic reproduction of population during the optimization process.
Selection is a process that chooses individual with higher fitness to reproduce offspring for the next
generation. By this process, the population size is controlled and excellent individual is put into the
next generation with a higher possibility. Crossover is a process that partial genetic information of two
chosen chromosomes is exchanged by a specific way to generate new individual. Hence, individual of
the next generation inherits some characteristic from each parent. The mutation operation produces
new individual by randomly altering genetic information of a chromosome. The main purpose of
mutation is to maintain the genetic diversity of population and avoid getting stuck in local minima.
These genetic operations aforementioned will be repeated until the stopping criterion is met. A common
optimization procedure of GA is shown as Figure 4.
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3. Procedure for Forecasting Using Proposed Regression

Usually, the concentrations of dissolved gases, including H2, CH4, C2H2, C2H4 and C2H6,
are recorded or saved in chronological order. Therefore, forecasting of dissolved gas content in
power transformers is treated as a non-linear time series issue. The historical dissolved gas data are
used as the time sequence in the forecasting process. There are two steps to establish an effective
and accurate foresting model in this study. These are, data preprocessing, training and verify the
forecasting model.

3.1. Data Preprocess

For a time series problem, it is essential to preprocess the raw data due to the possibility of missing
values or false data. Firstly, the input data (the historical data of H2, CH4, C2H2, C2H4 and C2H6)
needs to be carefully examined in order to remove any singular values and fill in missing data by
some interpolation technique. Then, normalization should be implemented prior to the construction of
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training and testing data to reduce estimation error and improve generalization. In this study, original
data is normalized with Equation (13):

xn =
xi − xmin

xmax − xmin
(13)

where xi and xn are the data before and after normalization, respectively; xmax and xmin represent the
maximum and minimum of the primary data.

Considering the case that historical data of dissolved gas may not be recorded with equal time
intervals, it is necessary to convert these unequal interval series into equal time interval series to build
a more convenient forecasting model. Hermite spline interpolation [19] and linear interpolation [21]
are the two most popular interpolation approaches. In this paper, Hermite spline interpolation is
selected to normalize primary data.

3.2. Training and Testing of The Forecasting Model

According to the historical data of dissolved gas sequence Gn = {g1, g2, · · · gn}, the training set T
can be built as below:

T = {(x1, y1), (x2, y2), · · · (xn−m, yn−m)} ∈ (X×Y)n−m (14)

where: xi = {gi, gi+1, · · · gi−m+1} is the input vector, yi = {gi+m} is the output value, m is the
dimension of the input vector:

X =


g1 g2 · · · gm

g2 g3 · · · gm+1
...

... · · ·
...

gn−m gn−m+1 · · · gn−1

, Y =


gm+1

gm+2
...

gn

 (15)

After the historical data are divided into a training set and a testing set, a forecasting model based
on MFK-SVR is trained to predict the development trend of the dissolved gas content in a power
transformer. It has been mentioned in Section 2 that the free parameters of SVR and kernel functions
have a great impact on the forecasting performance. Hence, GA is introduced in this paper to optimize
these free parameters to improve forecasting accuracy and generalization ability. The main details of
training by GA are elaborated as below:

(1) Initialization of GA and encoding parameters

In this investigation, the size of population, maximum iteration number, crossover possibility and
mutation possibility are predefined at the initialization process. The chromosome, composed of free
parameters (such as penalty factor C, kernel bandwidth σ, intensive loss parameter ε, power exponent
d, mixing coefficient ω and so on), is set randomly. These parameters are encoded with the real code as
it is suitable for complex problem and simple to use genetic operators to individuals [38]. The range
and value of free parameters employed in the optimization are displayed in Table 1.

(2) Definition and calculation of fitness function

The fitness function is the core part of GA, which is used to estimate the performance of each
individual. The leave one out cross-validation (LOO CV) method is adopted to calculate the forecasting
accuracy. For the LOO CV method, a single sample selected from the training set is used as validation
set in turn and other samples are applied as training set, then each sample is validated just once.
Mean absolute percentage error (MAPE) and squared correlation coefficient (r2) are employed as
fitness function to measure the quality of each chromosome and evaluate the forecasting accuracy.
Generally speaking, the less MAPE, the higher forecasting accuracy. While the value of r2 is limited
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to the range of [0,1], and the greater the value, the better forecasting performance. MAPE and r2 are
calculated as follows:

MAPE =
1
l

l

∑
i=1

∣∣∣∣ f (xi)− yi
yi

∣∣∣∣ (16)

r2 =

(
l∑l

i=1 f (xi)yi −∑l
i=1 f (xi)∑l

i=1 yi

)2(
l∑l

i=1 f (xi)
2 −

(
∑l

i=1 f (xi)
)2
)(

l∑l
i=1 y2

i −
(

∑l
i=1 yi

)2
) (17)

where xi represents the training data; yi and f (xi) denote the actual value and forecasting value by the
proposed model. l represents the size of training set.

Table 1. Parameters of SVR and GA.

Algorithms Parameter Value

SVR

Mixing coefficient ω [0,1]
Penalty factor C [0.001,100]

RBF bandwidth σ [0.001,100]
Epsilon ε [0.0001,0.1]

Polynomial degree d [1,5]

GA

Population size 50
Iterations 100

Crossover probability 0.8
Mutation probability 0.02

(3) Genetic operation

Based on the estimation of the fitness value, a chromosome with higher fitness value is more
likely to be selected to reproduce offspring by crossover and mutation. In this paper, roulette wheel
selection, arithmetical crossover and uniform mutation are adopted to carry out genetic operations [39].
The whole process will be repeated until the maximum iteration number is reached, and then the best
solution of the last generation is considered as the optimal result. The entire optimization process of
the proposed approach is shown in Figure 5.
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These parameters contained by the optimal solution (or chromosome) are used to establish the
final forecasting model. Testing samples are set as Equation (15) described and used to calculate the
forecasting valued by the established model. The index MPAE described as Equation (16), is used to
test the forecasting accuracy of the proposed method. After the concerned dissolved gas contents are
obtained, a local standard (GBT-7252 2001) can be employed to diagnose the working condition and
incipient faults of power transformer.
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4. Experimental Results for Forecasting Dissolved Gas Content in Power Transformer Oil

Several dissolved gas content sequences of 110 kV and 220 kV power transformers from China
Southern Power Grid are used to demonstrate the forecasting performance of the proposed method.
These DGA data are shown in Table 2.

Table 2. The dissolved gas content in a power transformer (uL/L).

Case Number Date H2 CH4 C2H6 C2H4 C2H2 Data Type

1

2015/7/8 3.79 80.57 97.44 167.51 0 Training
2015/7/9 4.04 88.02 101.8 178.63 0 Training
2015/7/10 4.04 86.55 101.4 179.98 0 Training
2015/7/11 4.05 86.68 100.98 180.39 0 Training
2015/7/12 4.02 85.83 100.45 176.25 0 Training
2015/7/13 3.81 79.74 97.75 168.92 0 Training
2015/7/14 3.87 77.81 96.51 165.95 0 Training
2015/7/15 3.82 78.55 96.93 168.37 0 Training
2015/7/16 3.78 76.61 95.84 166.54 0 Training
2015/7/17 4.07 81.91 98.46 175.09 0 Training
2015/7/18 4.11 83.81 99.59 180.88 0 Training
2015/7/19 4.06 83.12 99.37 181.06 0 Training
2015/7/20 4.06 83.53 99.49 182.5 0 Training
2015/7/21 4.04 83.03 98.96 180.45 0 Training
2015/7/22 4.09 84.51 99.62 183.36 0 Training
2015/7/23 3.81 78.88 97.04 172.18 0 Training
2015/7/24 4.06 83.81 100.15 183.58 0 Training
2015/7/25 4.11 85.37 101.33 188.73 0 Training
2015/7/26 4.1 85.78 101.16 188.25 0 Training
2015/7/27 3.79 79.17 97.29 172.77 0 Training
2015/7/28 4.09 86.08 101.86 186.71 0 Training
2015/7/29 4.09 86.69 102.14 187.1 0 Training
2015/7/30 4.03 84.85 101.19 184.53 0 Testing

2

2016/11/5 17.40 37.30 40.80 10.70 2.89 Training
2016/11/6 17.20 40.10 38.90 10.00 2.63 Training
2016/11/7 18.60 39.90 39.50 10.80 2.59 Training
2016/11/8 18.20 37.30 37.20 9.84 2.97 Training
2016/11/9 20.80 34.50 40.10 9.73 2.55 Training
2016/11/10 20.80 40.00 36.70 10.50 2.72 Training
2016/11/11 17.40 34.50 40.70 9.20 2.60 Training
2016/11/12 20.80 35.90 40.40 9.43 2.48 Training
2016/11/13 20.20 38.00 41.60 9.89 2.73 Training
2016/11/14 20.70 35.70 37.40 10.90 2.52 Training
2016/11/15 18.50 39.00 40.30 9.87 2.62 Training
2016/11/16 17.30 39.30 39.00 10.30 2.71 Training
2016/11/17 18.80 37.00 43.70 10.40 2.26 Training
2016/11/18 19.20 36.80 40.30 10.70 2.63 Training
2016/11/19 16.40 38.70 45.90 9.72 2.26 Training
2016/11/20 19.80 40.00 42.40 10.60 2.34 Training
2016/11/21 19.70 38.20 41.60 11.40 2.69 Training
2016/11/22 18.30 40.50 44.90 10.80 2.39 Training
2016/11/23 18.20 34.70 43.90 11.30 2.28 Training
2016/11/24 18.30 34.80 44.40 9.53 2.63 Training
2016/11/25 16.50 40.80 42.70 10.60 2.50 Training
2016/11/26 18.10 40.90 45.90 11.40 2.71 Training
2016/11/27 19.80 36.20 45.00 11.00 2.39 Testing
2016/11/28 19.60 35.10 46.00 9.61 2.45 Testing

3

2015/7/15 8.58 7.58 6.39 1.65 0 Training
2015/7/22 7.67 7.11 5.54 1.58 0 Training
2015/7/29 8.25 7.33 6.59 1.85 0 Training
2015/8/5 8.62 7 5.88 1.66 0 Training
2015/8/12 7.92 7.64 6.56 1.62 0 Training
2015/8/19 7.57 7.3 6.4 1.87 0 Training
2015/8/26 8.52 7.68 5.67 1.59 0 Training
2015/9/2 7.51 7.48 6.53 1.74 0 Training
2015/9/9 8.14 7.67 5.64 1.6 0 Training
2015/9/16 8.3 9.51 6.91 2.11 0 Training
2015/9/23 7.84 9.89 7.14 2.11 0 Training
2015/9/30 7.57 9.76 7.58 2.2 0 Training
2015/10/7 8.68 9.52 6.95 2.11 0 Training
2015/10/14 7.94 8.97 6.64 1.97 0 Testing
2015/10/21 7.79 8.11 6.59 2.19 0 Testing
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The dissolved gas data is firstly divided into training set and testing set according to data size
and related references. Among them, case 1 and case 2 are sampled every day, while case 3 is sampled
each week. It should be noted in this study that none singular value is eliminated and no more than
5% of data (11 out of 272) are missing in all three cases. Afterwards, normalization is implemented
to improve generalization capability and reduce computational error. The whole experimental tests
of the proposed approaches are conducted in the MATLAB (R2016) environment with the aid of the
LIBSVM toolbox [40]. After data preprocessing and normalization, the time sequences for training
set and testing set are established according to Equation (15). In this study, we test the forecasting
performance of SVR models established on different single kernels, shown as Equations (7)–(10). GA is
utilized to optimize the kernel parameters of ε -SVR, while LOO CV is applied to estimate the fitness
to select the best choice among the candidate solutions. Numerical experiments for each model are
repeated 50 times to decrease randomness within the final results. Results of the forecasting model for
the training set of case 1 and case 2 are shown in Tables 3 and 4, respectively.

It can be seen from Tables 3 and 4 that, the SVR models based on linear kernel and sigmoid
kernel have relatively better average MAPE than that of models established on the Gaussian kernel
and polynomial kernel for all cases. However, the average r2 of ε-SVR model with linear kernel or
sigmoid kernel are far lower than that of models based on the other two kernels. r2 provided by linear
or sigmoid kernel is generally no more than 0.2 and 0.3, while the values obtained by the Gaussian
and polynomial kernel are no less than 0.6 and 0.8 for case 1 and case 2, respectively.

Small r2 indicates that the established model could not effectively depict the developing trends
of the time series. Therefore, it is concluded that sigmoid kernel and lineal kernel are not suitable
for forecasting the dissolved gas content of power transformer, and then they have not been studied
further in the following investigation.

Table 3. The average forecasting performance of the training set (Case 1, 50 times).

Dissolved Gas Kernel Type
MAPE/%

Average r2
Max Min Average

H2

Linear 0.9132 0.5176 0.8227 ± 0.1018 0.0403 ± 0.0064
Sigmoid 0.6392 0.4035 0.5484 ± 0.0801 0.0649 ± 0.0188
Gaussian 0.6917 0.4961 0.6077 ± 0.0484 0.9958 ± 0.0018

Polynomial 1.4718 0.8222 1.1495 ± 0.1422 0.2311 ± 0.0834
Mixed 0.7411 0.0653 0.4144 ± 0.1764 0.9881 ± 0.0272

CH4

Linear 1.7395 0.4885 1.1726 ± 0.3569 0.1582 ± 0.0178
Sigmoid 2.6103 0.3090 1.9075 ± 0.3687 0.0049 ± 0.0217
Gaussian 2.7872 2.5508 2.7202 ± 0.0631 0.9838 ± 0.0067

Polynomial 2.5717 0.2112 1.5787 ± 0.6075 0.7397 ± 0.2489
Mixed 2.3868 0.0176 1.1702 ± 0.6838 0.9035 ± 0.1975

C2H6

Linear 2.5265 1.1519 1.4769 ± 0.3788 0.1445 ± 0.0059
Sigmoid 3.7174 3.6412 3.6703 ± 0.0201 0.0007 ± 0.0001
Gaussian 2.1104 2.0794 2.1027 ± 0.0006 0.9854 ± 0.0042

Polynomial 14.6658 0.1851 7.9456 ± 6.3304 0.6667 ± 0.3152
Mixed 1.1391 0.0105 0.4101 ± 0.2536 0.9713 ± 0.0394

C2H4

Linear 1.1385 0.0957 0.4457 ± 0.3161 0.2592 ± 0.0135
Sigmoid 9.4499 0.2294 3.3252 ± 1.9865 0.1056 ± 0.0514
Gaussian 2.2305 1.2168 2.0206 ± 0.2003 0.9917 ± 0.0052

Polynomial 1.7409 0.5681 1.5511 ± 0.3239 0.6648 ± 0.1375
Mixed 2.8552 0.4731 1.4342 ± 0.4458 0.9590 ± 0.0180
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Table 4. The average forecasting performance of the training set (Case 2, 50 times).

Dissolved Gas Kernel Type
MAPE/%

Average r2
Max Min Average

H2

Linear 3.8211 2.2219 3.2477 ± 0.3734 0.0474 ± 0.0055
Sigmoid 3.9352 3.8265 3.8321 ± 0.0192 0.0252 ± 0.0392
Gaussian 4.5223 3.9864 4.1491 ± 0.1088 0.9723 ± 0.0021

Polynomial 11.6459 6.4116 10.7708 ± 0.773 0.9598 ± 0.0197
Mixed 4.1166 3.9798 4.0138 ± 0.0311 0.9855 ± 0.0184

CH4

Linear 5.6681 0.9128 1.9240 ± 1.6286 0.1198 ± 0.0064
Sigmoid 35.2251 3.8304 19.7238 ± 4.9772 0.0037 ± 0.0041
Gaussian 5.7169 5.6574 5.6986 ± 0.0139 0.9921 ± 0.0007

Polynomial 38.4981 2.885 34.8767 ± 7.934 0.9059 ± 0.1747
Mixed 5.4689 3.7155 4.9363 ± 0.4794 0.9877 ± 0.0309

C2H4

Linear 2.4426 0.1028 1.5430 ± 0.6544 0.5348 ± 0.0086
Sigmoid 8.3909 0.1954 8.0604 ± 1.5451 0.0560 ± 0.0891
Gaussian 5.5427 4.8443 5.2869 ± 0.1656 0.9694 ± 0.0239

Polynomial 13.3713 9.7006 12.1296 ± 0.997 0.9009 ± 0.0084
Mixed 3.18 1.5021 2.6799 ± 0.4240 0.9797 ± 0.0797

C2H6

Linear 10.2447 8.0635 9.2906 ± 0.6432 0.1107 ± 0.0112
Sigmoid 11.3452 7.4219 10.1950 ± 1.2591 0.0051 ± 0.0074
Gaussian 6.9159 6.7734 6.8489 ± 0.0324 0.9752 ± 0.0032

Polynomial 20.9745 6.2449 19.6727 ± 2.644 0.8881 ± 0.0164
Mixed 6.8225 6.8054 6.8085 ± 0.0035 0.9891 ± 0.0081

C2H2

Linear 2.5655 0.1149 1.6961 ± 0.6905 0.3469 ± 0.0059
Sigmoid 5.2049 5.0081 5.1173 ± 0.0466 0.0006 ± 0.0005
Gaussian 4.2828 4.1690 4.2138 ± 0.0299 0.9695 ± 0.0022

Polynomial 10.714 4.92 9.6174 ± 1.3411 0.8397 ± 0.0134
Mixed 3.1884 2.6363 2.9458 ± 0.1212 0.9934 ± 0.0079

Models based on Gaussian and polynomial kernel have better squared correlation coefficient and
acceptable forecasting accuracy. Therefore, we apply Gaussian and polynomial kernel to develop a
novel MKF-SVR model for predicting dissolved gas contents. Forecasting results of the training set
are also presented in Tables 3 and 4, respectively. Compared with Gaussian and polynomial kernels,
MKF-SVR model has slightly lower MAPE and comparative r2. Among the forecasting result obtained
by mixed kernel, the worst average MAPE is no more than 2% and 5%, and the lowest r2 is no less
than 0.95 and 0.97 for case 1 and case 2, respectively. Besides, squared correlation coefficient r2 of
MKF-SVR model is far better than that of models based on linear and sigmoid kernel. The results
reveal that the proposed MKF-SVR model integrates the advantages of local and global kernel and
manifest the superiority of the proposed approach. All cases described in Table 2 are examined with
the MKF-SVR model (repeated 50 times). For the proposed model, the mixed kernel function is shown
as Equation (12), and free parameters that need to be optimized have been listed in Table 1. It should
be pointed out that the dimension of input vector m plays an important role in forecasting performance.
An improper dimension value m will lead to undesirable forecasting results [20]. Hence, parameter m
is also considered in optimization process. The optimal parameters for each gas and corresponding
prediction performance are presented in Table 5.

It is shown in Table 5 that the optimal value of m varies from case to case, which proves that it is
necessary to tune the input vector dimension to gain a better performance. Moreover, the variation
of mixing coefficient ω suggests that it is indispensable to integrate different kernels to obtain better
forecasting performance. Take “H2” of case 1 for example, according to Table 4, the minimum MAPE
for Gaussian and polynomial kernel is 0.4961 and 0.8222, while for the mixed kernel, ωG is equal to
0.9991, which means that the mapping characteristic of the kernel function is mainly determined by the
Gaussian kernel. Although the weight of polynomial kernel is negligible (ωp = 0.0009), the predicted
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result of the training set is greatly improved to 0.1884, which indicates that the participation of the
linear kernel has greatly improved the learning ability and decreased the forecasting error. Predicted
values and absolute percentage error (APE, obtained by Equation (18)) of the training set and testing
set are shown in Figures 6 and 7. Compared with models based on Gaussian and polynomial kernels,
the MKF-SVR model can depict the variation trend of dissolved gas more accurate and more reliable.
In addition, APE of models based on mixed kernels are generally lower than that of models established
on other kernels. Specific forecasting values and corresponding MAPE for all training set and testing
set are presented in Table 6. For each case, the least MAPE for forecasting value of the testing set are
displayed in bold. Most of the result obtained by MKF-SVR are preferable to that of other methods.
To sum up, the MKF-SVR model generally can accurately depict developing trends of dissolved gas
and elevate the forecasting accuracy:

APE =

∣∣∣∣ f (xi)− yi
yi

∣∣∣∣ (18)

Table 5. The optimal parameters of each dissolved gas sequence.

Case No. Dissolved Gas
Parameters MAPE/%

m C σ ξ d ω Training Testing

1

H2 3 45.2410 66.4078 0.0228 1.8197 0.9991 0.1884 0.0645
CH4 3 64.0668 24.8862 0.0261 1.5696 0.3923 0.3509 1.0295
C2H6 4 72.7747 68.2022 0.0051 2.8875 0.1179 0.0332 0.1292
C2H4 3 51.1808 77.3654 0.0538 3.7792 0.2934 0.6412 0.4713

2

H2 4 66.6143 59.5728 0.0273 1.1563 0.7490 0.6221 4.0578
CH4 3 62.6013 53.9830 0.0033 2.0307 0.9092 0.0576 4.1765
C2H6 5 44.8368 19.0071 0.0087 2.6108 09281 0.1917 1.5704
C2H4 5 43.9790 68.0588 0.0134 1.0770 0.8621 0.2843 6.7836
C2H2 5 63.0017 47.3237 0.0026 2.6083 0.7759 0.0754 2.9589

3

H2 1 2.2736 91.1686 0.0639 1.0834 0.7572 1.0224 0.8085
CH4 1 0.1742 55.3330 0.0577 3.0111 0.0381 4.9175 3.6875
C2H6 5 6.3558 88.1067 0.0012 2.6507 0.9225 0.0430 6.3674
C2H4 4 70.8075 95.6627 0.0269 1.7927 0.9516 0.8165 0.0185

Table 6. The comparison of the forecasting result (testing set).

Case Kernel Type H2 CH4 C2H6 C2H4 C2H2

1
Actual/Mixed

RBF/Polynomial
4.0300/4.0274/
4.0101/4.0631

84.8500/85.7235/
82.6856/85.0292

101.1900/101.3207/
99.0858/102.5478/

184.5300/185.4030/
186.7754/187.6218 –

MAPE(%)
(2015/7/30)

0.0645/0.4938
/0.8213

1.0295/2.5509
/0.2112

0.1292/2.0794/
/1.3418

0.4731/1.2168/
/1.6755 –

2

Actual-1/Mixed
RBF/Polynomial

19.8000/18.9596/
18.913/20.434

36.2/37.2366/
37.707/36.548

45.0000/44.4396/
43.0012/51.855

11.0000/10.4411/
10.3502/7.7145

2.3900/2.5220/
2.5206/2.5333

Actual-2/Mixed
RBF/Polynomial

19.6000/18.8412/
18.9117/17.7143

35.1000/37.0268/
37.6111/36.5464

46.0000/45.1275/
43.5865/43.442

9.6100/10.4255/
10.3503/9.017

2.4500/2.4596/
2.5258/2.1396

MAPE1(%)
(2016/11/27)

4.2444/4.4848
/10.5353

2.8635/4.1630
/0.9613

1.2447/4.4418
/15.2333

5.0809/5.9063
/29.8636

5.5230/5.4644
/5.9832

MAPE2(%)
(2016/11/28)

3.8714/3.5102
/9.6224

5.4894/7.1538
/4.1197

1.896/5.2467
/5.5608

8.4860/7.7034
/6.1707

0.3918/3.0938
/12.6938

3

Actual-1/Mixed
RBF/Polynomial

7.9400/7.9315/
7.9160/7.5543

8.9700/9.4120/
9.3905/9.2016

1.9700/2.0758/
1.9234/1.4785

6.6400/6.6377/
6.5933/5.0692 –

Actual-2/Mixed
RBF/Polynomial

7.7900/7.6724/
7.7044/7.8758

8.1100/8.5526/
8.8907/8.4542

2.1900/2.0287/
1.9234/1.1178

6.5900/6.5902/
6.5933/4.0049 –

MAPE-1(%)
(2015/10/14)

0.1068/0.3025
/4.8574

1.9171/4.6881
/2.5814

5.3716/2.3650
/24.9491

0.0340/0.7033
/23.6561 –

MAPE-2(%)
(2015/10/21)

1.5102/1.0988
/1.1014

5.4580/9.6268
/4.2437

7.3631/12.1731
/48.9590

0.0031/0.0501
/39.2284 –
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Furthermore, we compare the forecasting performance of MKF-SVR with other three popular
methods (including GRNN, RBFNN and GM) in order to demonstrate the superiority of the proposed
method. The experimental results and forecasting values of training and testing sets are presented as
Table 7 and Figure 8 (for Case 1, H2). Table 7 shows that the proposed MKF-SVR method has the best
MAPE and r2 than that of other traditional methods. According to Figure 8, it can be found that, for the
grey model, the forecasting value is monotonously increased, which is not accordance with the actual
value at all and gives the biggest error and lowest r2 due to the limitation of grey model mentioned
in Section 1. In comparison with RBFNN, GRNN not only has better forecasting results, but also can
depict the developing trends better. Nevertheless, these models are based on the principle of empirical
risk minimization, thus the forecasting performance can be further promoted by adding extra samples.
The proposed MKF-SVR method applies the principle of structural risk minimization, which make it
have satisfying generalization ability with fewer samples. Moreover, it has better learning ability and
prediction ability as the combination of local kernel and global kernel, which is conducive to illustrate
developing trends of dissolved gas in power transformers. In conclusion, the forecasting accuracy and
fitting performance of the proposed MKF-SVR model outperform that of other popular approaches.
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Considering a situation that there exists bias or noisy during measurement of the dissolved gas
content, which might affect the reliability and accuracy of the proposed model. Hence, the robustness
of the proposed model is examined with noisy data. The noisy data is obtained by Equation (19):

datanoisy = dataori(1 + p ∗ rand)) (0% < p ≤ 100%) (19)

where dataori and datanoisy are the original data and noisy data, respectively. p denotes a percentage
level of noise. rand represents a data generated by uniform distribution between 0 and 1.

Table 7. The comparison of experimental results for H2 (Case 1).

Methods
Training Set Testing Set

MAPE r2 MAPE

MKF-SVR 0.4144 0.9881 0.0645
GRNN 0.7625 0.8566 1.0893
RBFNN 2.1712 0.3478 0.8734

GM 2.6542 0.0911 0.2062

When the noisy data is ready, the data preprocessing techniques mentioned in Section 3 are carried
out and the proposed model with the optimal parameters is employed to forecast the dissolved gas
content. Forecasting values of training set and testing set are obtained and APE is adopted to estimate
the forecasting performance. Data of H2 in case 1 and case 2 are used to demonstrate the prediction
capability, and the absolute value of APE of the forecasting results at different p are shown in Figure 9.

It can be seen from Figure 9 that APE is increased as p increases, whereas, there are slight
differences in the training sets for both case 1 and case 2. Although the APE value of the testing
set varies greatly, for case 1, APE for the testing set is obviously increased when p is larger than 5%,
while for case 2, there are minor difference in APE for the testing set when the noise level is increased
from 0 to 20%. Besides, the maximum change on APE for the testing sets of both case is no more than
10%, which is acceptable in practical application. Therefore, it can be concluded from Figure 9 that the
proposed model has remarkable forecasting performance and desirable robustness.Energies 2018, 11, x FOR PEER REVIEW  17 of 19 
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5. Conclusions

In this paper, a mixed-kernel function based support vector regression model (MKF-SVR) is
proposed to forecast the dissolved gas content in power transformers. At the beginning, the forecasting
performance of SVR models with single kernel function are checked and the results suggest that
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models based on sigmoid kernel or linear kernel are not suitable for prediction of dissolved gas
content. A mixed kernel function, combined with Gaussian kernel and polynomial kernel, is applied
to develop the novel MKF-SVR model. Genetic algorithm and LOO-CV are adopted to optimize free
parameters. Forecasting performance of the proposed MKF-SVR model is tested by actual gas data
and the results indicate that the proposed model is generally superior to single kernel function based
SVR models. Moreover, prediction results of RBFNN, GRNN and GM are compared with that of
MKF-SVR, and the comparison results demonstrate that the proposed model has a better forecasting
accuracy and fitting capability than that of other models. Additionally, the forecasting results based
on noisy data verify the desirable robustness of the proposed model. In the future, several extra
factors, including oil temperature, working load and environmental condition, should be taken into
consideration for forecasting the development trends of dissolved gas levels in power transformers.
Besides, more kernel types and different optimization algorithms can also be investigated to improve
the forecasting performance.
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Nomenclature

DGA dissolved gas analysis
MKF mixed-kernel function
SVR support vector regression
GA genetic algorithm
MAPE mean absolute percentage error
r2 squared coefficient correlation
AI artificial intelligence
RBFNN radial basis function neural network
BPNN back propagation neural network
GRNN generalized regression neural network
GM grey model
LSSVM least squares support vector machine
H2 hydrogen
CH4 methane
C2H6 ethane
C2H4 ethylene
C2H2 acetylene
CV cross validation
LOO leave-one-out
ARE absolute percentage error
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