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Abstract: This paper proposes an improved active frequency drift (AFD) islanding detection method
of a three-phase inverter. Different than the existing single-phase AFD method, in the three-phase
system, the disturbance is added to the phase angle, which takes part in coordinate transformation
calculations. Thus, the frequency drift of the three-phase reference current can be realized by the
disturbance of the phase angle. It is unnecessary to add frequency drift to each phase respectively
with the proposed method, which can simplify the control system. Furthermore, the non-detection
zone can be eliminated by updating certain parameters; therefore, the detection method is sensitive.
In this paper, the application of the proposed method in a digital control system is discussed in detail.
The non-detection zone is analyzed, and an elimination method is proposed. Finally, the simulation
and experimental results are given to verify the theoretical analysis.

Keywords: three-phase inverter; islanding detection; non-detection zone; zero-crossing correction;
active frequency drift

1. Introduction

The three-phase grid-connected inverter plays an important role in the field of distributed
power generation [1]. The islanding phenomenon would cause confusion in AC frequency, phase,
and amplitude. Islanding detection is necessary for avoiding damage to electrical equipment and
personal injury [2,3]. Islanding detection methods can be divided into passive and active methods.
The passive methods detect the voltages, currents, and phases of the inverter. If one or more of them
are not in the allowed range, islanding can be detected [4–8]. The non-detection zone (NDZ) is the main
disadvantage of the passive methods. For solving the problem, an islanding detection method based
on feature recognition technology is proposed in [5]. The features of the inverter system are identified.
The vector model of the inverter features is established instead of the limited parameters in the
traditional passive methods. Thus, the NDZ can be eliminated. However, comprehensive conditions
should be taken into consideration. The feature recognition of the inverter system is complex.

The application of active islanding detection methods is more common. The active methods can
be divided into grid variable variation-based methods and impedance estimation-based methods [9,10].
The principle and classification of the impedance estimation-based methods are discussed in [10].
In these methods, islanding is detected according to the variations at the power converter output
impedance. These methods have the advantages of low current distortion and high detection
speed [11–15]. However, false judgment and a complex control strategy limit the application of
these methods. The grid variable variation-based methods can detect the islanding effect of a grid
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response on a small disturbance [16–23]. The methods based on frequency and voltage drift are
very popular. However, to eliminate the NDZ, additional disturbance should be added. The current
distortion cannot be avoided.

To decrease current distortion and eliminate the NDZ, a simplified power control strategy
with islanding detection for a three-phase grid-connected photovoltaic inverter is proposed in [11].
Harmonic current is injected as the disturbance, which results in harmonic voltage on the local load.
By transforming these voltages into the rotating reference frame, the DC component of these voltages
can be detected. A low-pass filter is applied in this method, which would cause a time delay and the
islanding would not be detected in time. A systematic phase-locked loop (PLL) modeling and design
approach for evaluating the frequency-based islanding detection method is proposed in [19]. An input
injection signal is added to the PLL. This method is sensitive to the control parameters. The system
stability may be threatened. In [20], an active method based on voltage positive feedback is given.
The method uses a sliding mode controller to detect the islanding effect of the photovoltaic system with
string inverter. The active power perturbation has been applied only in deceleration mode, considering
the disturbance definition in the inverter voltage control loop. In [21], a high-performance islanding
search sequence technique is proposed. The output of the inverter can be seen as a voltage source.
This method does not apply to an inverter in which the output is a current source.

According to the above analysis, this paper proposes an improved active frequency drift (AFD)
method, which applies to the three-phase grid-connected inverter. The traditional AFD method can
only be used for the single-phase inverter and there is an NDZ problem [24–26]. The existing improved
methods, such as automatic phase-shift and AFD with positive feedback, cannot be used in the
three-phase systems [27–30]. The proposed method can eliminate the NDZ, and the current distortion
is low. The frequency disturbance is added to the output of the PLL. Thus, the phase angle, which
takes part in the coordinate transformation, tends to change the frequency of the current reference.
Furthermore, the NDZ can be totally eliminated by certain parameter updating.

This paper is organized as follows. In Section 2, the principle of the proposed method is introduced.
Section 3 analyzes the cause of NDZ. In Section 4, the improved method, which can eliminate the NDZ,
is given. Finally, Section 5 shows the simulation and experimental results of the proposed islanding
detection method to verify the theoretical analysis.

2. Three-Phase AFD Method

2.1. Principle of the Three-Phase AFD Method

Figure 1 shows the principle of the three-phase AFD method. In Figure 1a, ea, eb, and ec are the
grid voltages. Za, Zb and Zc are the line impedances. In the islanding detection, they can be ignored.
Thus, ea, eb, ec and the voltages eas, ebs, ecs are the same. In the space vector pulse width modulation
(SVPWM) control, the phase angle θ0, which takes part in the coordinate transformation, is generated
by PLL [31]. In the dashed box, the disturbed angle θ0

′ takes part in the coordinate transformation
from iq*, id* to idra

*, idrb
*, idrc

*. θ0 takes part in the coordinate transformation from idra
*, idrb

*, idrc
* to

idrq
*, idrd

*. The three-phase current reference idra
*, idrb

*, idrc
* is shown in Figure 1b,c. θ0

′ does not take
part in other coordinate transformations to avoid additional disturbances.

In Figure 1b,c the waveforms from top to bottom are, respectively, the current reference without
disturbance, the phase angle, and the current reference with disturbance. The disturbance can increase
or decrease the current frequency after the inverter is disconnected from the grid. θ0 is the output of
the PLL. It changes from −π to π with the grid frequency. θ0

′ is the phase angle after AFD. It changes
from −π to π with the disturbed frequency. To correct the frequency when the inverter is connected to
the grid, zero-crossing correction (ZCC) is necessary.

In Figure 1b, the disturbance tends to increase the current frequency. ZCC operates when θ0
′ is

0 and θ0 is less than 0. In this condition, θ0
′ does not change from 0 until θ0 reaches 0. The slope of

θ0
′ is higher than that of θ0. At time t3, θ0

′ finishes a liner-changed cycle. During t3 to t4, θ0
′ keeps 0.
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At time t4, θ0 finishes a liner-changed cycle, which is just the grid cycle T. After t4, θ0
′ and θ0 begin to

increase from 0 with different slopes.
Similarly, in Figure 1c, the disturbance tends to decrease the current frequency. ZCC operates

when θ0 is 0 and θ0
′ is less than 0. At the zero-crossing time, θ0

′ is enforced as 0.
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Figure 1. Principle of the three-phase active frequency drift (AFD) method. (a) The control diagram.
(b) The disturbance tending to increase the current frequency. (c) The disturbance tending to decrease
the current frequency.

2.2. AFD Control Strategy in the Digital Control System

According to Figure 1, the aim of the phase angle disturbance is to realize frequency drift.
When the inverter works normally, the frequency achieved by the PLL is the grid frequency. In each
grid cycle, the frequency disturbance is a fixed value. It is imposed on the grid frequency and will not
be accumulated. After the inverter is disconnected from the grid, ZCC still works. If the local load is
resistive, the phases of the AC current and voltage are the same. The zero-crossing times of θ0

′ and θ0

are the same. ZCC will not force the frequency correction of θ0
′. Thus, the current frequency changes

with the disturbance. In addition, the voltage frequency will change and it can be detected by the PLL.
In the next cycle, the disturbance will be accumulated.

In the digitally-controlled three-phase inverter system, the frequency is calculated by the slope of
the phase angle, which can be expressed as follows:

f =
ω0

2π
=

1
2π

dθ0

dt
=

1
2π

∆θ

∆t
(1)

In the digital controller, the phase angle θ0 is calculated in every switching cycle. Tc is the
switching cycle. Thus, ∆t is Tc and ∆θ is the difference of θ0 in the two adjacent calculations.
The simplest filtering algorithm is applied. In fact, ∆θ is the average value. It can be expressed
as follows:
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∆θ =
1
k

k

∑
i=1

∆θi (2)

where k is the number of calculations.
Figure 2 shows the change of the phase angle after the inverter gets disconnected from the grid at

t0. The local load is resistive. The grid frequency is f 0. The disturbance is ∆f 0. If the disturbance tends
to increase the current frequency, ∆f 0 is larger than 0. On the contrary, ∆f 0 is less than 0. In each k times
of the switching cycle, the average value ∆θ and the AC voltage frequency are calculated. In the next k
times of the switching cycle, the disturbance ∆f 0 is added to the AC voltage frequency. The disturbed
frequency is the frequency of the current reference. As a result, the disturbance cycle is kTc. Before
t0, the AC voltage frequency is always f 0. Therefore, the frequency of the current reference is always
f 0 + ∆f 0.
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Figure 2. Change of the phase angle after the inverter is disconnected from the grid. (a) The disturbance
tending to increase the current frequency. (b) The disturbance tending to decrease the current frequency.

Because of ZCC, the real current frequency is still f 0. After t0, the AC voltage frequency changes
with the disturbance. y is the number of disturbance cycles after t0. At time t0, y is 1. In the area where
y is 1, the AC voltage frequency is not the grid frequency. According to (1), in this cycle, the AC voltage
frequency can be expressed as follows:

fOFF(y=1) =
(w− 1) f0 + (k− w + 1)( f0 + ∆ f0)

k
(1 ≤ w ≤ k) (3)

where w is the number of switching cycles at t0. It is larger than or equal to 1 and less than or equal
to k. Thus, the range of f OFF(y=1) is [f 0 + ∆f 0/k, f 0 + ∆f 0]. If f OFF(y=1) is still in the allowed range,
the disturbance ∆f 0 would be added to f OFF(y=1) instead of f 0. In the next disturbance cycle, the
frequencies of the AC current and voltage both are

fOFF(y=2) = fOFF(y=1) + ∆ f0 (4)

The frequency accumulation does not stop until the AC voltage frequency exceeds the allowed
range. However, in some certain conditions, NDZ would occur, which will be analyzed in the
next section.

2.3. Comparison between the Existing Method and the Proposed Method

In [24], a typical single-phase AFD method is described in detail. A current waveform distortion
to the original reference current of the inverter has been injected to realize the frequency drift. Taking
the condition where the disturbance tends to increase the current frequency, for example, Figure 3
shows the application of the existing method in the three-phase system. The waveforms from top to
bottom respectively are the current reference without disturbance, the injected waveform, and the
current reference with disturbance. By introducing a zero conduction time at the end of each cycle,
the phase angle of the fundamental component of the current is shifted. Comparing Figures 3 and 1b,
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it can be seen clearly that frequency drift should be added to each phase respectively with the existing
method. With the proposed method, the control system can be simplified.

Energies 2018, 11, x FOR PEER REVIEW  5 of 16 

 

the phase angle of the fundamental component of the current is shifted. Comparing Figure 3 and 

Figure 1b, it can be seen clearly that frequency drift should be added to each phase respectively with 

the existing method. With the proposed method, the control system can be simplified. 

0

0

T/2

0

T 3T/4 2T

t(s)

i*
(A

)
i i

n
j(

A
)

i d
r*

(A
)

Id
*

-Id
*

t1 t2 t3 t4

ia
*ic

*ib
*

idrb
*

t(s)

t(s)

iinjaiinjc

idra
*idrc

*

iinjb

 

Figure 3. Application of the existing method in the three-phase system. 

3. Analysis of the Non-Detection Zone 

3.1. Detection Process and Parameter Calculations 

The local load can be seen as a parallel structure of the resistance, inductance and capacitance, 

which can be defined as RLC parallel load. The impedance angle of it can be expressed as follows: 

arctan r
load RLC

r

f f
Q

f f


 
= − 

 
 (5) 

where QRLC is the quality factor and fr is the resonant frequency. They can be expressed as follows: 

2
2

RLC r

r

R C
Q Rf C R

f L L



= = =  (6) 

1

2
rf

LC
=

 

(7) 

If the AC voltage frequency f is the same as fr, φload is 0 and the local load is resistive. If f is less 

than fr, φload is positive and the local load is inductive. If f is larger than fr, φload is negative and the local 

load is capacitive. 

According to Figure 1, when the inverter works normally, the phase angle of the reference 

current in the (i + 1) switching cycle can be expressed as follows: 

( )1 0 0' ' 2i i cf f T  + = + +  (8) 

The AC current phase difference between the two adjacent switching cycles is 

Figure 3. Application of the existing method in the three-phase system.

3. Analysis of the Non-Detection Zone

3.1. Detection Process and Parameter Calculations

The local load can be seen as a parallel structure of the resistance, inductance and capacitance,
which can be defined as RLC parallel load. The impedance angle of it can be expressed as follows:

ϕload = arctanQRLC

(
fr

f
− f

fr

)
(5)

where QRLC is the quality factor and fr is the resonant frequency. They can be expressed as follows:

QRLC =
R

2π frL
= 2πR frC = R

√
C
L

(6)

fr =
1

2π
√

LC
(7)

If the AC voltage frequency f is the same as fr, ϕload is 0 and the local load is resistive. If f is less
than fr, ϕload is positive and the local load is inductive. If f is larger than fr, ϕload is negative and the
local load is capacitive.

According to Figure 1, when the inverter works normally, the phase angle of the reference current
in the (i + 1) switching cycle can be expressed as follows:

θi+1
′ = θ′ i + 2π( f0 + ∆ f0)Tc (8)

The AC current phase difference between the two adjacent switching cycles is

∆θi
′ = ∆θi + 2π∆ f0Tc (1 ≤ i ≤ k) (9)

In Figure 1, the difference between θ0
′ and θ0 is ∆σ. ∆σ changes from 0 to the maximum value in

each grid cycle. At the end of the cycle, ∆σ is forced to 0 again because of ZCC. The range of ∆σ can be
expressed as follows:
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0 ≤ ∆σ ≤ 2π∆ f0

f0 + ∆ f0
(10)

Because of the digital filtering, the calculation of the AC voltage frequency needs k times of the
switching cycle; i.e., the AC voltage frequency is updated at the end of each disturbance cycle. After the
inverter is disconnected from the gird at time t0, the phase difference between the AC voltage and
current is determined by the impedance angle ϕload. In the first switching cycle after t0, the phase angle
of the AC current is θc + ∆θi

′, while the phase angle of the AC voltage is θc + ∆θi
′ + ϕload(y=1). The AC

voltage phase difference between this and the previous switching cycles is as follows:

∆θw = ∆θi
′ + ϕload(y=1) + ∆σ (i = w) (11)

According to (2) and (11), the average AC voltage phase difference of the adjacent switching
cycles in the condition that y is 1 can be expressed as follows:

∆θOFF(y=1) =
1
k
(

w−1

∑
i=1

∆θi +
k

∑
i=w

∆θi
′ + ϕload(y=1) + ∆σ) (12)

Figure 4 shows the relationship among ∆θ, ∆θOFF, and the inverter working conditions. ∆θ is
2πTcf 0. It is clamped by the grid frequency. The allowed range is [2πTcf 0min, 2πTcf 0max]. ∆θOFF
is influenced by the local load. The inverter does not stop working until ∆θOFF exceeds the range
[2πTcf 0min, 2πTcf 0max]. If the inverter has approached the steady state and ∆θOFF is still in the allowed
range, the islanding cannot be detected.
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Figure 4. The relationship of ∆θ, ∆θOFF, and the inverter working conditions.

Taking (9) into (12), ∆θOFF(y=1) can be simplified as follows:

∆θOFF(y=1) = θinitial +
ϕload(y=1)

k
(13)

where θinitial and ϕload(y=1) can be expressed as follows:

θinitial = ∆θ +
2π∆ f0Tc(k− w + 1) + ∆σ

k
(1 ≤ w ≤ k) (14)

ϕload(y=1) = arctanQRLC

(
fr

f0 + ∆ f0
− f0 + ∆ f0

fr

)
(15)
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After the parameters ∆θOFF(y=1), ∆θOFF(y=2), and ∆θOFF(y=3) are calculated in turn, the general
expression can be given as

∆θOFF(y=n+1) = ∆θOFF(y=n) + 2π∆ f0Tc +
Bp

k
ϕload(y=n+1) (16)

where Bp represents the phase changing condition of the AC voltage in the area that y is n + 1. If the
phase of the AC voltage changes suddenly, Bp is 1; otherwise, Bp is 0. ϕload(y=n+1) is the phase angle of
mutation. It can be expressed as follows:

ϕload(y=n+1) = arctanQRLC

(
fr

fn + ∆ f0
− fn + ∆ f0

fr

)
(17)

where fn is the AC voltage frequency calculated in the previous disturbance cycle. It can be expressed
as follows:

fn =
∆θOFF(y=n)

2πTc
(18)

3.2. Cause of the Non-Detection Zone

Figure 5 shows the change of θ0 and θ0
′ in the condition where the disturbance tends to increase

the current frequency. The inverter gets disconnected from the grid at time t0. According to the
principle of ZCC, when θ0

′ reaches 0 and θ0 is less than 0, θ0
′ does not stop increasing until θ0 reaches

0. After t0, θ0 is the phase angle of the AC voltage and θ0
′ is the phase angle of the AC current.

In Figure 5a, the local load is inductive. θ0 is ahead of θ0
′. It is impossible that θ0

′ is 0 while θ0 is less
than 0. Therefore, θ0

′ will not be corrected at the zero-crossing time. In the area that y is 1, θ0 changes
suddenly and Bp is 1. According to (13), ∆θOFF(y=1) is larger than ∆θ. It means that the calculated
frequency of the AC voltage increases. In the areas that y is larger than 1, Bp is always 0. According
to (16), ∆θOFF(y=n+1) is always larger than ∆θOFF(y=n). It means that the frequency disturbance would
be accumulated. The islanding can be quickly detected in a few disturbance cycles. The NDZ will
not occur.
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where φload(y=x) can be expressed as 
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In Figure 5b, the local load is capacitive. In the area that y is 1, θ0 changes suddenly and Bp is
1. The frequency of the AC current is f 0 + ∆f 0. According to (13), it is possible that ∆θOFF(y=1) = ∆θ.
Thus, the calculated AC voltage frequency in this disturbance cycle is still the grid frequency f 0. In the
area that y is 2, the frequency of the AC current is still f 0 + ∆f 0. Bp is 0. According to (16), ∆θOFF(y=2)
is larger than ∆θOFF(y=1). The calculated AC voltage frequency in this disturbance cycle is f 0 + ∆f 0.
If the frequency is still in the allowed range, the inverter keeps on working. In the area that y is 3,
the frequency of the AC current f 3 is f 0 + 2∆f 0. The change value of θ0 from π to −π is 2π. The effect
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of this change is not sudden. Therefore, Bp is 0. ∆θOFF(y=3) is larger than ∆θOFF(y=2). In the area that y is
4, θ0

′ is corrected by ZCC. Bp is 1. According to (16), ∆θOFF(y=4) is less than ∆θOFF(y=3). The difference
between them is |ϕload(y=4)/k|. Furthermore, the decrease of θ0 in the area that y is 4 is larger than
the area that y is 1. f 3 is larger than f 0. According to (15) and (17), ϕload(y=4) is larger than ϕload(y=1).
It is possible that ∆θOFF(y=4) is the same as ∆θ; i.e., the disturbance accumulation would be offset by
the lagging of the AC voltage phase angle. In the next zero-crossing time, the same condition would
happen again and the islanding would not be detected.

Considering the common situation, in the area that y is x, ∆θOFF(y=x) is the same as ∆θ. In the
process of y = 1 to y = x, Bp is 1 in the conditions that y respectively is 1 and x. In the other areas, Bp is 0.
According to (16), the cumulative calculation of ∆θOFF(y=x) can be expressed as follows:

∆θOFF(y=x−1) = θinitial +
ϕload(y=1)

k
+ 2π∆ f0Tc(x− 2) (19)

∆θOFF(y=x) = ∆θOFF(y=x−1) + 2π∆ f0Tc +
ϕload(y=x)

k
= ∆θ = 2π f0Tc (20)

where ϕload(y=x) can be expressed as

ϕload(y=x) = arctanQRLC(
2πTc fr

∆θOFF(y=x−1) + 2πTc∆ f0
−

∆θOFF(y=x−1) + 2πTc∆ f0

2πTc fr
) (21)

The requirement of the NDZ is that the cumulative disturbance cannot exceed the allowed
range. In the process of y = 1 to y = x, the disturbance has been accumulated x − 2 times. Therefore,
the requirement of x is

x− 2 <
f0max − f0min

∆ f0
(22)

Another requirement of x is that the AC current phased angle should be corrected by the ZCC,
which can be expressed as follows:

2πkTc

x

∑
n=1

fn > 2π (23)

Then, (22) and (23) can be combined and simplified as follows: x < 2 + f0max− f0min
∆ f0

x >
∆ f0−2 f0+

√
(2 f0−∆ f0)

2−8∆ f0
2+8∆ f0/Tck

2∆ f0

(24)

The left term should be less than the right term. As a result, if the NDZ occurs, the range of the
disturbance ∆f 0 can be expressed as follows: ∆ f0 <

−g f−
√

g f
2−64 f0( f0max− f0min)

16

∆ f0 >
−g f +
√

g f
2−64 f0( f0max− f0min)

16

(25)

where gf can be expressed as follows:

g f = 3( f0max − f0min) + 8 f0 + 4/Tck (26)

According to the standard GBT 15945-2008, f 0max is 50.5 Hz and f 0min is 49.5 Hz. To improve the
detection speed, kTc should be shorter than T0. The switching frequency is 5 kHz. Thus, k should be
less than 100. In this paper, k is 20, f 0 is 50 Hz, and Tc is 1/5000 s. According to (25), if the NDZ occurs,
∆f 0 should be less than 0.167 Hz or larger than 74.45 Hz.
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If ∆f 0 is 0.1 Hz, according to (24), the range of x is 4.97 to 12. Islanding is more likely to happen
when the difference between ∆θOFF(y=x) and ∆θ is less. In this condition, ∆σ is 0, w is k, and x is the
minimum integer, which is 5. Thus, the NDZ can be achieved, which is the shadow area in Figure 6.
Similarly, in conditions where the disturbance tends to decrease the current frequency—when the local
load is inductive—the NDZ would occur.
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Figure 6. The non-detection zone (NDZ) of the islanding detection method.

4. Elimination of the Non-Detection Zone

According to the above analysis, to eliminate the NDZ, the range of ∆f 0 can be set as follows: ∆ f0 <
−g f +
√

g f
2−64 f0( f0max− f0min)

16

∆ f0 >
−g f−
√

g f
2−64 f0( f0max− f0min)

16

(27)

With the mentioned parameters, if ∆f 0 is 0.2 Hz, the NDZ can be avoided. However, the larger
∆f 0 is, the higher the current distortion is. For solving the problem, the NDZ elimination method has
been proposed. The change of θ0 with and without the elimination method is shown in Figure 7.

Energies 2018, 11, x FOR PEER REVIEW  10 of 16 

 

4. Elimination of the Non-Detection Zone 

According to the above analysis, to eliminate the NDZ, the range of Δf0 can be set as follows: 

2

0 0max 0min

0

2

0 0max 0min

0

64 ( )

16

64 ( )

16

f f

f f

g g f f f
f

g g f f f
f

 − + − −
 



− − − −
 


 (27) 

With the mentioned parameters, if Δf0 is 0.2 Hz, the NDZ can be avoided. However, the larger 

Δf0 is, the higher the current distortion is. For solving the problem, the NDZ elimination method has 

been proposed. The change of θ0 with and without the elimination method is shown in Figure 7. 

The AC voltage phase difference between the two adjacent switching cycles is calculated every 

switching cycle. The allowed range is [2πTcf0min, 2πTcf0max]. If it exceeds the allowed range, i would be 

cleared to 0. If i increases to k, the average value of Δθ is calculated. According to (1), the voltage 

frequency can be achieved. With this method, the voltage frequency can be the same as the current 

frequency. Thus, the NDZ can be eliminated. The essence of this method is to avoid the areas in which 

Bp is 1. Figure 7 corresponds to the area where y is 4, which is mentioned in Figure 5b. θ0 has a sudden 

change in this area. Δθn+1′ is the AC voltage phase difference between the two adjacent switching 

cycles when i is n. It is less than 2πTcf0min. With the NDZ elimination method, i would be cleared to 0. 

As a result, the shadow area can be avoided. The calculated AC voltage frequency will not decrease 

by the sudden change of the phase angle. 

t

t

y=4

Bp=1

i=n-1

…     …
i=k

…
i=ni=1

i=1i=1

Δθn+1'<Δθidea l
i=0

i=n

…     …

…     …
i=k

…     …

Bp=0

θ0

θ0

kTc

kTc

 

Figure 7. The change of θ0 with and without the NDZ elimination method. 

Similarly, in the condition where the disturbance tends to decrease the current frequency, when 

Δθn+1′ is larger than 2πTcf0max, i is cleared to 0 and the NDZ can be eliminated. 

5. Simulation and Experimental Verification 

An 18 kVA three-phase inverter was established based on MATLAB/Simulink. The grid is 220 

V/380 V/50 Hz. The switching frequency is 5 kHz.  

Figure 8 shows the simulation results with the inductive load. The frequency disturbance is 0.5 

Hz. It tends to increase the current frequency. The parameters of the RLC load are 8 Ω, 0.5 mH, and 

10 mF. The resonant frequency of it is 71.2 Hz, and k is 20. 

Figure 7. The change of θ0 with and without the NDZ elimination method.

The AC voltage phase difference between the two adjacent switching cycles is calculated every
switching cycle. The allowed range is [2πTcf 0min, 2πTcf 0max]. If it exceeds the allowed range, i would
be cleared to 0. If i increases to k, the average value of ∆θ is calculated. According to (1), the voltage
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frequency can be achieved. With this method, the voltage frequency can be the same as the current
frequency. Thus, the NDZ can be eliminated. The essence of this method is to avoid the areas in which
Bp is 1. Figure 7 corresponds to the area where y is 4, which is mentioned in Figure 5b. θ0 has a sudden
change in this area. ∆θn+1

′ is the AC voltage phase difference between the two adjacent switching
cycles when i is n. It is less than 2πTcf 0min. With the NDZ elimination method, i would be cleared to 0.
As a result, the shadow area can be avoided. The calculated AC voltage frequency will not decrease by
the sudden change of the phase angle.

Similarly, in the condition where the disturbance tends to decrease the current frequency, when
∆θn+1

′ is larger than 2πTcf 0max, i is cleared to 0 and the NDZ can be eliminated.

5. Simulation and Experimental Verification

An 18 kVA three-phase inverter was established based on MATLAB/Simulink. The grid is
220 V/380 V/50 Hz. The switching frequency is 5 kHz.

Figure 8 shows the simulation results with the inductive load. The frequency disturbance is
0.5 Hz. It tends to increase the current frequency. The parameters of the RLC load are 8 Ω, 0.5 mH,
and 10 mF. The resonant frequency of it is 71.2 Hz, and k is 20.Energies 2018, 11, x FOR PEER REVIEW  11 of 16 
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Figure 8. The simulation results with the inductive load.

The waveforms from top to bottom are the AC voltage and current, the real frequency of the
AC voltage, the calculation frequency of the AC voltage, the reference of the current frequency,
and the off-grid signal, respectively. The inverter becomes disconnected from the grid at the time
0.05 s. Because the load is inductive, the disturbance will aggravate the frequency variation after the
inverter is disconnected from the grid. According to the analysis, Figure 5a, and the Formula (16), the
calculation frequency increases quickly. The islanding can be detected in a few disturbance cycles and
the NDZ will not occur. The off-grid signal changes to 0 when the calculation frequency exceeds the
allowed range. The inverter stops working.

Figure 9 shows the simulation results with the capacitive load. The parameters of the RLC load
are 8 Ω, 1.03 mH, and 10 mF. The resonant frequency of it is 49.6 Hz. The quality factor of the load
is 25. According to the theoretical analysis, NDZ will not occur when the frequency disturbance is
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0.5 Hz. Therefore, the disturbance is 0.1 Hz. The waveforms from top to bottom are the AC voltage and
current, the real frequency of the AC voltage, the calculation frequency of the AC voltage, the reference
of the current frequency, and the off-grid signal, respectively. The inverter becomes disconnected from
the grid at the time 0.05 s. The calculated frequency in the area that y = n is just the real frequency in
the area that y = n − 1. In the area that y is 5, ZCC happens and the reference of the current frequency
in the next disturbance cycle would decrease. The islanding happens, which is shown in Figure 9a.
In Figure 9b, the NDZ estimation method is applied. The shadow area in Figure 9b is the cause of the
NDZ. By detecting the phase angle change and clearing the counter, the shadow area can be avoided,
and the islanding can be detected.Energies 2018, 11, x FOR PEER REVIEW  12 of 16 
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Figure 9. The simulation results with the capacitive load. (a) Without the NDZ estimation method. (b)
With the NDZ estimation method.

A principle prototype is established. The parameters are the same as that of the simulation.
Figure 10 shows the connection mode of the inverter system.
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Figure 11 shows the experimental results with the inductive load. The frequency disturbance is
0.1 Hz. The parameters of the RLC load are the same as that of Figure 8. The waveforms respectively
are the AC current and voltage. The inverter becomes disconnected from the grid at time t0. Because
the load is inductive, the disturbance will aggravate the frequency variation after the inverter is
disconnected from the grid. The islanding can be quickly detected. At this time, the inverter stops
working and the reliability of the system is guaranteed. The result is consistent with the simulation
result that is shown in Figure 8.
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Figure 11. The experimental results with the inductive load.

Figure 12 shows the experimental results with the capacitive load. The frequency disturbance
is 0.1 Hz. The parameters of the RLC load are the same as that of Figure 9. The islanding cannot be
detected without the NDZ estimation method. In Figure 9b, the NDZ estimation method is added and
the islanding can be detected quickly. The result is consistent with the simulation result that is shown
in Figure 9.
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Figure 13 shows the experimental results when the inverter is connected to the grid. In Figure 13a,
the waveforms are the AC voltage, the disturbed phase angle, and the AC current, respectively.
The disturbance is 0.1 Hz. When the phase angle crosses zero, the corresponding current waveform
remains for a short time. Figure 13b shows the harmonic spectrum of the AC voltage and current.
The filter with the inductance-capacitance- inductance structure, which is defined as LCL filter,
is applied and their parameters are 0.9 mH, 1.5 mH, and 20 µF, respectively. In phase a, the Total
Harmonic Distortion (THD) of the current is 3.8%. It can be seen that the current harmonic distortion
is low when the inverter is working normally, which satisfies the requirement of the grid connection.
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Table 1 shows the phase angles and THDs of the three-phase current when the inverter is connected
to the grid. In phases b and c, the THDs are 4.7% and 4.8%, respectively. They are both in the
allowed range.

Table 1. The phase angles and THDs of the three-phase current.

Parameters iag ibg icg

Phase Angle/◦ −3.0 237.5 117.5
THD/% 3.8 4.7 4.8

Figure 14 shows the change of the three-phase THDs with different frequency disturbances.
The higher the frequency disturbance, the higher are the THDs. With the proposed method,
the distortion of phase a is less than that of the other phases.
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Table 2 shows the response speed of the proposed detection method with different load conditions.
It can be seen that the islanding can be quickly detected.

Table 2. The response speed with different load conditions.

No. R/Ω L/mH C/mF Response Speed/s

1 8 0.5 10 0.006
2 8 1.01 10 0.012
3 8 1.02 10 0.015
4 8 1.03 10 0.028
5 8 1.1 10 0.009

6. Conclusions

This paper proposes an improved AFD method with NDZ elimination, which can be used in the
three-phase inverter system based on digital control. The calculated voltage frequency is updated
every disturbance cycle and the disturbance can be a small value with the NDZ elimination method.
The current distortion is low when the inverter works normally. The proposed method is sensitive and
it has a higher detection speed. Furthermore, the disturbance only needs to be added to the phase angle
in the proposed method instead of adding disturbances to all of the three phases; thus, the control
system can be simplified. Compared to the impedance estimation-based methods, false judgment is
less likely to happen.
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