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Abstract: The double-layer diverging combustion chamber (DLDC chamber) aims to improve the
fuel–air mixing formation and promote in-cylinder air utilization by changing fuel spray spreading
characteristics. In order to investigate how the DLDC chamber profile and injection parameters
affect the fuel spray spreading, visualization of fuel injection and impingement tests were carried
out on two different DLDC chambers with different fuel injection parameters. The visualization test
results showed that double-layer fuel spray spreading was obtained in the two DLDC chambers
and the peripheral top clearance of each chamber was utilized efficiently. The DLDC chamber
with a 50% upper layer volume provided a larger fuel spray distribution region after the start of
injection. The DLDC chamber with a 70% upper layer volume obtained a larger fuel spray distribution
region with better top clearance utilization at the later stage of injection. The injection parameters
mentioned in this research showed significant effects on the fuel spray spreading in the DLDC
chamber. Increasing the injection pressure provided a larger fuel spray distribution area at the
beginning of injection. Decreasing the nozzle hole diameter had a positive influence on obtaining
a larger fuel spray distribution. Advancing the injection timing enabled the enlarging of the fuel
distribution region.

Keywords: diesel engine; double-layer diverging combustion chamber; fuel spray; visualization test

1. Introduction

Since the fossil energy shortages and air pollution have become increasingly serious in recent years,
a series of brake-specific fuel consumption (BSFC) standards and strict emission control regulations
have been released for diesel engines [1–3]. Decreasing diesel engine BSFC and harmful emissions is a
great challenge.

Su et al. [4] investigated how chamber wall and injection parameters affected spray in a constant
volume bomb by the shadowgraph method. Fuel impingement is the key point in balancing the
fuel–air mixing and rich fuel spray distribution. Katsura et al. [5] investigated the effects of ambient
conditions and proposed an experimental equation for the height and radius of the impinging spray.
This research points out that the fuel jet is divided into the main jet region and wall jet region after the
fuel is impinged to a flat wall. Montajir et al. [6,7] researched the effects of diesel chamber geometry
and the in-cylinder reverse squish on the fuel spray behavior in an optical engine with a square
chamber by the shadowgraph method. The results show that a larger injection angle provides longer
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floor jets with less fuel outside the chamber, and the re-entrant chamber with a round lip and bottom
corner makes the fuel distribution better. Many other investigations [8–15], such as into injection
strategies, nozzle structures, fuel properties, chamber structures and in-cylinder flow fields, were
carried out. In brief, these investigations focused on fuel spray, air motion, and chamber profile and
their interactions. One of the results is that optimizing spray and combustion processes by designing
combustion chambers and matching chamber–spray–charge motion is one of the major measures to
reduce BSFC and harmful emissions.

Hence, the combustion chamber geometry obviously affects the fuel spray spreading and
fuel–air mixing processes. Furthermore, changing the chamber profile does not cause additional
manufacturing costs. Therefore, optimizing the combustion chamber profile is a high-efficiency and
low-cost method to improve diesel engine performance. In the past decades, many new kinds of
diesel engine chambers have been proposed. Some of them are developed based on the re-entrant
chamber; these chambers employ round lips and squish pips to enlarge the fuel spray distribution
and provide high turbulence [16,17]. Doosan [18], Toyota [19], Ricardo [20] and Ford [21] changed the
re-entrant chamber’s round lip into a tapered lip or a stepped lip and set a declining surface around
the re-entrant entrance. Benz [22] and Mazda [23] moved the re-entrant chamber round lips downward
and obtained stepped bowl chambers. These chambers present good in-cylinder air utilization with
small peripheral top clearance volumes. Meanwhile, the fuel adhesion on the piston top surface is
restrained by changing the reverse squish. Therefore, BSFC and harmful emissions, especially soot and
CO, are decreased [24,25]. Some other chambers are developed based on theω chamber, such as the
double swirl combustion system (DSCS) chamber [26] and the bump chamber [27]. These chambers
are focused on optimizing the fuel–wall impinging and minimizing fuel piling on the cavity wall to
accelerate the fuel–air mixing rate.

The extant studies indicate the necessity of the optimization of the chamber profile and fuel–wall
impinging. Therefore, the double-layer diverging combustion chamber (DLDC chamber) [28] has been
designed to utilize the entirety of the in-cylinder air and enlarge the fuel spray distribution with less
fuel piling and a high fuel–air mixing rate [29]. Figure 1 is the basic schematic diagram of the DLDC
chamber. The narrow ring located in the middle of the cavity side wall is named as the impinging
circular surface, and the other ring located at the lower edge of the impinging circular surface is
named as the fuel stripping surface. These two rings form the impinging platform, which divides
the chamber cavity into the upper layer and the lower layer. The fuel spray target is the impinging
platform. Figure 2 shows the profile comparison of the DLDC chamber, ω chamber and re-entrant
chamber. Among these three chambers, the DLDC chamber has the largest opening diameter on the
piston top surface; it provides the smallest peripheral top clearance volume and the highest in-cylinder
air utilization index (κ-factor) [30]. The DLDC chamber provides the smallest cavity throat diameter;
this provides the most rapid fuel impingement on the chamber cavity wall, and the fuel adhesion
on the cavity wall can be largely restrained according to references [29,31]. In this paper, the major
objective is to find out the influence of a chamber profile with different injection parameters on the
fuel spray spreading process in the DLDC chamber by a visualization method.
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accumulator. The maximum injection pressure of the fuel injection system is 160 MPa. The 
high-speed photographing system is composed of a high-speed camera, a lens and an illuminator. 
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Figure 2. Profile comparison of different chambers.

2. Experimental Setup and Method

Two different DLDC chambers were employed in this visualization test. These chambers were
used in a single-cylinder diesel engine whose cylinder bore was 135 mm, displacement was 2.15 L,
compression ratio was 16.5 and rated power was 14.7 kW. Two solenoid-valve injectors with multi-hole
nozzles were applied in this diesel engine; the nozzles types were 8 × 150◦ × Φ0.16 mm and 7 × 150◦

× Φ0.18 mm (nozzle hole number × fuel spray cone angle × nozzle hole diameter). Figure 3 shows
the profiles of these two DLDC chambers. In this figure, the shadow part is called the upper layer
volume, and the ratio of the upper layer volume to the piston cavity volume is defined as the P factor.
These two chambers have the same volumes of 105 mL. The type I DLDC chamber has a larger cavity
throat diameter of 77 mm, and its P factor is 50%, while the type II DLDC chamber has a smaller throat
diameter of 71 mm, and its P factor is 70%.
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Figure 3. Profiles of the two DLDC chambers. (a) Profile of type I DLDC chamber; (b) profile of type II
DLDC chamber.

The shadowgraph method [32] was applied in this research, which is widely used as a tool
for flow visualization testing in heat transfer and fluid mechanics [33,34]. The spray visualization
measurement apparatuses consist of a constant volume chamber (CVC), a fuel injection system,
a high-speed photographing system and a synchronous control system. Figure 4 shows the schematic
diagram of these apparatuses. Table 1 lists these visualization measurement apparatus specifications.
There are four observing windows arranged on the CVC side wall. The fuel injection system consists
of a high-pressure common-rail pipe, a solenoid-valve fuel injector and a pressure accumulator.
The maximum injection pressure of the fuel injection system is 160 MPa. The high-speed photographing
system is composed of a high-speed camera, a lens and an illuminator. The synchronous control system
comprises CompactRIO data measurement apparatuses including the control modules. The control
logic and running mode of the synchronous control system shown in Figure 5 is established with
LabVIEW. A detailed description of the experimental setup can be found in reference [29].
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Table 1. Visualization measurement apparatus specifications.

Apparatus Type

Constant volume chamber (CVC) Maximum pressure 10 MPa
Maximum temperature 1000 K

Solenoid-valve fuel injector Liaoyang Xinfeng NCI3.1052

Fuel pressure generator HIP USA

High-speed camera FASTCAM SA-Z by Photron Co.

Lens NIKON AF-S VR 70-300mm f/4.5-5.6G IF-ED

Illuminator SIGMA LS-LHA

Synchronous control system NI Compact RIO/NI 9075, NI 9751, NI 9401
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Figure 5. Control logic and running mode of the synchronous control system.

During the visualization test, the fuel spray was injected to the impinging block, which is a
two-dimensional model employing the chamber profile characteristics and illuminated by the parallel
light of the illuminator from one side of the impinging block. Two solenoid-valve injectors equipped
with single-hole nozzles were employed in this research. The nozzle hole diameters are Φ0.16 mm and
Φ0.18 mm respectively, which represented a hole in an eight-hole nozzle and in a seven-hole nozzle
applied in the real diesel engine, respectively. The angular relationship between the impinging block
and the nozzle hole and the nozzle hole position were set as equal to the real engine multi-hole nozzle
cone angle. Figure 6 shows the schematic diagram of the relative positions between the spray axis
and the piston position at different injection timings. Figure 7 shows the spatial relationship of the
solenoid-valve injector, the illuminator and the impinging block, which is a two-dimensional model
employing the chamber profile characteristics. Figure 8 shows the installation of the impinging block
and the solenoid-valve injector in the CVC.
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The medium load and full load frequently used in the real engine were selected for this
visualization test. These two loads were represented by injection pulse and injection pressure. In order
to distinguish the fuel spray spreading with different injection timing obviously and confirm the
influence of injection timing on the fuel spray spreading process, a 15 ◦CA BTDC (crank angle before
top dead center) and 5 ◦CA BTDC were selected, which are the two end injection timings in the real
diesel engine at the medium load and full load. Table 2 lists the piston displacements at different crank
angles around the top dead center; the displacement variation is very small. Therefore, the injection
timing was represented by the piston position in this visualization test. The detailed parameters of fuel,
nozzles, injection timings, injection pressures and injection pulses are listed in Table 3. The operation
modes for these visualization tests are listed in Table 4. All the data listed in Tables 3 and 4 are set
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according to the real diesel engine bench test results. The fuel mass of the Φ0.16 mm single-hole nozzle
was 1/8th that of the eight-hole nozzle, and the fuel mass of the Φ0.18 mm single-hole nozzle was
1/7th that of the seven-hole nozzle in the real diesel engine.

Table 2. Piston displacement at different crank angles.

Crank Angle/◦CA 0 5 10 15

Displacement/mm 0 0.36 1.45 3.26

Table 3. Injection conditions and configurations for visualization testing.

Parameter Parameter Value

Fuel type
Chinese Standard #0 diesel [35],

density 860 kg/m3, kinetic viscosity 40 Pa·s @ 20 ◦C,
low calorific value, 42.5 MJ/kg

Single-hole nozzle diameter Φ0.16 mm, Φ0.18 mm

Piston position/ambient pressure 5 ◦CA BTDC/3.4 MPa, 15 ◦CA BTDC/2.7 MPa

Injection pressure 110 MPa, 150 MPa

Injection pulse Φ0.16 mm medium load: 1.13 ms/110 MPa, 0.79 ms/150 MPa;
full load: 0.95 ms/150 MPa

Φ0.18 mm medium load: 1 ms/150 MPa;
full load: 1.19 ms/150 MPa

Table 4. Parameter values of operation modes.

Operation
Parameter Value

Load Level Nozzle Diameter Injection Pressure Injection Timing

Mode A Medium load Φ0.16 mm 110 MPa, 150 MPa 5 ◦CA BTDC
Mode B Medium load Φ0.16 mm, Φ0.18 mm 150 MPa 5 ◦CA BTDC
Mode C Full load Φ0.16 mm, Φ0.18 mm 150 MPa 15 ◦CA BTDC

The ambient gas in the CVC was nitrogen, the ambient temperature was set at 303 K, and the
ambient pressures were set at 2.7 MPa and 3.4 MPa, which were approximate to the in-cylinder
pressures of the real diesel engine at 15 ◦CA BTDC and 5 ◦CA BTDC, respectively. The frame rate of
the high-speed camera was set at 20,000 fps, the aperture was set at 10.3 and the exposure time was set
at 1/20,409 s. The photo resolution was 872 × 752. The brightness and contrast of the photos were
adjusted to distinguish the details of the fuel spray distribution. MATLAB was applied to translate the
photos into black–white binary images to calculate the fuel spray distribution area. In order to find out
the influence of the chamber profile with different injection parameters on the fuel spray distribution
exactly, the fuel spray distribution area and the fuel spray distribution ratio excluded the free fuel
spray—the fuel spray between the nozzle and the impinging block. The fuel spray distribution ratio
was the ratio of the fuel spray distribution area to the upper layer and top clearance cross-sectional
area or the lower layer cross-sectional area.

3. Results and Discussion

3.1. Influence of Injection Pressure and Chamber Profile

Figure 9 shows the comparison of the fuel spray distributions between the two DLDC chambers
on Mode A. The impinging platform split the fuel spray into the two different layers. The fuel spray
in the lower layer of the type I DLDC chamber was stripped away from the cavity wall by the fuel
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stripping surface at 0.8 ms ASOI (after the start of injection) with 110 MPa injection pressure, and
the fuel spray in the upper layer of the type II DLDC chamber was stripped away from the upper
layer’s bottom by the impinging circular surface at 0.8 ms ASOI with the two injection pressures.
These phenomena suggest that both the impinging circular surface and the fuel stripping surface can
strip the fuel spray away from the cavity wall, and this is good for strengthening the air entrainment.
The fuel spray spreading in the top region of the type II DLDC chamber was more obvious than in
the type I DLDC chamber at 2.0 ms ASOI with the two injection pressures, because its larger opening
diameter on the piston top surface led to a smaller peripheral top clearance volume. This indicates
that a larger upper layer volume with a larger opening diameter on the piston top surface is better at
utilizing the air in the chamber top clearance.
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Figure 9. The comparison of fuel spray distributions between the two DLDC chambers with medium
load, Φ0.16 mm nozzle, different injection pressures and 5 ◦CA BTDC injection timing of Mode A.

Figure 10 shows the fuel spray distribution comparison of the two chambers at 1.4 ms ASOI with
different brightness and contrast in Mode A. The rich fuel spray distribution regions in the peripheral
top clearance and around the cavity wall of the type I DLDC chamber became more obvious with
150 MPa injection pressure. The rich fuel spray distribution region around the upper layer bottom of
the type II DLDC chamber was more obvious with 150 MPa injection pressure. These phenomena
suggest that a higher injection pressure increases the peripheral top clearance utilization and provides
a larger fuel spray distribution in a short period.
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Figure 10. The comparison of fuel spray distributions at 1.4 ms ASOI (after start of injection) under
different brightness and contrast with medium load, Φ0.16 mm nozzle, different injection pressures
and 5 ◦CA BTDC injection timing of Mode A.

Figure 11 shows the comparison of the fuel spray distribution areas between the two DLDC
chambers in Mode A. Increasing the injection pressure enlarged the fuel spray distribution area
significantly after the start of injection. However, the fuel spray distribution areas in the two chambers
with 110 MPa injection pressure became larger at the later stage of injection. Furthermore, the fuel



Energies 2018, 11, 2343 8 of 16

spray distribution area of the type I DLDC chamber with 150 MPa injection pressure was decreased
obviously after 1.6 ms ASOI. This was because the higher injection pressure shortened the injection
pulse and injected more fuel at the beginning of injection, while lower injection pressure provided
a longer injection period. The type I DLDC chamber provided a larger fuel spray distribution area
than the type II DLDC chamber with the same injection pressure after the start of injection, while
the situations were reversed at the later stage of injection. These phenomena indicate that the DLDC
chamber with a 50% upper layer volume can provide a larger fuel spray distribution area after the
start of injection and its chamber profile limits the fuel spray distribution at the later stage of injection,
while the DLDC chamber with a 70% upper layer volume provides a larger fuel spray distribution
area with a higher in-cylinder air utilization, which increases the time of the fuel spray.
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Mode A.

Figure 12 shows the fuel spray distribution ratios of different layers at different times in Mode
A. The upper layer and top clearance distribution ratio of the type I DLDC chamber was only higher
than its lower layer distribution ratio at 2.0 ms ASOI. The upper layer and top clearance distribution
ratio of the type II DLDC chamber was the highest with the same injection pressure and the same time.
These phenomena suggest that the DLDC chamber with a larger upper layer volume utilizes the top
clearance better.
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3.2. Influence of Nozzle Hole Diameter and Chamber Profile

Figure 13 shows the comparison of fuel spray distributions between the two DLDC chambers
in Mode B. The type I DLDC chamber with the Φ0.18 mm nozzle provided a slightly longer fuel
spray spreading distance in its upper layer than that achieved with the Φ0.16 mm nozzle at 0.8 ms
ASOI, while the fuel spray was more obvious in its upper layer with the Φ0.16 mm nozzle at 1.4 ms
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ASOI and 2.0 ms ASOI. The fuel spray was restrained slightly in the type I DLDC chamber lower
layer with the Φ0.18 mm nozzle. There was no obvious difference between the fuel spray spreading
distances in the upper layer of the type II DLDC chamber with different nozzles: the fuel spray
spreading in its lower layer was restrained at 1.4 ms and 2.0 ms ASOI when the Φ0.18 mm nozzle was
employed. These phenomena suggest that the DLDC chamber with a 70% upper layer volume is better
for encouraging the fuel spray spreading in its upper layer with different nozzles, and smaller hole
diameter nozzles provide a better fuel spray spreading for the DLDC chamber.Energies 2018, 11, x FOR PEER REVIEW  9 of 16 
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better for the fuel spray to obtain a larger distribution region in the DLDC chamber. With the same 
nozzle, the type I DLDC chamber provided a larger fuel spray distribution area than the type II 
DLDC chamber after the start of injection, while the type II DLDC chamber provided a larger fuel 
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Figure 13. The comparison of fuel spray distributions between the two DLDC chambers with medium
load, different nozzles, 150 MPa injection pressure and 5 ◦CA BTDC injection timing of Mode B.

Figure 14 shows the fuel spray comparison of the two chambers at 1.4 ms ASOI with different
brightness and contrast in Mode B. The rich fuel spray distribution regions around the upper layer
bottoms of the two DLDC chambers with the Φ0.18 mm nozzle were larger than those with the
Φ0.16 mm nozzle, and there was no significant difference in the rich fuel spray distribution region of
each DLDC chamber’s lower layer with different nozzles, while the fuel spray distribution regions
of the two chambers with the Φ0.16 mm nozzle were larger than those with the Φ0.18 mm nozzle,
especially in the upper layers. These phenomena suggest that smaller hole diameter nozzles provide a
more homogeneous fuel spray distribution for the DLDC chamber.
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Figure 14. The comparison of fuel spray distributions at 1.4 ms ASOI under different brightness and
contrast with medium load, different nozzles, 150 MPa injection pressure and 5 ◦CA BTDC injection
timing of Mode B.

Figure 15 shows the comparison of fuel spray distribution areas between the two DLDC chambers
in Mode B. The fuel spray distribution areas of these cases increased to their maximal values and then
decreased. The Φ0.16 mm nozzle provided a larger fuel spray distribution area than the Φ0.18 mm
nozzle in each DLDC chamber. This indicates that smaller hole diameter nozzles are better for the fuel
spray to obtain a larger distribution region in the DLDC chamber. With the same nozzle, the type I
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DLDC chamber provided a larger fuel spray distribution area than the type II DLDC chamber after the
start of injection, while the type II DLDC chamber provided a larger fuel spray distribution area at the
later stage of injection. These phenomena indicate that the DLDC chamber with a 50% upper layer
volume can provide a larger fuel spray distribution region at the beginning of the injection, while the
DLDC chamber with a 70% upper layer volume provides a larger fuel spray distribution area at the
later stage of injection.Energies 2018, 11, x FOR PEER REVIEW  10 of 16 
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medium load, different nozzles, 150 MPa injection pressure and 5 ◦CA BTDC injection timing of
Mode B.

Figure 16 shows the fuel spray distribution ratios of different layers at different times in Mode
B. The lower layer distribution ratio of the type I DLDC chamber was higher than that of the type II
DLDC chamber, and the upper layer and top clearance distribution ratio of the type II DLDC chamber
were higher than those of the type I DLDC chamber. These phenomena suggest that a larger space is
better for fuel spray distribution. The fuel spray distribution ratios of the two chambers were decreased
when the Φ0.18 mm nozzle was employed. This indicates that smaller hole diameter nozzles are more
helpful for the DLDC chamber to improve the in-cylinder air utilization.
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3.3. Influence of Nozzle Hole Diameter and Injection Timing (Piston Position)

Figure 17 shows the comparison of fuel spray distributions between the two DLDC chambers
in Mode C. The fuel spray in the type I DLDC chamber peripheral top clearance was closer to the
cylinder wall with the Φ0.18 mm nozzle than that with the Φ0.16 mm nozzle at 1.4 ms and 2.0 ms
ASOI. The fuel spray distribution in the type II DLDC chamber upper layer with the Φ0.16 mm nozzle
was more obvious than that with the Φ0.18 mm nozzle at 1.4 ms and 2.0 ms ASOI. These phenomena
suggest that a larger hole diameter with earlier injection timing makes the fuel spray flow towards
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the chamber wall more quickly; this is good for the DLDC chamber with a 50% upper layer volume
to utilize the peripheral top clearance well. However, this is not good for the larger upper layer of
the DLDC chamber with a 70% upper layer volume. When the nozzle was adjusted to the Φ0.18 mm
nozzle, the fuel spray spreading in each chamber lower layer was not as apparent as with the Φ0.16 mm
nozzle at 0.8 ms and 2.0 ms ASOI. This indicates that a smaller hole diameter nozzle is better for the
fuel spray distribution in the lower layer of the DLDC chamber.Energies 2018, 11, x FOR PEER REVIEW  11 of 16 
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layer volume. 
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Figure 19 shows the comparison of fuel spray distribution areas between the two DLDC 
chambers in Mode C. The type II DLDC chamber with a Ф0.16 mm nozzle provided the largest fuel 
spray distribution area, and with the Ф0.18 mm nozzle it provided the smallest fuel spray 
distribution area before 2.0 ms ASOI, which meant that smaller hole diameter nozzle was better for 
the type II DLDC chamber to obtain a larger fuel spray distribution region. The fuel spray 
distribution differences of different nozzles in the type I DLDC chamber were much smaller than 
those in the type II DLDC chamber. These phenomena indicate that the nozzle hole diameter has a 
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Figure 17. The comparison of fuel spray distributions between the two DLDC chambers with full load,
different nozzles, 150 injection pressure and 15 ◦CA BTDC injection timing of Mode C.

Figure 18 shows the fuel spray distribution ratios of different layers at 1.4 ms ASOI under
different brightness and contrast in Mode C. There was no significant difference in the rich fuel spray
distribution regions around the cavity wall of the type I DLDC chamber with different nozzles, while
the rich fuel spray distribution region in the type II DLDC chamber upper layer was concentrated with
the Φ0.18 mm nozzle. These phenomena suggest that the nozzle hole diameter has a more obvious
influence on the fuel spray distribution in the DLDC chamber with a 70% upper layer volume.
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Figure 18. The comparison of fuel spray distributions at 1.4 ms ASOI under different brightness and
contrast with full load, different nozzles, 150 injection pressure and 15 ◦CA BTDC injection timing of
Mode C.

Figure 19 shows the comparison of fuel spray distribution areas between the two DLDC chambers
in Mode C. The type II DLDC chamber with a Φ0.16 mm nozzle provided the largest fuel spray
distribution area, and with the Φ0.18 mm nozzle it provided the smallest fuel spray distribution area
before 2.0 ms ASOI, which meant that smaller hole diameter nozzle was better for the type II DLDC
chamber to obtain a larger fuel spray distribution region. The fuel spray distribution differences of
different nozzles in the type I DLDC chamber were much smaller than those in the type II DLDC
chamber. These phenomena indicate that the nozzle hole diameter has a more obvious influence on
the fuel spray distribution in the DLDC chamber with a 70% upper layer volume.
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Figure 19. The comparison of fuel spray distribution areas between the two DLDC chambers with full
load, different nozzles, 150 injection pressure and 15 ◦CA BTDC injection timing of Mode C.

Figure 20 shows the fuel spray distribution ratios of different layers at different times in Mode C.
The upper layer and top clearance distribution ratio of the type I DLDC chamber was smaller than its
lower layer, except for 2.0 ms ASOI with the Φ0.16 mm nozzle, which meant that the top clearance
utilization of the type I DLDC chamber should be promoted. The upper layer and top clearance
distribution ratio of the type II DLDC chamber with a Φ0.16 mm nozzle was higher than it was with
the Φ0.18 mm nozzle. The type II DLDC chamber lower layer ratio was increased with a Φ0.16 mm
nozzle, while this ratio was decreased with a Φ0.18 mm nozzle from 1.4 ms ASOI to 2.0 ms ASOI.
These phenomena suggest that a smaller hole diameter nozzle is better for the DLDC chamber with a
70% upper layer volume for enlarging the fuel spray distribution region.
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150 injection pressure and 15 ◦CA BTDC injection timing of Mode C.

Figure 21 shows the comparison of fuel spray distribution areas between the two DLDC chambers
with different injection timings and a Φ0.18 mm nozzle. The type I DLDC chamber obtained a larger
fuel spray distribution area with 15 ◦CA BTDC than it did with 5 ◦CA BTDC after 1.1 ms ASOI, and
the type II DLDC chamber with 15 ◦CA BTDC obtained a larger fuel spray distribution area than it did
with 5 ◦CA BTDC during the whole process. These results might be caused by the interaction of the
increased fuel mass and the larger top clearance volume. These meant that advancing the injection
timing changed the fuel spray target by decreasing the impinging platform position and increasing the
top clearance volume, and more fuel flowed into the upper layer and the larger top clearance volume.
The larger upper layer volume of the type II DLDC chamber showed a greater advantage for enlarging
the fuel spray distribution under these conditions. These phenomena suggest that advancing injection
timing is good for enlarging fuel spray distribution in the DLDC chamber.
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Figure 21. The comparison of fuel spray distribution areas between the two DLDC chambers with a
Φ0.18 mm nozzle, 150 MPa injection pressure and different injection timings.

Figure 22 shows the fuel spray distribution ratios of different layers with different injection
timings and a Φ0.18 mm nozzle. The lower layer distribution ratios of the two chambers with 15 ◦CA
BTDC were higher than those with 5 ◦CA BTDC. These might be caused by the interaction of the
injection timing and the injection mass. The upper layer and top clearance distribution ratios of the
two chambers with 15 ◦CA BTDC were smaller than those with 5 ◦CA BTDC. These meant that the
fuel spray target made more fuel flow into the upper layer and the top clearance, but some space of the
top clearance and the upper layer were still not filled by the fuel spray. These phenomena suggest that
advancing injection timing can improve the fuel spray distribution; however, the larger top clearance
is not utilized very well.
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4. Conclusions

In this paper, the fuel spray impingement and spreading characteristics of two DLDC chambers
were tested by a visualization method in the CVC. According to the visualization test results,
the following conclusions are made:

(1) Both DLDC chambers can split the fuel spray into two layers under different injection conditions
by their impinging platforms and utilize the peripheral top clearances well. The impinging
circular surface and the fuel stripping surface can strip the fuel spray away from the piston
cavity wall;

(2) The DLDC chamber with a 50% upper layer volume can obtain a larger fuel spray distribution
region at the beginning of injection. The DLDC chamber with a 70% upper layer volume can
obtain a larger fuel spray distribution region with better top clearance utilization, but it needs a
longer distribution time;
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(3) Injection parameters show significant effects on the fuel spray spreading in the two DLDC
chambers. Increasing the injection pressure provides a larger fuel spray distribution area and
encourages the rich fuel spray distribution after the start of injection, while a lower injection
pressure provides a larger fuel spray distribution at the later stage of injection. A smaller hole
diameter nozzle leads to a larger and more homogeneous fuel spray distribution in the DLDC
chamber. The nozzle hole diameter shows a more obvious influence on the fuel spray distribution
in the DLDC chamber with a 70% upper layer volume. Advancing the injection timing shows a
positive influence on obtaining a larger fuel spray distribution in the DLDC chamber; however,
the larger top clearance is not fully utilized.
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Nomenclature

DLDC chamber Double-layer diverging combustion chamber
BSFC Brake specific fuel consumption
DSCS chamber Double swirl combustion system chamber
CVC Constant volume chamber
Φ Nozzle hole diameter
P Percentage of the upper layer volume to the chamber bowl volume
◦CA Crank angle
BTDC Before top dead center
ASOI After the start of injection
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