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Abstract: Increasing penetration levels of asynchronous wind turbine generators (WTG) reduce the
ability of the power system to maintain adequate frequency responses. WTG with the installation
of battery energy storage systems (BESS) as wind-storage systems (WSS), not only reduce the
intermittency but also provide a frequency response. Meanwhile, many studies indicate that using
the dynamic droop coefficient of WSS in primary frequency control (PFC) based on the prediction
values, is an effective way to enable the performance of WSS similar to conventional synchronous
generators. This paper proposes a PFC for WSS with a prediction-based droop coefficient (PDC)
according to the re-bid process under real-time spot market rules. Specifically, WSS update the values
of the reference power and droop coefficient discretely at every bidding interval using near-term
wind power and frequency prediction, which enables WSS to be more dispatchable in the view
of transmission system operators (TSOs). Also, the accurate prediction method in the proposed
PDC-PFC achieves the optimal arrangement of power from WTG and BESS in PFC. Finally, promising
simulation results for a hybrid power system show the efficacy of the proposed PDC-PFC for WSS
under different operating conditions.

Keywords: primary frequency control; wind storage system; droop coefficient; Kalman filter;
spot market

1. Introduction

The use of wind energy has grown rapidly in the past decade, as wind turbine generators (WTG)
are fuel-free and emissions-free [1]. Dramatically different from conventional synchronous generators,
WTG output relies significantly on random wind speed, and the rotor speed of dominant type WTG is
decoupled from the system frequency with no inertial capability [2]. These factors limit the further
penetration of WTG in the power system. Also, primary frequency control (PFC) for synchronous
generators is inappropriate for WTG. Thus, WTG with PFC abilities have become a topic of interest in
the WTG research field.

Initially, WTG had no PFC function, due to the maximum power point tracking (MPPT) operation.
Authors such as [3–5] have proposed the concept of virtual inertia, in which kinetic energy stored in
the spinning rotor of WTG is released depending on frequency deviations. However, the accessible
kinetic energy is limited, and may lead to secondary frequency drops in some cases. On the other
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hand, the concept of de-loaded operation for WTG in PFC was proposed in [4,6–10], which preserves
the generating margin by keeping the WTG in a de-loaded operational state. In detail, shifting the
maximum power point to the right sub-optimal point by overspeed rotor control is often adopted in
the de-loaded control [6,7]. Pitch angle control is another example of de-loaded operation when wind
speed is high [8,9]. Meanwhile, coordinated overspeed rotor control and pitch angle control [4,10]
enable WTG to perform better in PFC. For example, the authors in [4] propose a PFC strategy by
controlling the generator torque and the pitch angle using the real-time reference values, but without
exploring a way to obtain them. Although promising, the de-loaded operation of WTG results in the
loss of green energy due to a sub-optimal operation point, and makes it difficult for WTG to avoid
unexpected issues in the longer term unless some dramatic steps are taken in this direction.

Realizing these dangers, several grid operators have embarked on storage technologies.
For example, large scale energy storage systems (ESS) are being installed in California and a similar
proposal has been made by the Australian Energy Market Operator (AEMO) [11]. Meanwhile, ESS have
been utilized in PFC for WTG in the research field, such as [12–14]. This research shows that generally,
with the support of ESS, wind-storage systems (WSS) become more reliable in PFC, but the large
capacity of ESS cannot be avoided as WTG operate on the maximum power point. Thus, to combine
the advantages of both sides, de-loaded WTG operation with the assistance of ESS has become the
typical way for WSS in load frequency control (LFC), as mentioned in [15,16]. Also, the authors
in [17] suggested a PFC method using variable droop coefficients, which reduces the stress on WTG
and battery energy storage systems (BESS), especially when wind speed is low. Similarly, variable
droop coefficients were applied in [18–20] to enable WSS to undertake the proper frequency regulation
responsibility according to their real-time capability. In particular, a dynamic schedule and control
strategy for WSS in LFC is proposed in [21], and a simple wind power prediction method is used
to improve the frequency regulation performance of WSS. The authors in [22] also mention that
short-term forecasting is the key to supporting unit commitment and economic dispatch.

Currently, the best way to dispatch WSS in the PFC has not been agreed upon by transmission
system operators (TSOs) worldwide. Whether WSS is dispatch-friendly from the perspective of TSOs
has become a major issue, which can be addressed with two improvements.

On the one hand, a proper and accurate prediction method must be selected. In previous research,
the models that have been popularly applied to wind power prediction can be classified into three
categories: physical models, statistical models and hybrid models. Specifically, physical methods,
such as numerical weather prediction (NWP), are appropriate for long-term predictions [23]. Statistical
models, including linear models and non-linear models are trained using historical data and usually
outperform NWP models in short-term forecasting. Linear models such as auto regressive (AR),
autoregressive moving average (ARMA), and autoregressive integrated moving average (ARIMA)
are most widely used in [24–26]. Those methods perform well especially in short-term predictions.
Furthermore, artificial neutral network (ANN) as a kind of most popular non-linear method in wind
power prediction is shown in [27–29]. Typically, the back propagation neural network (BPNN),
as shown in [27], is used to approximate the time series method, but is highly reliant on experience.
Similarly, [28] proposes a lower upper bound estimation (LUBE) method to overcome the instability
of neural network because it gives more freedom and flexibility. Also, [29] develops a forecasting
engine wavelet ANN with a stochastic search technique for training the forecasting engine, capturing
highly non-linear patterns in the data. Lastly, hybrid models combine different prediction methods.
For example, a hybrid multi-model methodology is developed in [30], which combines multiple
different machine learning algorithms including ANN, support vector machine (SVM), gradient
boosting machine, and random forest, is relevant for different time horizons in short-term predictions.
As shown in [31], another hybrid model is proposed for very short-term wind power ensemble
forecasting when NWP is unavailable. Additionally, Kalman filter (KF) as a post-processing method can
be combined with prediction methods to improve the performance. Weather research and forecasting
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with KF are combined as a prediction system in [32] for short-term wind power prediction. In [33],
KF is used to support an SVM to improve the accurate of short-term wind speed prediction.

On the other hand, from the perspective of TSOs, taking full advantage of the current electricity
market rules is an effective way to make WTG more dispatchable, which prevents WTG with real-time
variable droop coefficients. Therefore, to make WSS more dispatchable, a PFC with prediction-based
droop coefficient (PDC) for a utility-scale WSS is proposed in this paper. Specifically, the possible
WTG output power and the trend of frequency deviations are forecasted, then this evidence is used
to update the equivalent droop coefficient (RWSS) of WSS every short time intervals. Various signals
such as historical frequency ( f H), WTG output (PH

WTG) data and real-time system frequency deviations
(∆ f ), wind speed (vW) are considered to ensure the WSS provide power output (PWSS) following
∆ f continuously. Additionally, compared with the control strategy in [21], two improvements are
highlighted in PDC-PFC. First of all, WSS are more easily dispatched by the TSO, as the droop
coefficients of WSS stay constant in every bidding interval. Meanwhile, KF-AR is selected as an
accurate and proper method to make wind power prediction because AR performs well when the
weather conditions are stable, especially in very short-term prediction. Also, the state matrix and
measurement matrix form of KF are easier to combine with AR. In addition, although AR reflects
less characteristics of WTG historical data than ANN, with the support of BESS that drawback can
be addressed.

In summary, the rest of the paper is organized as follows: the existing re-bids mechanism in the
real-time spot market is introduced in Section 2, and the proposed PDC-PFC for WSS is introduced in
Section 3. Section 4 provides the simulation results followed by the conclusions in Section 5.

2. Bidding and Operation Mechanism of WSS under Spot Market Rules

A typical hybrid power system includes thermal generators and WSS, physically connected to the
grid and dispatched by the TSO. To guarantee the stability of the system, the TSO dispatches generators
according to their bids of supply and supply reserve. Thus, PFC ability is one of the compulsory
considerations when the TSO dispatches the renewables.

Generally, the spot market bidding mechanism is very similar in many countries, including
Australia’s National Electricity Market. The responsibility of the bidding mechanism is to balance
the electricity demand and supply by dispatching the generated power through the spot market [34].
In detail, the complete bidding mechanism includes the daily bid process, the re-bid process, and the
default bid process [35]. The daily bid process is for both conventional generators and WTG submitting
their bids day-ahead. The re-bid process allows generators to update their bids according to the
real-time conditions, to match the supply and demand more instantaneously. Normally, generators
are allowed to submit their re-bids up until approximately five minutes prior to the TSO without
changing the offer price [35]. Authors have noticed that WTG are price-insensitive generators
but suffer noticeable errors in the daily bids [36], which can be effectively reduced in the re-bid
process. Additionally, the default bid process involves standing bids that apply when no daily bid has
been made. In summary, the re-bid process reduces the prediction period effectively, benefiting the
prediction accuracy.

The operation loop of WSS in the re-bid process proposed in this paper is expressed in Figure 1.
For example, WSS tend to be dispatched in the operational period between 4:05 p.m. and 4:10 p.m.
WSS should submit their re-bids (Pref

WSS and RWSS) 5~10 min earlier, and the TSO can re-schedule
the generators’ bids in the market pool during the scheduling period and decide the generation
combinations at 4:05 p.m. Before, WSS also spare 2~3 min as a prediction period to decide the re-bid
submission. The time taken from the prediction period to the operation period is defined as the
prediction time interval (PTI) and is typically 15 min.
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3. Primary Frequency Control with Prediction-Based Droop Coefficient for WSS

Dramatically different from conventional generators, RWSS is set by considering specific cases
highly related to wind speed, instead of the inherent characteristics. PDC-PFC is utilized to determine
the constant bidding power (Pre f

WSS) and droop coefficient (RWSS) of WSS for every bidding interval,
which enables WSS to follow the market commitment and be more dispatchable.

The dynamic model of a typical hybrid power system control area can be summarized as in
Figure 3, in which the same type of generators are equivalent to one [37] with parameters as in
Appendix A. Specifically, thermal generators contribute system inertia M with fixed droop coefficient
RT , and WSS contribute no system inertia with RWSS decided by PDC-PFC. Variables in s domain have
relationships as in Equations (1)–(5), and the transfer function of ∆ f and ∆PL is shown in Equation (6).
Furthermore, the rate of change of the frequency (RoCoF), which is irrelevant to RWSS indicates the
slope of the frequency drop at the beginning of the load disturbance as in Equation (7), and RWSS can
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finally increase the steady state of the frequency value, as in Equation (8). Thus, proper PFC from WSS
can mitigate the frequency nadir, after load disturbances.Energies 2018, 11, x FOR PEER REVIEW  5 of 19 
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∆PWSS (s) = −∆ f (s)· 1
RWSS

·GWSS(s) (1)

∆PT(s) = −∆ f (s)· 1
RT
·GT(s) (2)

∆PT(s) + ∆PWSS(s)− ∆PL(s) =
1

(M·s + D)
∆ f (s) (3)

GT(s) =
Fhp·Trh·s + 1(

Tg·s + 1
)
(Tch·s + 1)(Trh·s + 1)

(4)

GWSS(s) =
1

(TWSS·s + 1)
(5)

∆ f (s)
∆PL(s)

=
−1

M·s + D + 1
RT
·GT(s) + 1

RWSS
·GWSS(s)

(6)

d f
dt

= lim
s→∞

s·s·TF(s)·∆PL(s) =
−∆PL(s)

M
(7)

∆ fSS = lim
s→0

s·TF(s)·∆PL(s)
−∆PL(s)

D + 1
RT

+ 1
RWSS

(8)

where, ∆PWSS(s) and ∆PT(s) are frequency response from WSS and thermal generators in PFC;
RWSS and RT are the droop coefficients of WSS and thermal generators; ∆PL(s) represents the load
disturbance and ∆ f (s) is the system frequency deviation; M and D are equivalent system inertia and
damping; GWSS(s) and GT(s) are transfer functions of WSS and thermal generators; d f /dt and ∆ fSS
are RoCoF and steady state of the frequency deviation after PFC.

Obviously, smaller RWSS is beneficial to the frequency stability, but WSS cannot guarantee enough
reserved power in real time. PDC-PFC considers the uncertainty of WTG output, the limitation of the
BESS capacity, and always decides the proper RWSS for every short-time interval.

Last, the complete PDC-PFC as shown in Figure 2, contains the “Prediction-based RWSS decision
block” and “WSS primary frequency control block”. In detail, the “KF modified auto regressive (KF-AR)
prediction” part is used to forecast the WTG output power and the trend in frequency deviation for
the coming WSS operation period, and the “RWSS decision” part decides the de-loaded level and
the re-bid parameters for TSOs in KF modified auto regressive prediction. Meanwhile, in the WSS
primary frequency control block, the “WTG operation” part and “BESS operation” part execute the
control signals from the “Comparison control part” responding to the frequency regulation and wind
speed fluctuations by absorbing and releasing power from the WTG and BESS. Generally, the inputs of
PDC-PFC include historical frequency ( f H), WTG output power (PH

WTG), real-time wind speed (vW)
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from the WTG, frequency deviations (∆ f ), and the output is PWSS, which is the sum of Pre f
WSS and

∆PWSS consisting of PW and PB.

3.1. Prediction-Based RWSS Decision Block

The Prediction-based RWSS decision block consists of two parts, the Kalman filter modified auto
regressive (KF-AR) prediction part and the RWSS decision part, which operate in sequence. According
to the time-scale in Figure 1, PTI covers the “WSS prediction period”, “TSO scheduling period” and
WSS operation period”, and a reasonable PTI is defined as 15 min.

3.1.1. KF-AR Prediction Part

Prediction of WTG output power PKF
W is taken as an example to show the process of KF-AR

Prediction, which has been fully summarized in Figure 2. First, historical WTG output power PH
W was

collected as training data in Equation (9). The training data of WTG is from real-time recording and
local memory without the process of data collection. Meanwhile, a 2~3 min prediction period was
reserved for KF-AR prediction, as shown in Figure 1.

Furthermore, the AR model is a kind of a time-series analysis model that is regarded as a
forecasting method for short-time intervals (such as 15 min in this paper). The boundary between
AR, ARMA and ARIMA is not rigid, and the AR prediction process may use either of those methods.
In detail, the historical values must pass the augmented Dickey–Fuller test (ADF = 1), because only
stable data can be applied in the time-series analysis model. If PH

W fails to pass the ADF test (ADF = 0),
a differential process is applied. As shown in Equation (10), p terms of historical data with coefficients
ϕ(i) are used. Specifically, the Akaike information criterion (AIC) and least square method are used
to calculate p and ϕ(i) respectively. However, AR prediction is normally with some forecast errors,
which are further modified by KF as per Equations (11)–(16). In detail, p terms of ϕ(i) compose
the state transmission matrix F as in Equation (11), and the forecasted WTG output PW(t + 1|t) is
calculated by Equation (12), which is similar to Equation (10). Last, PW(t + 1|t) is further modified to
be PKF

W (t + 1|t + 1) by Equation (13) as the output.

PH
W =

[
PH

W.1 . . . PH
W.k . . . PH

W.n

]
, k ∈ [1, n] (9)

PAR
W =

p

∑
i=1

ϕ(i)·PH
W(k− i), k ∈ [1, n], p ≤ 15 (10)

F =
[

ϕ(1) . . . ϕ(p)
]
, p ≤ 15 (11)

PW(t + 1|t ) = F
[

PH
W.n−p . . . PH

W.n

]T
(12)

PKF
W (t + 1|t + 1) = PW(t + 1|t) + P∆ (13)

P∆ = Kg(t + 1 )[PM(t + 1)−HPW(t + 1|t)] (14)

Kg(t + 1 ) = C(t + 1|t)HT
[
HC(t + 1|t)HT + R(t + 1)

]−1
(15)

C(t + 1|t ) = FC(t/t)FT + Q(t) (16)

C(t + 1|t + 1 ) = C(t + 1|t)
[
I−Kg(t + 1)H

]
(17)

where, PH
W is a matrix consisting of recorded WTG output power PH

W.k for the last prediction time
interval; n represents the quantity of the historical data; F is the state transmission matrix; PW(t + 1|t) is
the forecasted value of t + 1 without the KF modification; PKF

W (t + 1|t + 1) is the optimal value of WTG
output by KF prediction; P∆ is used to link Equations (12) and (13); PM(t + 1) is with the measurement
values based on forecasted wind speed; C(t + 1|t) co-variances matrix of forecast error from t to t + 1;
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C(t|t) and C(t + 1|t + 1) are co-variances state estimation at t and t + 1; H is the observation matrix
(=1); Kg(t + 1) represents Kalman gain; Q(t) and R(t + 1) are co-variance matrix of process noise and
measurement noise, and both values are based on experience.

Similarly, the same prediction process is used for f KF
max, which is another important parameter to

calculate RWSS. As the frequency data is often recorded every 4 s in current power systems, historical
frequency data (fH) for the past several minutes is shown as Equation (18). Meanwhile, as PFC of WSS
focuses more on the under-frequency situation, the maximum under frequency excursion (fH

max) in
every minute is chosen as per Equation (19). Finally, KF-AR prediction is applied to obtain fKF

max for PTI.

fH =


f1,1 f1,2 · · · f1,15

f2,1 f2,2 · · · f2,15
...

fm,1

...
fm,2

. . .
· · ·

...
fm,15

 (18)

fH
max = MIN

(
f H [i, :]

)
i = 1, 2 . . . m (19)

where, fH is a matrix including 15 min frequency value, and each row represents a one-minute time
interval; MIN is a function used to calculate the minimum frequency values.

3.1.2. RWSS Decision Part

RWSS is determined by PKF
W and fKF

max in the RWSS decision part. Referring to conventional
generators, the aim of WSS is 5% of supply power Pre f

WSS as a supply reserve power for PFC. However,

the randomness of wind speed, Pre f
WSS is not a constant value. Thus, based on human understanding,

when the fluctuation of the WTG output power is high, WSS should bid a smaller supply power Pre f
WSS

with more reserved power for WSS in PFC and vice versa.
In detail, the standard deviation of PKF

W indicates the fluctuation of WTG output, and the
corresponding DW is calculated in Equation (20), which is further used to calculate proper Pre f

WSS
as per Equation (21). Last, RWSS is obtained in Equation (22), and the state of the BESS is also involved.
In this way, Pre f

WSS and RWSS keep updating every bidding interval, which enables WSS to be dispatched
and to follow their commitment in PFC more easily.

DW = KW × σ
(

PKF
W

)
(20)

Pbid
WSS = Pre f

WSS = µ
(

PKF
W

)
× (1− DW) (21)

1
RWSS

= KB
5%× Pbid

WSS

µ
(

fKF
max

) (22)

KB =
Num(DI < DIth )

Num(DI)
(23)

where, DW is the de-loaded level of WTG, KW is the coefficient which shows the influences of WTG
output power fluctuations on DW ; Pbid

WSS is the proposed re-bid power of WSS; RWSS is the reciprocal
value of the droop coefficient; DI is the principle of ”shallow cycle operation profile” of batteries;
DIth is its threshold; KB shows the proportion of the moments that BESS operates on shallow cycle
operation profile mode. Additionally, σ and µ are functions to calculate the standard deviation and
the average values; Num is a counter. Positively, RWSS keeps constant within every WSS operation
period in Figure 1. From the perspective of TSOs, WSS can be dispatched similar to a conventional
generator in that particular period. Also, by considering the characteristics of WTG, RWSS varies every
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prediction time interval to remain optimized. Thus, WSS can always be regarded as conventional
generators by PDC-PFC, and easier to dispatch.

In conclusion, the prediction-based RWSS decision block decides Pre f
WSS and RWSS of WSS for the

next operation period through two processes. In particular, KF is applied to improve the accuracy of
the prediction. Also, RWSS is a convincing value, because of the consideration of the states of WTG,
BESS and system frequency deviations.

3.2. WSS Primary Frequency Control Block

Once Pre f
WSS and RWSS is confirmed by the TSO, the WSS Primary Frequency Control Block is

applied to make sure the WSS ensures the reference power Pre f
WSS and respond to frequency deviation

∆PWSS by adjusting the output of WTG (PW) and BESS (PB). The complete WSS Primary Frequency
Control Block is comprised of the “WTG operation” part, “BESS operation” part and “Comparison
control” part, as already shown in Figure 2.

3.2.1. Comparison Control

Comparison control is the connection between the KF-based RWSS decision block and the WSS
primary frequency control block. As shown in Figure 2, the demand signals (Pre f

WSS and ∆PWSS) from

the grid and available power (PMPPT
W and Pmax

B ) are compared to decide the Pre f
W and Pre f

B signals.
Taking the under-frequency situation ∆PWSS ≥ 0 as an example, three scenarios may happen in

real-time operation. Details of the WTG and BESS energy management are shown in (24)–(26).

• Scenario #1: WTG with its reserved power supply the demand, if Pre f
WSS + ∆PWSS.t ≤ PMPPT

W.t .{
Pre f

W.t = Pre f
WSS + ∆Pre f

W.t
Pre f

B.t = 0
(24)

• Scenario #2: WTG with its reserved power and BESS supply the demand, if Pre f
WSS + ∆PWSS ≤

PMPPT
W + Pmax

B . {
Pre f

W.t = PMPPT
W.t

Pre f
B.t = Pre f

WSS + ∆Pre f
W.t − PMPPT

W.t

(25)

• Scenario #3: WTG with its reserved power and BESS supply all their power, but cannot meet the

demand, if Pre f
W + ∆PWSS ≥ PMPPT

W + Pmax
B . The chance of Scenario #3 is extremely low in the

proposed PDC-PFC, because of the dynamic Pre f
WSS and RWSS.{

Pre f
W.t = PMPPT

W
Pre f

B.t = Pmax
B

(26)

3.2.2. WTG Operation

MPPT is the basics of WTG operation, and the maximum output power of WTG is directly related
to wind speed (vW). Moreover, DFIG as the dominant type of WTG, can operate on de-loaded mode,
in which rotor speed can be accelerated up to 130% [1] to make WTG output power less than the
maximum power point. Thus, WTG operation aims to achieve Pre f

W by releasing and absorbing power
in a typical range, when the fluctuations of wind speed and frequency deviations happen. Particularly,
the de-load level of WTG varied in real time, according to the predicted weather conditions and
frequency performance in Equation (20), as a fixed de-load level results in either energy spilled or
shortage. In addition, the dynamic model of WTG, including MPPT and de-loaded operation are
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shown in Figure 2, and the values of the parameters are listed in Appendix A. More details of the
de-loaded operation block can be referred to in [21].

3.2.3. BESS Operation

Because of the randomness of wind speed, BESS are compulsory for dealing with unexpected
issues to fulfil the bid commitment. As long as state of charge (SoC) of BESS is within the typical range,
such as [0.2, 0.8], BESS respond to Pre f

B . Otherwise, BESS are switched off.
To extend BESS operation life and to avoid the occurrence of Scenario #3, the principle of shallow

cycle operation profile for BESS is proposed in the BESS operation. The shallow cycle operation profile
index is expressed in Equation (27), and SoC can be further expressed as a function of Pc

B and Pd
B in

Equation (28).

DIB.t =
(

Pc
B.t

2 + Pd
B.t

2)
+ CB

2
(

SoCt − SoC0
)2

(27)

SoCt = SoCt−1 −

(
ηcPc

B.t +
Pd

B.t
ηd

)
·∆t

CB
(28)

where DIB.t is the shallow cycle operation profile index at moment t; Pc
B.t and Pd

B.t are the charging and
discharging power of BESS, and either Pc

B.t and Pd
B.t equals 0 at every t moment; SoCt is the state of

charge of BESS at t moment; SoC0 is the reference value; ηc = 0.9 and ηd = 0.95 are the charging and
discharging efficiency of BESS, respectively.

Figure 4 is a more intuitive way to show the principle of shallow cycle operation profile. The light
colored area represents the moment BESS belongs to the shallow cycle operation profile mode, and the
warm colored area represents the opposite mode. The proportion of the moments of DIB.t in the light
colored area of all DIB.t in the operation period affects the RWSS in Equation (22), which avoids the
overuse of BESS.
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In conclusion, PDC-PFC is achieved by the combination of KF-AR prediction and RWSS decision.
In this way, WSS can perform very similarly to conventional generators in PFC. Specifically, Pbid

WSS and
RWSS are carefully chosen in every bidding interval, and the power from WTG and BESS is
well organized.

4. Simulation and Discussion

In the first part of this section, the performance of the proposed prediction-based RWSS decision
block and WSS primary frequency control block are simulated. Also, the efficacy of the proposed
PDC-PFC is investigated and compared with other conventional control strategies.
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4.1. Performance of Prediction-Based RWSS Decision Block

The PTI in Figure 1 is assumed to be 15 min in the simulation by covering three periods of
PDC-PFC. The values of Pre f

WSS and RWSS for the corresponding period is determined by (20)–(22),
which in turn are based on the WTG output PH

W and fH from the past 15 min. Moreover, WTG often
record their output power every minute in practice, n in PH

W equals 15 in (9), and m in fH also equals
15 in (18). The results of the predicted WTG output power and system frequency in PTI #1 is shown
in Tables 1 and 2, respectively. Other combinations of different wind speed situations and frequency
excursions are created to represent typical time intervals and marked as PTI #2 and PTI #3, and the
results are shown in Appendix B in Tables A1–A4.

Based on the process in Figure 2, the terms of AR model p of WTG and frequency excursion
are both decided to be 10, according to the results of the ADF test and AIC algorithm. The least
square method is applied to determine the coefficients of each term, and the transmission matrix F is
obtained. The values of PKF

W and fKF
max are generated by KF-AR prediction, whereas PAR

W and fAR
max are

calculated by AR prediction. Also, the KF-AR prediction values in PTI #1 (dotted black curve) are
compared with the AR prediction values (dotted red curve) and the real values (dotted blue curve) in
Figure 5a,b. Also, the errors between AR prediction, KF-AR prediction and the real values are listed
in the third and fifth columns of Tables 1, 2, and A1–A4. In the comparisons, values of AR error are
larger than KF− AR error in all those six tables. For example, in Table 1, AR error of WTG output in
PTI #1 equals 2.1605, while AR error is 1.5680. In conclusion, KF-AR prediction values are very close
to the real values, and much better than the AR prediction values, especially for the prediction of WTG
output power.
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Finally, according to the analysis of the prediction data listed in Tables 1, 2, and A1–A4,
the parameters of PDC-PFC in three PTI are shown in Table 3. Typically, as the average wind
speed is medium with light fluctuations during PTI #1, the WTG has a 5.25% de-loaded value.
By considering the possible maximum frequency excursion, the droop coefficient is set to be 22.34.
Similarly, the WTG has a high de-loaded level of 19.49% because of heavy wind speed fluctuations
during PTI #2. The corresponding droop coefficient is smaller at 14.45, which means that the WSS
undertake less PFC responsibility, and avoid the unexpected issues. Also, during PTI #3, the WSS
is under normal weather conditions, but the droop coefficient is set to be only 3.9 because of the
large frequency excursion. To sum up, the WSS parameters chosen by PDC-PFC accord with human
understanding, and the rationality of PDC-PFC has been partly proved.
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Table 1. Comparison of KF-AR prediction and AR prediction for WTG output.

PTI #1

PR
W PAR

W AR Error PKF
W KF-AR Error

32.420 32.420 0.000 32.420 0.000
31.176 32.420 1.244 32.420 1.244
29.444 29.972 0.528 31.335 1.891
24.870 27.713 2.843 29.613 4.743
26.202 20.406 −5.796 25.431 −0.771
25.714 27.359 1.645 25.519 −0.195
24.514 25.477 0.963 25.516 1.002
24.026 23.314 −0.712 24.654 0.628
26.513 23.481 −3.032 24.035 −2.478
25.580 28.744 3.164 25.943 0.363
25.492 24.911 −0.581 25.823 0.331
26.380 25.110 −1.270 25.581 −0.799
26.557 27.285 0.728 26.217 −0.340
26.291 27.055 0.764 26.580 0.289
26.335 26.000 −0.335 26.429 0.094

p = 10 AR error = 2.1605 KF− AR error = 1.5680

F = [0.96755, 0.04472, −0.03152, −0.01465, −0.00503, 0.04098, −0.02613, 0.04021, 0.01432, −0.05951]

Table 2. Comparison of KF-AR prediction and AR prediction for frequency prediction.

PTI #1

fR
max fAR

max AR Error fKF
max KF-AR Error

49.827 49.827 0.000 49.827 0.000
49.853 49.827 −0.026 49.827 −0.026
49.888 49.847 −0.041 49.848 −0.040
49.969 49.866 −0.103 49.879 −0.090
49.906 49.918 0.012 49.949 0.043
49.880 49.848 −0.032 49.902 0.022
49.864 49.863 −0.001 49.876 0.012
49.883 49.886 0.003 49.863 −0.020
49.917 49.908 −0.009 49.884 −0.033
49.919 49.910 −0.009 49.912 −0.007
49.959 49.901 −0.058 49.915 −0.044
49.954 49.928 −0.026 49.945 −0.009
49.840 49.933 0.093 49.943 0.103
49.835 49.817 −0.018 49.859 0.024
49.844 49.893 0.049 49.842 −0.002

p = 10 AR error = 0.0445 KF− AR error = 0.0429

F = [−0.21334, 0.54803, 0.54861, 0.29915, 0.096370, 0.10164, 0.04971, 0.06464, 0.15160, 0.18462]

Table 3. Parameters of WSS in PDC-PFC for three PTI.

DW (%) Pref
WSS (MW) 1/RWSS

PTI #1 5.26 25.74 22.34
PTI #2 19.49 52.04 14.45
PTI #3 7.08 44.33 3.9

4.2. Performance of WSS Primary Frequency Control Block

An open-loop control is used to simulate the performance of the WSS primary frequency control
block, as shown in Figure 2. Taking PTI #1 as an example, the target power of WSS is the sum of
Pre f

WSS = 25.74 MW and ∆PWSS = 22.34× ∆ f MW, and the available power is the sum of PMPPT
W and

Prated
B = 2 MW. In particular, PMPPT

W fluctuate in real-time in the same way as the values of PR
W in

Table 1. Meanwhile, two cases as shown in Table 4, are used to verify the control block, by which the
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power output of WSS can achieve the target value. Additionally, BESS are assumed to be totally under
the shallow P-SoC limitation before PTI #1, and KB is equal to 1 in this part.

Table 4. Performance of WSS Primary Frequency Control Block for Two Different Cases.

Case # Content

Case #1 fluctuating vW with no load deviations
Case #2 fluctuating vW with no load deviations

In Figure 6, the black and red lines representing the block can respond to the system demand
Pre f

WSS and ∆Pre f
WSS in those two cases, and the occurrences of the three scenarios are also marked.

At the same time, WTG takes responsibility for the system demand for most of time, because the
blue dotted line as the target value is nearly overlapped by the black (Case #1) and red (Case #2)
lines. Moreover, the output power of WTG and BESS in Case #1 and Case #2 is compared with PMPPT

W

and Prated
B as shown in Figure 7. Although Pre f

WSS is more than PMPPT
W at the beginning of the interval,

BESS compensate for the power shortage, and the system demand is still satisfied. In summary,
PDC-PFC can manage the power of WTG and BESS to mitigate the fluctuations in WTG in Case #1 and
respond to the system frequency deviations in Case #2.
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4.3. Performance of PDC-PFC in Hybrid Power System

The performance of WSS equipped with PDC-PFC was simulated in the dynamic model of a
hybrid power system, as in Figure 3 with parameters in Appendix A, and PDC-PFC was compared
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with two other cases (listed in Table 5). Specifically, the bidding power of two thermal generators Pre f
T1 ,

Pre f
T2 were 200 MW, 50 MW, and WSS Pre f

WSS 25.74 MW in PTI #1, feeding 250 MW demand.
The control performance in those three cases with the same vW fluctuations and load deviations

are shown in Figure 8. Specifically, the frequency deviations in those three cases are shown in Figure 8a,
the contribution of each generator including WSS is shown in Figure 8b, and the output power of
WTG and BESS are shown in Figure 8c. Moreover, as the penetration of WTG replaces equivalent
conventional generator and reduces the effective inertia of the system, Case #3 (blue dotted curve)
has a lower frequency nadir in PFC than Case #2 (green dotted curve). However, the proposed WSS
utilizes its droop coefficient combined with the fast response speed of WTG and BESS increases the
frequency nadir in PFC in Case #1 (black curve). In conclusion, the proposed PDC-PFC in Case #1
demonstrated the best control performance, and WSS have a similar response as that of conventional
coal-based synchronous generators.

Table 5. Comparison of frequency response considering three different cases.

Case # Content

Case #1 System with 25.74 MW WTG with PDC-PFC
Case #2 System includes conventional generators only
Case #3 System includes 25.74 MW WTG without frequency responseEnergies 2018, 11, x FOR PEER REVIEW  13 of 19 
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4.4. Advantages of the Application of PDC-PFC

Further analysis of PDC-PFC is included in this part, and PDC-PFC is compared with several fixed
de-loaded droop coefficients using AR prediction, as shown in Table 6. Also, three operation periods
PTI #1–PTI #3 based on the values from Tables 1, 2, and A1–A4 are used to show the adaptability and
advantages of PDC-PFC. The following results show PDC-PFC enables WSS to operate similarly to
conventional generators with proper combination of Pbid

WSS and RWSS, by considering real wind speed
fluctuations and load deviations.
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The performance of each strategy shown in Table 6 was evaluated in terms of frequency response
with the utilization of WTG and BESS. As the details show in Figure 9a, S#2 (dotted blue curve) worsens
the WSS performance in the frequency response because WSS bid the largest Pbid

WSS by replacing the
equivalent amount of synchronous inertia, leaving the hybrid power system with the least inertia and
WTG reserve with insufficient power for PFC. Meanwhile, WTG and BESS operate on PMPPT

W and Pmax
B

for most of the operation period, as shown in Figure 9b,c. Although the wind energy is fully utilized,
a large part of the BESS capacity is also required with a bad shallow cycle operation profile index,
which affects the sustainable use of BESS.

On the contrary, S#4 (dotted green curve) hash the highest de-loaded level, which leads to the
lowest wind energy penetration as the smallest Pbid

WSS. It is clear the frequency performance (green
curve) is satisfactory, as shown in Figure 9a, similar to S#2 and S#3. However, the highest de-loaded
level with an inappropriate value of Pbid

WSS leads to a huge amount of wind energy spillage and
abandonment to the use of BESS as in Figure 9b,c. Finally, S#3 (dotted red curve) is a relatively better
choice than S#2 and S#4 for WSS in PTI #1, and S#1 (black curve) is the best choice on the basis of more
accurate prediction data.

Table 6. Comparison of frequency response considering three different cases.

PTI Parameters S#1: PDC-PFC S#2: ARP-PFC S#3: ARP-PFC S#4: ARP-PFC

PTI #1
DW (%) 5.26 0 6 12

Pref
WSS (MW) 25.74 26.78 25.17 22.15
1/RWSS 22.34 23.23 21.85 19.23

PTI #2
DW (%) 19.49 0 6 12

Pref
WSS (MW) 52.04 63.89 60.05 52.85
1/RWSS 14.45 17.75 16.68 14.68

PTI #3
DW (%) 7.08 0 6 12

Pref
WSS (MW) 44.33 47.74 43.08 37.91
1/RWSS 3.90 4.20 3.95 3.70

Energies 2018, 11, x FOR PEER REVIEW  14 of 19 

 

𝑷𝑾𝑺𝑺
𝒓𝒆𝒇

 (MW) 52.04 63.89 60.05 52.85 

𝟏/𝑹𝑾𝑺𝑺 14.45 17.75 16.68 14.68 

PTI #3 

𝐷𝑊 (%) 7.08 0 6 12 

𝑷𝑾𝑺𝑺
𝒓𝒆𝒇

 (MW) 44.33 47.74 43.08 37.91 

𝟏/𝑹𝑾𝑺𝑺 3.90 4.20 3.95 3.70 

Δ
f 

(H
z)

Time (s)

S#1 S#2
S#4S#3

Time (s)
(a)

S#1 S#2
S#4S#3P

W
 (

M
W

)

P
B
 (

M
W

)

(b) (c)

S#1 S#2
S#4S#3

Time (s) Time (s)

Figure 9. The control performance of PDC-PFC in three cases: (a) Frequency deviations of the hybrid 

system by four control strategies; (b) Output power of WTG in four strategies; (c) Output power of 

BESS in four strategies. 

Furthermore, to highlight the efficacy of PDC-PFC and its ability to always find the proper 

combination of 𝑃𝑊𝑆𝑆
𝑏𝑖𝑑  and 𝑅𝑊𝑆𝑆, two more PTI were examined, and the results are summarized in Table 

7. The results of Figure 9 are further verified by the concrete data of wind energy spillage and BESS 

capacity requirement in PTI #1. Also, it is obvious in PTI #2, PDC-PFC makes WTG with the largest de-

loaded level, as wind speed fluctuates violently. The frequency performance of S#1 is much better than 

S#2 and S#3 and also better than S#4. Although, S#1 suffers the largest amount of wind energy spillage, 

less BESS capacity is required. Similarly, S#1 has the best control performance according to our 

comprehensive assessments, and balances the spilled wind energy and BESS capacity requirement. In 

conclusion, PDC-PFC can always decide the most suitable value of 𝑃𝑊𝑆𝑆
𝑏𝑖𝑑  and 𝑅𝑊𝑆𝑆 for every short time 

interval according to the real-time conditions by using accurate prediction method. Also, PDC-PFC 

enables WSS to perform similarly to synchronous generators by dispatching WTG and BESS wisely. 

Table 7. Comparison of frequency response considering three different PTI. 

PTI Parameters S#1 S#2 S#3 S#4 

PTI #1 

Δf Performance Best Bad Good Bad 

Spilled Wind Energy (kWh) 26.2 0 75.2 376.5 

Energy from BESS (kWh) 7.80 85.1 1.1 0 

PTI #2 

Δf Performance Best Bad Bad Good 

Spilled Wind Energy (kWh) 47.8 0 24.7 35.5 

Energy from BESS (kWh) 10.4 290.4 104.4 40.8 

PTI #3 

Δf Performance Best Bad Good Bad 

Spilled Wind Energy (kWh) 24.0 0 85.7 240.5 

Energy from BESS (kWh) 5.7 64.4 3.3 1.4 

Figure 9. The control performance of PDC-PFC in three cases: (a) Frequency deviations of the hybrid
system by four control strategies; (b) Output power of WTG in four strategies; (c) Output power of
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Furthermore, to highlight the efficacy of PDC-PFC and its ability to always find the proper
combination of Pbid

WSS and RWSS, two more PTI were examined, and the results are summarized in
Table 7. The results of Figure 9 are further verified by the concrete data of wind energy spillage
and BESS capacity requirement in PTI #1. Also, it is obvious in PTI #2, PDC-PFC makes WTG with
the largest de-loaded level, as wind speed fluctuates violently. The frequency performance of S#1 is
much better than S#2 and S#3 and also better than S#4. Although, S#1 suffers the largest amount of
wind energy spillage, less BESS capacity is required. Similarly, S#1 has the best control performance
according to our comprehensive assessments, and balances the spilled wind energy and BESS capacity
requirement. In conclusion, PDC-PFC can always decide the most suitable value of Pbid

WSS and RWSS for
every short time interval according to the real-time conditions by using accurate prediction method.
Also, PDC-PFC enables WSS to perform similarly to synchronous generators by dispatching WTG and
BESS wisely.

Table 7. Comparison of frequency response considering three different PTI.

PTI Parameters S#1 S#2 S#3 S#4

PTI #1
∆f Performance Best Bad Good Bad

Spilled Wind Energy (kWh) 26.2 0 75.2 376.5
Energy from BESS (kWh) 7.80 85.1 1.1 0

PTI #2
∆f Performance Best Bad Bad Good

Spilled Wind Energy (kWh) 47.8 0 24.7 35.5
Energy from BESS (kWh) 10.4 290.4 104.4 40.8

PTI #3
∆f Performance Best Bad Good Bad

Spilled Wind Energy (kWh) 24.0 0 85.7 240.5
Energy from BESS (kWh) 5.7 64.4 3.3 1.4

5. Conclusions

If future power systems with high levels of renewables are to maintain acceptable levels of
frequency response, all new and existing generators should be asked to contribute to the system
frequency response. The participation of WTG in frequency response, especially in under-frequency
situations is very necessary to ensure system stability. In this paper, PDC-PFC ensures that the
performance of WSS is similar to conventional generators in a short time frame, which makes WSS
more dispatchable from the perspective of TSOs.

Here, two innovations were considered in PDC-PFC. On the one hand, the spot market rule has
been fully considered in PDC-PFC, and thus, from the perspective of TSOs, WSS can be regarded
as conventional generators and are easier to dispatch. In detail, WSS joins the re-bid process of the
spot market with constant Pbid

WSS and RWSS by the prediction-based RWSS decision block. Meanwhile,
as Pbid

WSS and RWSS varies every re-bid interval according to real-time wind speed fluctuations and load
deviations, WSS can always operate on the optimal operational conditions.

On the other hand, an accurate and proper method, KF-AR was used to improve the wind power
prediction. Although AR reflects less characteristics of WTG historical data than ANN, the involvement
of BESS can overcome that drawback. Moreover, AR has stable performance for the short-term
prediction without the aid of experience, and KF further improves the prediction accuracy level.

In summary, with the application of AR-KF in PDC-PFC, WSS can satisfy the system frequency
requirement, avoiding wind energy spillage and the excessive use of BESS in the current spot market
rules. The simulation results show that WSS can guarantee smooth output power and the frequency
response in every PTI under the control of PDC-PFC.
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Abbreviations

ADF Augmented Dickey–Fuller test
AIC Akaike information criterion
AR Auto regressive
ARMA Autoregressive moving average
BPNN Back propagation neural network
KF Kalman filter
MPPT Maximum power point tracking
RoCoF Rate of change of the frequency
PFC Primary frequency control
PTI Prediction time interval
WSS Wind storage systems
AEMO Australian Energy Market Operator
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
BESS Battery energy storage systems
ESS Energy storage systems
LUBE Lower upper bound estimation
NWP Numerical weather prediction
PDC Prediction-based droop coefficient
TSO Transmission system operator
SVM Support vector machine
WTG Wind turbine generators

Appendix A

For Thermal generator: R1 = 0.04; k1 = 0.03; Tg = 0.2; Tch = 0.3; Fhp = 0.3; Trh = 7.
For WTG: Hwt = 5.19; Kpt = 3; Kit = 0.6; Vwt = 1; Tcon = 0.02; Tf = 5; Tp = 0.01; Kpp = 114; Kip = 76; Kpc = 3; Kic = 30;
Kpfreq = 3.5; Kifreq = 1.4; Tpc = 0.05.

Appendix B

Table A1. Comparison of AR prediction and KF-AR for WTG output in PTI #2.

PTI #2

PR
W PAR

W AR Error PKF
W KF-AR Error

86.112 86.112 0.000 86.112 0.000
73.099 86.112 13.013 86.112 13.013
65.372 75.254 9.882 77.129 11.757
54.314 69.202 14.888 69.746 15.432
61.819 59.927 −1.892 60.472 −1.347
54.580 65.397 10.817 62.899 8.319
57.778 58.661 0.883 58.617 0.839
43.478 58.841 15.363 59.230 15.752
40.813 45.497 4.684 49.954 9.141
54.536 42.566 −11.970 44.731 −9.805
72.611 55.479 −17.132 51.877 −20.734
42.234 69.294 27.060 65.349 23.115
45.432 42.533 −2.899 49.628 4.196
43.522 46.618 3.096 47.082 3.560
46.631 43.291 −3.340 45.418 −1.213

p = 8 AR error = 11.6654 KF− AR error = 11.7365

F = [−0.16564, −0.19595, −0.17420, −0.10053, −0.12672, 0.04684, 0.0975, −0.04312]
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Table A2. Comparison of AR prediction and KF-AR for WTG output in PTI #3.

PTI #3

PR
W PAR

W AR Error PKF
W KF-AR Error

48.274 48.274 0 48.274 0
47.297 48.274 0.977 48.274 0.977
46.009 47.047 1.038 47.484 1.475
45.165 46.016 0.851 46.341 1.176
45.743 45.104 −0.630 45.561 −0.182
45.343 45.981 0.638 45.761 0.418
44.943 45.051 0.108 45.424 0.481
45.609 45.332 −0.277 45.068 −0.540
46.631 45.712 −0.919 45.557 −1.074
52.848 46.606 −6.242 46.366 −6.482
50.406 54.365 3.959 51.206 0.800
50.228 47.829 −2.399 50.389 0.161
49.962 52.653 2.690 50.140 0.178
49.517 48.073 −1.444 50.207 0.690
49.828 49.752 −0.076 49.564 −0.264

p = 14 AR error = 2.2245 KF− AR error = 1.8195

F = [0.06716, −0.04129, 0.05665, −0.17665, −0.16173, 0.19796, 0.05614, 0.04070, 0.24075, −0.03954, 0.11655, −0.05894, 0.07230, 0.02357]

Table A3. Comparison of AR prediction and KF-AR for frequency prediction of PTI #2.

PTI #2

fR
max fAR

max AR Error fKF
max KF-AR Error

50.002 50.002 0 50.002 0
49.950 50.002 0.052 50.002 0.052
49.896 49.955 0.059 49.959 0.063
49.851 49.924 0.073 49.910 0.059
49.898 49.893 −0.005 49.868 −0.030
50.014 49.943 −0.071 49.903 −0.110
50.014 50.005 −0.009 49.999 −0.015
49.996 49.958 −0.038 50.004 0.008
50.003 49.946 −0.057 49.983 −0.012
49.978 49.982 0.004 49.990 0.012
49.982 49.985 0.003 49.977 −0.005
49.984 49.987 0.003 49.982 −0.002
49.928 49.970 0.042 49.985 0.057
49.962 49.942 −0.020 49.938 −0.024
49.918 50.009 0.091 49.960 0.042

p = 10 AR error = 0.0445 KF− AR error = 0.0461

F = [0.09677, 0.43163, 0.26816, 0.30061, 0.10312, 0.02442, 0.01091, 0.06579, 0.25277, 0.02630]

Table A4. Comparison of AR prediction and KF-AR for frequency prediction of PTI #3.

PTI #3

fR
max fAR

max AR Error fKF
max KF-AR Error

49.927 49.927 0.000 49.927 0.000
49.860 49.927 0.067 49.927 0.067
49.822 49.872 0.050 49.869 0.047
49.848 49.855 0.007 49.834 −0.014
49.867 49.880 0.013 49.853 −0.014
49.878 49.853 −0.025 49.868 −0.010
49.913 49.858 −0.055 49.876 −0.037
49.891 49.896 0.005 49.902 0.011
49.841 49.866 0.025 49.889 0.048
49.839 49.853 0.014 49.849 0.010
49.873 49.877 0.004 49.844 −0.029
49.931 49.886 −0.045 49.871 −0.060
49.975 49.911 −0.064 49.919 −0.056
49.913 49.935 0.022 49.956 0.043
49.876 49.880 0.004 49.912 0.036

p = 13 AR error = 0.0362 KF− AR error = 0.0347

F = [0.06716, −0.04129, 0.05665, −0.18141, −0.39609, −0.32619, 0.19323, −0.08590, 0.12856, 0.12687, −0.10047, 0.06576, −0.15407]
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