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Abstract: Biogas produced from biomass is carbon neutral. In fact, the carbon feedstock of biomass is
converted into gas phase. Biogas use in high efficient energy systems, such as Solid Oxide Fuel Cells
is a viable choice. One of the most important drawbacks for such systems is related to the interaction
between trace compounds and anode section. Gas cleaning through physical removal mechanisms is
the simplest and cheapest method adopted in the literature. Coupled with this solution, the recovery
of waste materials is an efficient application of the circular economy approach. In this work, a physical
activation process was investigated experimentally for waste-derived materials at a temperature of
700 ◦C. The removal of H2S was considered as the most abundant trace compound. Activated biochar
showed an adsorption capacity comparable to commercial sorbents, while the performance of ashes
are still too poor. An important parameter to be considered is the biogas humidity content that enters
in competition with trace compounds that must be removed.
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1. Introduction

Scientists believed that the Earth’s climate change could be related to the high concentration of
CO2 and other greenhouse gases produced by human activities. How biogas can reduce or mitigate
this problem is a scientific challenge. Biogas produced from biomass is considered to be carbon
neutral, since the carbon feedstock of biomass is converted into gas phase. In other words, atmospheric
carbon (CO2) is captured in a relatively short time. Biogas is a secondary energy carrier and can be
produced from many organic substrates, such as from agricultural sources, sewage sludge and animal
waste [1–6]. In addition to the chemical process, a thermal process (gasification or pyrolysis) can
exploit organic material for biogas production purposes. The European Biomass Organisation for
2020 estimated a production of biogas around 39.5 Mtoe, which corresponds to 10% of EU natural
gas consumption [7]. Biogas can be adopted as a fuel for several energy generators, such as fuel cells,
as well as external and internal combustion engines [8,9]. Alternatively, biogas can be upgraded with
highly engineered systems into biomethane to be injected into the gas grid [10,11]. Among energy
generators, high temperature solid oxide fuel cells have higher electrical efficiency values, high fuel
feeding flexibility, low noise and pollutant emissions [8,12–14]. The most important drawbacks for
such generators is the low tolerability to trace compounds [3,15–22]. Depending on the nature of the
trace compound and its concentration in the gaseous matrix, a gas cleaning section has to be specifically
designed. The most frequently detected trace compounds from Organic Fraction of Municipal Solid
Waste (OFMSW) biogas are sulphurs, carbonyl compounds, carboxylic acids and terpenes [2,4].
Rasi et al. (2011) studied the trace compounds that affect biogas energy users [6]. They mainly
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detected halogens, aromatic and sulphur compounds in landfill gas. In addition, they detected sulphur
compounds, aromatic and siloxane in biogas from the sewage sludge digestion and from waste water
treatment plants [6]. Physical adsorption removal using commercially available activated carbons has
been investigated in several studies [23–26]. Its possible use will be determined by economic evaluation
based on factors such as its performance and its production cost [27]. The high removal performance
of these materials is related to their physical and chemical characteristics. Their specific surface area,
the micropore and mesopore volume, as well as the impregnating agents adopted for their chemical
activations are also important [27–29]. Generally, alkali metals are adopted to improve removal
performance, such as potassium, but also alkaline earth metals, such as calcium and magnesium.
Barelli et al. (2017) showed how the choice of the impregnating agent is important in the removal
of sulphur compounds. In fact, when the carbon is activated with KI and KOH, the role of water
on the adsorption capacity has a positive effect [30]. In Papurello et al. (2016) this effect was not
highlighted due to the absence of such agents and the role of water remained negative [31]. Another
parameter to be considered in literature is the removal of contemporary pollutants. In literature
there are several papers that study the interaction of trace compounds with the sorbent materials,
such as: Aromatic, terpenes and carboxyls with sulphur compounds [25,26,32–35]. Waste materials
recovery is an efficient application of the circular economy approach. This approach reduces waste
and pollutants. Thermo-chemical processes are applied to biomass, as reported in literature using
pyrolysis or gasification systems [36]. Pyrolysis process produces char and oil, with a high potential
for recovering energy [37,38]. Another waste material suitable for the gas cleaning of biogas is wood
ash [39]. Wood ash is an attractive solution due to the low cost of disposal [39]. Ducom et al. (2013)
showed how fly ash from biomass was able to remove some trace compounds from the biogas [40].
Fly ash from wood waste and char have a lower removal capacity for the desulphurisation of biogas
compared to commercially activated carbons [39,41–44]. The waste materials adopted for the purpose
of cleaning biogas require more research, especially on the improvement of their physical characteristics,
such as microporous volume and specific surface area. In this work, a physical activation process is
investigated for SOFC gas requirements. The removal of H2S, considered to be the most abundant
sulphur compound from a simulated biogas mixture, was investigated.

2. Experimental Methods

2.1. Description of the Experimental Setup

The pyrolysis of wood waste produces a biochar that Gruppo RM Impianti srl (Arezzo, Italy)
exploit internally. The reactor adopted is 200 kWe with operating temperature of around 450 ◦C
(construction details reserved). Ashes from wood-chips from local forest were obtained from a boiler
(3.3 MW, Viessman, Allendorf, Germany). The activation of biochar and wood ash was accomplished
using an electric furnace of 500 We (C.I.T.T., Milano, Italy) regulated with a PID controller (Horst, GmbH
Germany). Technical instructions are reported as follows: heat-up ramp fixed at 7 ◦C/min until 700 ◦C,
with a CO2 flow rate of 100 mL/min, see Figure 1a. The physical activation step was carried out
for a period of 60 min under isothermal conditions. The operating temperature for the reactor was
fixed using a furnace regulated by a K-type thermocouple placed in the centered bed. Two additional
thermocouples (K-type, Tersid, Italy) were placed at the outlet and inlet of the bed. Experiments were
accomplished with a Gas Hourly Space Velocity (GHSV) of 66 h−1.

Figure 1b epicts the sorbent material testing set-up. A simulated biogas mixture was accomplished
(CH4/CO2 = 1.5) using gas cylinders (Siad spa, Praxair with mass and liquid flow controllers
(MFC, LFC) (Bronkhorst GmbH, Ruurlo, The Netherlands). A controlled evaporator mixer (CEM) was
adopted to add water to the heated lines with a relative humidity of 30% (RH). A gas mixture prepared
with CO2 and H2S (190 ppm(v)) was used for the removal of trace compounds. The H2S concentration
was fixed at 75.9 ppm(v) and obtained from the dilution with pure CO2, in order to simulate an
average biogas mixture deriving from the anaerobic digestion of organic waste. This concentration is
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representative of a real biogas, as reported in literature [5,44,45]. Biochar and ashes were ground and
sieved before and after the activation process, to obtain a grain size around 400 µm. These sorbent
materials were placed in Teflon tubes with an internal diameter of 4 mm and an L/D ratio around 10.
The removal test was accomplished three times, both for the activated and for the not activated
sorbent materials.
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Figure 1. Experimental set-up: (a) activation test rig, (b) sorbent material testing for VOCs removal.

2.2. Methodology

In order to maintain the correct aspect ratio (~4) between the pellet and reactor diameter, the
sorbents were ground and sieved [46]. This procedure was followed before the activation proces. The
testing sample was selected using metallic sieves in the range 5.4–400 µm. In supplementary material,
the pore distribution of activated carbons and waste-derived materials are reported. To remove residual
gases inside the pores the samples were pre-treated using N2 flow (200 NmL/min) for 30 min at 120
◦C. A gas flow of 200 NmL/min was used for the removal performance testing. Dynamic tests for the
sulphur removal were accomplished for the selected materials at 25 ◦C. Below the adsorption capacity
equation is reported, calculated in terms of mg/g for H2S removal:

Cads =
Qtot·MW·[cin·t1 − (t1 − t0)·0.5]

Vm·m·103 (1)

where:

• t0, is the cleaning service time;
• t1, is the last detection interval, corresponding to initial concentration for H2S of 1%, 10% and

100%;
• Qtot = total gas flow rate (NL/h);
• MW = molecular weight of the trace compound removed (g/mol);
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• Cin = inlet trace compound concentration (ppm(v));
• Vm = molar volume (22.414 NL/mol);
• m = mass of sorbent (g).

Considering the work of Barelli et al. (2016), Equation (1) was adjusted. In fact, the difference
between the rectangle (t1 (h) × Cin (ppm(v))) and the triangle areas (0.5(t1 − t0) (h) × 1 (ppm(v))
approximates the area enclosed by the breakthrough curve and the saturation line (Cout = Cin) [47].
An electrochemical gas sensor (ES, Meccos eTr—Leopold Siegrist GmbH, Lorsch, Germany) was
adopted to measure the H2S concentration. This sensor is able to perform a continuous reading in
the range of 0–200 ppm(v). The accuracy of the sensor reading is 0.5%, while a value of 1% is fixed
for the electrochemical sensor. Flow meter controllers have an accuracy value of 0.1%, related to the
full-scale value.

3. Results and Discussion

Results related to the adsorption capacity were reported below, starting from the characterization
to the sorbent selection considering also the waste-derived materials.

3.1. Sorbent Characterisation—EDS/SEM

The sorbent materials adopted were characterised in terms of their surface area, composition,
micropore volume and morphology structure. The elemental composition measurements were
performed by scanning electron microscopy (SEM) (FEI Inspect, Philips 525 M) coupled with EDS
analysis (SW9100 EDAX). The results are reported in Table 1, nitrogen and hydrogen fractions are not
reported due to the limits of the instrument.

The most abundant compound for biochar samples is carbon followed by oxygen, potassium,
calcium, and magnesium. The activation process does not substantially modify the elemental
composition. A decrease in potassium content with a corresponding increase in calcium content
was recorded. The most abundant compound for the ash samples is oxygen, followed by silicon,
carbon, potassium, calcium, magnesium and aluminium. The activation process does not substantially
change the elemental composition.

Tepper and Richardson et al. (2002) demonstrated how the concentrations of K and Ca are
important for the sulphur compound removal [48,49]. Transition metals are also important for salt
formation with trace compounds.

Table 1. Composition in terms of weight fraction for the materials tested.

Biochar Activated Biochar Ash Activated Ash Commercial
Carbon (RST3)

Commercial
Carbon (Carbox) ZnO

C 77.5 81.8 14.26 14.8 91.1 80.9
O 13.98 16.65 49.29 49.4 5.3 9.01 24.79
Si 23.73 22.2 1.4 0.55
Al 0.60 0.59 1.98 0.96
K 0.93 0.33 9.99 10.75 0.79 0.78
Ca 0.90 1.63 1.3 1.4 0.75 1.65 0.75
Mg 0.24 0.19 0.62 0.64 0.31 1.19
Cl 0.21 0.22 0.33
P 0.81
S 0.59 0.11

Mn 0.41
Fe 1.43
Zn 1.16 72.95

The adsorption isotherms were determined using a Quantachrome Autosorb 1 (Boynton Beach,
FL, USA) using for N2 at 77 K. The specific surface areas were calculated by Langmuir equation in
the relative pressure range of 0.04–0.1. The micropore volumes were determined by means of t-plot
method in the relative pressure range of 0.15–0.3. For the carbon-based materials, the pore size was
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evaluated through the DFT method (Density Functional Theory), using the NLDFT equilibrium model
for slit/cylindrical pores, see Table 2.

Table 2. Surface and volume characteristics for the materials tested.

Biochar Activated Biochar Ash Activated Ash
Commercial

Carbon
(RST3)

Commercial
Carbon

(Carbox)
ZnO

Specific surface area (m2/g) 75 593 0.9 6 1117 1237 35.8
Microporous volume (cm3/g) 0.04 0.26 0.01 0.07 0.3 0.328

Total pore volume (cm3/g) 0.06 0.37 0.015 0.1 0.447 0.407 0.196

The isotherm graph recorded for the biochar, according to IUPAC classification, is of type I.
Such isotherm is typical of microporous materials. In Figure 2 the sharp increase in adsorbed volume
at low relative pressures is depicted. This is due to the capillary condensation of the adsorbate inside
the micropore. The presence of a hysteresis loop suggests the presence of slit porosities, due to the
particles aggregation.
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Figure 2. Isotherm graph recorded for biochar characterization, according to IUPAC classification.

In the following Figure 3, an analysis to SEM images is necessary for the sorbent materials adopted,
on the left side before activation and on the right side after the activation process.

The waste-derived biochar and ash were physically activated at a fixed temperature and CO2

flow rate. The structure before this physical process was denser and the homogeneity of the structure
cannot be guaranteed by the un-optimized production phase. At the end of the activation process,
especially for the biochar sample, the increase of porosity and consequently the specific surface area
value was evident. This value after the activation process was around 600 m2/g, while the micro
pore volume ranged from 0.04 cm3/g to 0.26 cm3/g; and the total volume ranged from 0.06 cm3/g
to 0.37 cm3/g. The ash sample was activated using the same process. The specific surface increased
to 6 m2/g, while the micro pore and total pore volume also increased according to a similar ratio
recorded for the biochar.
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3.2. Adsorption Capacity

The recovery of waste materials is an interesting application of the circular economy approach.
In fact, literature studies consider a wide range of wastes, such as from agricultural sector for the
production of activated carbons [50]. In this work two waste-derived materials have been selected,
such as char from the pyrolysis of wood waste, and ashes from the combustion of wood chips in a
boiler. Virgin chars, as reported also in this article have lower adsorption capacity for the removal
of trace compounds, especially sulphur compounds [37]. The activation methods are divided into
chemical and physical origin. Due to technical simplicity and economical aspects, physical activation
was adopted as the activation method for the sorbent materials removal of sulphur compounds [51–53].
The pore size distribution and pore fraction of the activated biochar vary according to the quantity
and type of biomass, operating temperature and activating gas [54]. According to Nabais et al. (2007),
the CO2 activation leads to samples with higher BET surface areas and pore volumes compared with
samples produced by steam activation and with similar burn-off values [55]. Zhang et al. (2004)
studied the duration of CO2 activation and temperature on the characteristics of the char produced
from the wood fast pyrolysis [56]. Chars type selected showed an increasing of specific surface area
and micropore volume with increasing activation temperature. The increasing of pore size and surface
area was verified up to 900 ◦C, above this value the carbon characteristics decrease [57].

Table 3 shows the adsorption capacity for commercial carbons and waste-derived materials for the
removal of H2S. Commercial carbons have an adsorption capacity of around 2 mg/g while commercial
metal oxides, such as ZnO has an average removal capacity of around 1 mg/g at t1 = 1% of initial
concentration. The two commercial carbons selected have a similar adsorption capacity also at the
saturation condition, t1 = 100%. Carbox compared to RST3 shows a steeper profile for the removal
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of H2S. Waste derived materials not physically activated show an adsorption capacity lower than
commercial materials. Here, the surface area and microporous volume weight strongly on the removal
performance, as reported [58]. In fact, as reported in the following Figure 4, the adsorption capacity
is directly correlated to the specific surface area and microporus volume. Higher micropore volume
along with smaller pores results in enhanced capacity of H2S removal. As reported by Adib et al.
(2000), the mesoporous volume seems less important for the adsorption capacity performance [59].
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Figure 4. Adsorption capacity in relation with surface area and microporous volume: (a) SSA vs. Cads.;
(b) Vmicro vs. Cads.; (c) Vmeso vs. Cads.

In Figure 4, the coefficient of determination is higher than 0.95 for surface area and adsorption
capacity, while this coefficient is higher than 0.98 for microporous volume and adsorption capacity.
ZnO sample, as reported in the characterization section is defined by an adsorption isotherm related
to chemical mechanisms, demonstrated by not observing the linear correlation reported in Figure 4.
This removal mechanism is stronger than physisorption, both for removal and regeneration of material.
To explain these poor performances, Aravind et al. (2012) demonstrated how the optimal metal oxides
performances are shown at a higher temperature [60].

Table 3. Adsorption capacity for waste-derived materials and commercial carbons for H2S removal.

Sorbent Load (g) Cads. (mg/g)-1% Std. Dev Cads. (mg/g)-10% Std. Dev Cads. (mg/g)-100% Std. Dev

Commercial sorbents

Airdep
CarbOx 0.53 1.88 1.88 1.94 0.03 6.75 6.74 6.77 0.01 12.45 12.54 12.65 0.08

Norit RST3 0.3 1.95 2.04 1.98 0.04 2.76 2.81 2.83 0.03 12.10 12.11 12.17 0.03
Zinc oxides 0.33 0.92 0.98 1.02 0.04 24.74 24.75 24.81 0.03 47.07 47.17 47.21 0.06

Waste derived materials

Biochar 0.25 0.12 0.19 0.23 0.05 0.27 0.31 0.40 0.05 4.76 4.85 4.92 0.07
Biochar act 0.16 1.30 1.38 1.45 0.06 1.95 2.01 2.11 0.07 9.85 9.89 10.01 0.07

Ash 0.95 0.02 0.06 0.08 0.02 0.16 0.10 0.17 0.03 0.23 0.25 0.27 0.02
Ash act 1.03 0.29 0.37 0.48 0.08 0.65 0.66 0.69 0.02 1.77 1.79 1.75 0.02
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The physical activation with CO2 and higher temperature allows us to improve the average
adsorption capacity from 0.18 mg/g to 1.38 mg/g for biochar, and from 0.05 mg/g to 0.38 mg/g
for ashes.

As reported by Nabais et al. (2007), physical activation with CO2 promotes pore size and surface
area increasing, with better performance than steam activation [55]. Activated biochar shows an
adsorption capacity comparable to commercial sorbents, as reported also from [37,61]. Increasing the
saturation zone of the filter, from 1% to 10% up to 100%, the adsorption capacity increases up to the
saturation of pores, see Table 3. The latter value is a limit of the filter bed filled by sorbent material.
An average value of 10 mg/g was registered for activated biochar. This value is not comparable
with those obtained with activated ash, while appears similar with those obtained with activated
carbons [39]. Metal oxides are able to promote the dissociation of H2S and the HS− reaction to form
sulphides. These reaction are reported in literature studies, as studied from Shang et al. (2016) [37].
This was due to the chemical mechanisms developed between trace compounds to be removed and
metals [62].

Table 4 depicts the adsorption capacity of H2S in a wet biogas using commercial activated carbons,
waste-derived materials and activated waste-derived materials.

Table 4. Adsorption capacity for waste-derived materials and commercial carbons for H2S +
H2O removal.

Sorbent Load (g) Cads. (mg/g)-1% +
H2O (30%) Std. Dev Cads. (mg/g)-10% +

H2O (30%) Std. Dev Cads. (mg/g)-100% +
H2O (30%) Std. Dev

Commercial sorbents

Airdep
CarbOx 0.17 1.30 1.37 1.49 0.08 5.19 5.27 5.39 0.08 8.65 8.74 8.78 0.05

Zinc oxides 0.30 0.34 0.43 0.54 0.08 2.45 2.51 2.62 0.07 29.44 29.48 29.55 0.05

Waste derived materials

Biochar 0.31 0.01 0.02 0.08 0.03 0.08 0.12 0.13 0.02 2.65 2.69 2.80 0.06
Biochar act 0.28 0.90 0.93 1.04 0.06 1.26 1.29 1.35 0.04 5.93 5.98 6.02 0.04

Ash 1 0.01 0.02 0.04 0.01 0.14 0.15 0.18 0.02 0.26 0.17 0.20 0.04
Ash act 1.04 0.17 0.19 0.25 0.03 0.42 0.47 0.50 0.03 1.10 1.17 1.19 0.04

Biogas water vapor (30% RH) enters into competition with hydrogen sulphide that has to be
removed. This competition decreases the adsorption capacity [31]. In fact, as reported elsewhere [31],
when the RH value is above 50%, the adsorption capacity tended to be zero. At t1 = 1% of the initial H2S
concentration, the average adsorption capacity value registered for Carbox decrease from 1.9 mg/g up
to 1.39 mg/g. A stronger decrease is obtained using ZnO. In fact, the adsorption capacity in the same
conditions decreases of 55%.

Considering waste-derived materials, the effect of water content on the removal performance has
the same effect registered for commercial sorbents [63]. Because this material is not activated chemically
with alkali metals, water content competes with sulphur for their removal [30]. The adsorption
capacities decrease more in the case of not possessing physically activated material. In fact, pores and
surface area being lower suffer more from the competition of water content. Biochar shows a decrease
of 80%, while with the physical activation, this decrease stands at around 30%.

4. Conclusions

Hydrogen sulphide removal performance of waste-derived material, such as biochar show lower
adsorption capacity compared to optimized commercial sorbents. These results, although preliminary
are important for the future optimization of waste-derived materials. In fact, such types of materials
can be reinserted in the gas production cycle as fertilizer or structuring material for the anaerobic
digestion process.

Physical activation with CO2 and temperature promotes for activated biochar an adsorption
capacity that increases with values comparable to commercial sorbents, while ashes performance are
still too poor.
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Humid biogas should be dried, because water enters into competition with hydrogen sulphide
that has to be removed. A more pronounced decrease of adsorption capacities is recorded for not
physically activated material. This is due to the higher competition between water content and trace
compounds to be removed with low surface area and microporous volume.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/11/9/2338/
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