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Abstract: Current regenerative braking systems in electric vehicles have several problems, such as
complex structures, too many control parameters, and inconsistent braking responses. To solve
these problems, a control algorithm with multidisciplinary design optimization (MDO) is proposed
based on the novel regenerative–mechanical coupled brake-by-wire system. A dynamic model
of the novel regenerative braking system was established to analyze the mechanism of coupled
braking and propose a braking torque distribution strategy. To realize a better balance between the
optimum braking stability and the maximum regenerative energy recovery based on the braking
torque distribution strategy and sample points, the MDO mathematical model was developed to
optimize the control parameters with the collaborative optimization algorithm. The finite sample
points comprising the vehicle speed, battery state-of-charge, and braking severity were obtained
through an optimal Latin hypercube design and represent the overall design space. A network was
established based on the sample points and the optimization results. Using this network, the in-depth
characteristics of the sample points and the optimization results were obtained through supervised
learning to develop the control algorithm for vehicle braking. A simulation was performed using
the normal braking condition, and the simulation results demonstrated that the control algorithm
has higher control precision than conventional methods and better real-time performance than
online optimization.

Keywords: multidisciplinary design optimization; regenerative braking; optimum control;
regenerative–mechanical coupling

1. Introduction

Electric vehicles (EVs) have received significant attention because of the global environmental
crisis and pressure on energy sources. Compared to conventional vehicles, electric vehicles can
recapture kinetic energy during deceleration using a regenerative braking system without requiring
any additional components [1]. A regenerative braking system can recover kinetic energy into a battery
through an electric motor, which is also used to produce a regenerative braking torque to the wheels to
realize braking [2]. Research shows that more than half of the braking energy can potentially be used
in typical urban driving cycles [3]. Hence, to improve the energy efficiency, regenerative braking and
friction braking cooperative systems are widely used in EVs [4]. In a cooperative braking system, two
types of regenerative braking control strategies are used: series and parallel. In the parallel strategy,
the regenerative braking torque is added into the friction braking torque at a fixed proportion. In the
series strategy, the proportion of the regenerative braking torque and the friction braking torque can
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be modulated to control the overall braking torque for meeting the requirements [5]. The regenerative
braking torque depends on the motor characteristics [6], the charging power capability of the battery [7],
and the available tire–road friction [8]; hence, existing research has focused on improving the braking
energy recovery efficiency by distributing the torque between regenerative braking and friction braking
based on drivers’ demands.

In engineering practice, several rule-based regenerative braking strategies have been proposed
and used in recent years. For a rear-driven electric truck, a modified control strategy that determines
how to distribute the braking force between the front and rear axles was proposed by Zhang to improve
the recovery efficiency [9]. Xiao presented an integrated control strategy to coordinate regenerative
and friction braking forces to deal with the braking stability and recovery efficiency when a vehicle
performed normal deceleration and emergency braking [3]. To regenerate more braking energy and
move closer to the ideal braking force distribution curve, a combined braking control strategy was
developed for the rear wheel-driven series hybrid electric EV to adjust the proportions of regenerative
braking and friction braking [10]. A regenerative braking cooperative control strategy was proposed
by Jiweon for hybrid EVs equipped with a hydraulic brake on the rear wheels and an electronic wedge
brake on the front wheels [11].

Optimization and control technologies have also been proposed to control the cooperative
braking system. A genetic algorithm-based control strategy that determines how to distribute
the brake torque between regenerative braking and electrohydraulic braking was developed by
Kim [12]. Furthermore, to control the wheel slip, a sliding-mode controller was designed by Zhang
to distribute the braking force between regenerative braking and antilock braking in emergency
braking situations [13]. Fuzzy logic was applied in brake energy recovery systems. Compared
to the conventional control strategy, the fuzzy logic control strategy presents a higher recovery
efficiency in regenerative braking [14]. A sliding-mode controller based on the exponential reaching
law for the antilock braking system was developed. The tracking of the slip ratio became rapid
and accurate in adjusting the motor braking moment with the proposed sliding-mode controller [15].
A nonlinear-model predictive controller for regenerative braking control in EVs equipped with in-wheel
motors was presented [16]. A control algorithm based on a model predictive control framework was
proposed to recover more braking energy and maintain the optimal slip value. The framework could
reduce the torque tracking error [17].

The feasibility of several control strategies is worth studying, and the optimization of control
parameters that affect the comprehensive braking performance, including braking stability and energy
recuperation efficiency, also needs attention. Sun presented a predictive control strategy using an
offline process optimization stream to realize the balance between the maximum regenerative energy
recuperation efficiency and the optimum braking stability [18,19]. However, a problem of inconsistent
braking response exists because regenerative braking and friction braking are two independent
systems. In addition, some sampling points have a large predictive error when using conventional
approximation models because of the highly nonlinear relationship between sampling points and
predictive values.

As evidenced in the literature survey, several problems exist, such as complex structures, too many
control parameters, and inconsistent braking response, because current braking systems comprise
two independent systems, the regenerative and friction braking systems. It is difficult to maintain
good regenerative braking efficiency and regenerative braking effectiveness stability because it is
necessary to switch between the regenerative braking system and the friction braking system during
braking. Moreover, a strong coupling relationship exists between the regenerative system and the
friction braking system. Obtaining a good comprehensive braking performance using conventional
optimization methods is difficult. To solve these problems, first, the mathematical model of the
novel regenerative–mechanical coupled brake-by-wire system is presented herein to reveal the
coupled braking mechanism. Next, two disciplines, namely the optimum braking stability and
the maximum regenerative energy recovery efficiency, are defined to optimize the comprehensive
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braking performance of the vehicle. The optimization results are obtained using a collaborative
optimization algorithm. Thereafter, a network is built based on the optimization results and the
sample points comprising the vehicle speed v, battery state-of-charge (SoC), and braking severity z.
Afterwards, through supervised learning, the in-depth characteristics of the sample points and the
optimization results are obtained based on the deep learning network to establish the deep learning
control algorithm. Finally, the deep learning control algorithm is verified to have higher control
precision than conventional methods and a better real-time performance than online optimization in a
dynamic simulation.

This paper is organized as follows: Section 2 describes the mechanism of the novel
regenerative–mechanical coupled brake-by-wire system; Section 3 presents a mathematical
optimization model and describes the multidisciplinary design optimization (MDO) method for
optimizing the control parameters of the novel regenerative–mechanical coupled brake-by-wire system;
Section 4 presents a deep learning control algorithm based on the optimization results and sample
points obtained using a deep learning network, and Section 5 presents the simulations, followed by
the concluding remarks in the final section.

2. Novel Regenerative–Mechanical Coupled Brake-by-Wire System

2.1. Structure of the Novel Regenerative–Mechanical Coupled Brake-by-Wire System

The novel regenerative–mechanical coupled brake-by-wire system, which takes advantage
of brake-by-wire and regenerative braking [20,21], is built based on the mechanism of
mechanical-electrical-magnetic energy conversion (Figure 1).
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Figure 1. Novel regenerative–mechanical coupled brake-by-wire system.

As shown in Figure 1, during braking, the in-wheel motors equipped on the front and rear wheels
perform regenerative braking and recover kinetic energy into the battery. The transmission path of the
regenerative braking torque is as follows: motor stator→motor rotor→wheel.

The screw is fixed on the motor stator; hence, when the electromagnetic torque generated by
the motor stator is transmitted to the screw, the motive force of friction braking will be converted
to generative friction braking torque. The transmission path of the regenerative braking torque is
as follows: motor stator→screw and nut→elastic element→brake caliper and brake disc→motor
rotor→wheel.

The electromagnetic torque generated by the feedback current performs braking in the novel
regenerative–mechanical coupled brake-by-wire system. At the same time, the friction braking torque
can be generated by the electromagnetic braking torque, which is the driving force for friction braking,
without additional energy consumption. The coupled braking process involving regenerative braking
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and friction braking is then realized. Hence, the electromagnetic torque can be controlled to modulate
the braking severity and maintain the optimum comprehensive performance in terms of energy
recovery and braking stability through mechanical/electrical/magnetic MDO.

This study focuses on the normal deceleration process that has a braking severity ranging from
0 to 0.4 with enough adhesive force from the dry pavement. Considering the characteristics of both
motor and battery, the vehicle speed is limited within 10 km/h to 100 km/h, and the battery SoC is a
value in the range of 0.2–0.8.

2.2. Mathematical Model of the Novel Regenerative–Mechanical Coupled Brake-by-Wire System

During braking, the electromagnetic torque Te between the motor rotor and the motor stator
is generated by the feedback current IL in the motor rotor coil under the effect of electromagnetic
induction. The regenerative braking torque Tbe is then generated by Te in the brake wheels through
the connection device. Neglecting the tube pressure drop of the feedback brake circuit and the motor
self-friction torque in the steady state, Te and Tbe can be expressed as follows [22]:{

Te = Ke IL
Tbe = Te

(1)

where Ke is the torque coefficient (Nm/A).
As shown in Figure 1, the screw cannot slide, but can only rotate along with the motor stator. The

nut cannot rotate, but can only slide along with the guide block. The screw and the nut are joined
by a non-locking spiral. The screw is fixed to the motor stator; hence, the thrust force FN can be
generated by the electromagnetic torque through the transmission mechanism. FN can be expressed as
follows [23]:

FN =
η1Te

Rc tan(αs + ρs)
(2)

where η1 is the mechanical efficiency of the transmission mechanism; Rc is the friction radius of the
screw end plane (m); αs is the lead angle of the screw (rad); and ρs is the equivalent friction angle of
the screw and the nut (rad).

When FN overcomes the elastic force Fs of the elastic element, the friction braking torque will be
generated by the brake caliper in the clamping brake disc and transmitted to the brake wheels through
the motor rotor and connection device. The friction braking torque Tbc is then described as follows:

Tbc = 2icµcRp · Fc (3)

where Fc = max(FN − Fs, 0), ic is the transmission ratio of the transmission mechanism; µc is the
friction coefficient of the brake disc, and Rp is the radius of the brake pressure (m).

Therefore, Tbc can be generated by Te in the novel regenerative–mechanical coupled brake-by-wire
system, and Tbc can be coupled with Tbe to the brake wheels. The total braking torque Tb can then be
described as follows:

Tb = Tbe + Tbc (4)

As Equations (1)–(4) show, compared to the current braking systems that comprise
two independent systems, namely the regenerative and friction braking systems, the novel
regenerative–mechanical coupled brake-by-wire system can realize optimal dynamic matching
between the regenerative torque and the friction torque and a brake-by-wire coupling of regenerative
braking and friction braking. The integration of the entire braking system is considerably improved,
and its structure is simplified.
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2.3. Braking Torque Distribution Strategy

The research object is a distributed four-wheel-drive EV. Based on longitudinal braking dynamics
in straight-line travel, the braking force provided by the ground, regenerative braking torque, and
friction braking torque on the left and right wheels of the front axle are equal, and so are the torques
on the left and right wheels of the rear axle.

The torques of each wheel can be expressed as follows:

Tbe1 + Tbe2 = THbe
2

Tbc1 + Tbc2 = THbc
2

Fxb1 = Tbe1+Tbc1
Re

Fxb2 = Tbe2+Tbc2
Re

THbe + THbc = THb
THb = mgzRe

(5)

where Tbe1 and Tbe2 are the regenerative braking torques on the left wheel of the front and rear axles,
respectively (Nm); THbe is the total regenerative braking torque (Nm); Tbc1 and Tbc2 are the friction
braking torques on the left wheel of the front and rear axles, respectively (Nm); THbc is the total friction
braking torque (Nm); Fxb1 and Fxb2 are the tire-ground braking forces on the left wheel of the front and
rear axles, respectively (N); Re is the effective tire radius (m); THb is the total braking torque (Nm); m is
the kerb mass (kg); g is the acceleration caused by gravity (m/s2), and z is the braking severity.

The braking torque distribution strategy aiming at an optimal overall performance in terms
of the braking stability and the regenerative braking energy recovery rate is proposed for a novel
regenerative–mechanical coupled brake-by-wire system. The strategy can be described as follows:

First, the proportion of the total regenerative braking torque in the overall braking torque is
determined as follows:

2(Tbe1 + Tbe2)

THb
= α (6)

where α is the distribution coefficient of the regenerative braking torque.
Second, the proportion of the regenerative braking torque between the front and rear axles is

determined as follows:
2Tbe1
THbe

= γ (7)

where γ is the distribution coefficient of the regenerative braking torque on the front axle.
Third, the proportion of the friction braking torque between the front and rear axles is determined

as follows:
2Tbc1
THbc

= λ (8)

where λ is the distribution coefficient of the friction braking torque on the front axle.
Combining Equations (5)–(8) gives the following:

Tbe1 = αγmgzRe
2

Tbe2 = α(1−γ)mgzRe
2

Tbc1 = (1−α)λmgzRe
2

Tbc2 = (1−α)(1−λ)mgzRe
2

(9)

The braking force distribution coefficient β is defined as follows:

β =
2(Tbe1 + Tbc1)

THb
= α(γ− λ) + λ (10)
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3. Mathematical Optimization Models of the Novel Regenerative–Mechanical Coupled
Brake-by-Wire System

3.1. Optimization Objectives

From the perspective of driving safety and energy economy, the optimum braking stability and
the maximum regenerative energy recovery efficiency are treated as optimization objectives based on
the novel regenerative–mechanical coupled brake-by-wire system discussed in this paper.

3.1.1. Ideal Braking Stability Objective

During braking, if the braking force is distributed in the form of an I curve, any wheel locking
in advance will be prevented, and the optimum braking stability will be obtained [10,24]. The ideal
braking force distribution, which is the goal of optimum braking stability, can be expressed as follows:

µ f = µr

µ f =
2Fxb1

Fz1

µr =
2Fxb2

Fz2

β = Fxb1
Fxb1+Fxb2

(11)

where µ f and µr are the utilization of adhesion coefficients on the front and rear axles, respectively,
and Fz1 and Fz2 are the front and rear axle loads, respectively (N).

According to the braking theory, Fz1 and Fz2 can be expressed as follows:{
Fz1 = mg

L
(

Lr + zhg
)

Fz2 = mg
L

(
L f − zhg

) (12)

where L is the axle base (m); Lr is the rear axle to mass center distance (m); hg is the height of the mass
center (m), and L f is the front axle to mass center distance (m).

Combining Equations (11) and (12), the optimum braking stability, which is the ideal braking
force distribution, can be obtained as follows:

βopt =

(
Lr + zhg

)
L

(13)

3.1.2. Ideal Regenerative Energy Recovery Efficiency Objective

The braking energy recovery efficiency ηe can generally be defined as the proportion of
battery-stored energy, which is produced by motors, and total vehicle braking loss energy during the
regenerative braking process [25].

ηe =

∫ t
0 (Teωmηm − Pinv − Pbat)dt

EV + EJ
(14)

where ηe is a value in the range of 0–1; ωm is the motor speed (rad/s);ηm is the charging efficiency of
the motor; Pinv is the loss power of the inverters (KW); Pbat is the loss power during battery recharge
(KW); t is the braking time (s), and EV and EJ are the total kinetic energy losses in the translational and
rotational motions of the vehicle, respectively (J).

On the premise of meeting the requirements of braking severity, the maximum braking energy
recovery efficiency ηopt is reached when the total energy lost during vehicle braking is completely
recovered and stored in the battery.

ηopt = 1 (15)
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3.2. Boundary Conditions

3.2.1. Braking Stability Constraints

Based on braking theory [24], the braking stability can be obtained when the utilization of
adhesion coefficient on the rear axle is lesser than or equal to that on the front axle.

µr ≤ µ f (16)

Therefore, the braking force distribution coefficient is limited, and can be expressed as follows:

β ≥ βopt =

(
Lr + zhg

)
L

; 0 ≤ z ≤ 0.8 (17)

The braking force distribution coefficient should also be limited based on braking regulations.
The limits of the braking force distribution based on the braking regulation ZBT 24007-1989 can be
expressed as follows [19]:

β ≥ Lr+zhg
L (0 ≤ z ≤ 0.3)

(z−0.08)(Lr+zhg)
zL < β ≤ (z+0.08)(Lr+zhg)

zL (0.15 ≤ z ≤ 0.3)

β ≥ 1− (z+0.25)L
0.74(L f−zhg)z

(0.3 ≤ z ≤ 0.8)

1− (L f−zhg)( z−0.1
0.85 +0.2)

zL ≤ β ≤ (zhg+Lr)( z−0.1
0.85 +0.2)

zL (0.2 ≤ z ≤ 0.8)

(18)

3.2.2. Electromagnetic Torque Constraints

During regenerative braking, as shown in Equations (1) and (14), the electromagnetic torque,
which affects the regenerative braking torque and the regenerative braking energy recovery efficiency,
is simultaneously limited by the motor speed, battery SoC, and braking severity. Therefore, the
electromagnetic torque can be defined as follows:

0 ≤ Tei ≤ min
(

Tmax, Tbattery

)
(19)

where i = 1, 2; Tmax is the maximum charge torque of the motor (Nm); Tbattery is the
maximum rechargeable torque of the battery (Nm); and Tmax and Tbattery can be obtained from
Equations (20) and (21), respectively.

Tmax = fTe(n)ηm (20)

where n is the motor speed (r/min); fTe(n) is the charging torque of the motors; fTe(n) can be obtained
from the relationship curve of n vs. fTe(n) through interpolation method, and ηm can be obtained from
the relationship curve of n, fTe(n) vs. ηm, through interpolation method.

Tbattery = Tchargingηcharging (21)

where Tcharging is the rechargeable torque of the battery (Nm); ηcharging is the rechargeable torque
efficiency of the battery; Tcharging can be obtained using Equation (22) given below [26], and ηcharging
can be obtained from the relationship curve of Ic vs. charging efficiency and the relationship curve of
SoC vs. charging efficiency under a constant battery temperature using the interpolation method.

Tcharging =


9550(ESoC−IcRb)Ic

n (0 ≤ SoC ≤ 0.3)
9550( 0.85−SoC

0.55 (ESoC−IcRb)Ic)
n (0.3 < SoC ≤ 0.85)

0 (0.85 < SoC ≤ 1)

(22)
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where ESoC is the battery voltage (V); Ic is the charging current (A), and Rb is the internal resistance
of the battery (Ω). ESoC can be obtained from the relationship curve of SoC vs. ESoC through
the interpolation method. Rb can be obtained from the relationship curve of SoC vs. Rb through
interpolation.

3.2.3. Other Constraints

The braking force of each wheel should be lower than the maximum road adhesive force.{
(Tbe1+Tbc1)

Re
≤ Fz1µmax

(Tbe2+Tbc2)
Re

≤ Fz2µmax
(23)

where µmax is the maximum road adhesion coefficient.

3.3. Optimization Variables

The number of constraints and optimization variables must be decreased to reduce the difficulty
of optimization. α, γ, and λ can be considered as the optimization variables based on the braking
torque distribution strategy, and they are controlled within the range of 0 to 1.

3.4. Sample Points

The design space of the novel regenerative–mechanical coupled brake-by-wire system is a
continuous space consisting of the vehicle speed v, battery SoC, and braking severity z. The continuous
design space should be discretized into different sample points and be represented by finite sample
points through the design of experiments to optimize the control parameters of the system at any
braking condition. An optimal Latin hypercube design, which has a better space-filling performance
and uniformity than other designs of experiments methods [27], was applied to select the sample
points. Table 1 lists the selected sample points.

Table 1. Selected sample points.

Sampling Points SoC v (km/h) z

1 0.3251 72.986 0.0910
2 0.3263 83.968 0.1270
3 0.6377 91.824 0.2799
4 0.4357 99.279 0.1419
5 0.2962 72.665 0.1867

497 0.3347 60.160 0.1805
498 0.2733 97.916 0.0898
499 0.7747 87.094 0.2693
500 0.3034 99.679 0.2861

According to Equations (17)–(22), some constraint parameters (i.e., Tmax, Tbattery, βopt, βlower,
and βupper) can be calculated based on the selected sample points in Table 1. The calculation results are
used in the control parameter optimization process.

3.5. Collaborative Optimization

Two disciplines are established as follows to optimize the comprehensive braking performance:

min f1 =

(
β− βopt

βopt

)2

and (24)

min f2 =

(
ηe − ηopt

ηopt

)2
(25)
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where min stands for the minimum of the objective function; Equation (24) is the optimum
braking stability discipline, and Equation (25) is the maximum regenerative energy recovery
efficiency discipline.

In the optimization process, the optimum braking stability and the maximum regenerative energy
recovery efficiency are regarded as equal weights. Therefore, the system level can be defined as follows:

min F =

(
β− βopt

βopt

)2

+

(
ηe − ηopt

ηopt

)2
(26)

As Equations (1), (6)–(8), (10), (14), (24), and (25) show, the two disciplines and system level have
the same variables (i.e., α, γ and λ). Accordingly, α, γ and λ are recorded as z1, z2 and z3 in the system
level and x1, x2 and x3 in the discipline level, respectively, to distinguish the variables in the system
level and disciplines. In addition, constraints (Section 3.2) are introduced in the optimization.

The mathematical model of the system-level optimization can then be described as follows: min F(z1, z2, z3) =
(

β−βopt
βopt

)2
+
(

ηe−ηopt
ηopt

)2

S.t. Gi
∗(z) ≤ ε, i = 1, 2

(27)

where S.t. denotes the constraints that need to be satisfied; ε is controlled within the range of 0 to 10−6,
and Gi

∗(z) represents the consistency constraints.
The mathematical model for the optimization of the two disciplines can be established as follows:

min G1(x1, x2, x3) = (z1 − x1)
2 + (z2 − x2)

2 + (z3 − x3)
2

S.t. 0 ≤ x1, x2, x3 ≤ 1

β ≥ Lr+zhg
L (0 ≤ z ≤ 0.8)

(z−0.08)(Lr+zhg)
zL < β ≤ (z+0.08)(Lr+zhg)

zL (0.15 ≤ z ≤ 0.3)
β ≥ 1− (z+0.25)L

0.74(L f−zhg)z
0.3 ≤ z ≤ 0.8

1− (L f−zhg)( z−0.1
0.85 +0.2)

zL ≤ β ≤ (zhg+Lr)( z−0.1
0.85 +0.2)

zL 0.2 ≤ z ≤ 0.8

(28)

and 

min G2(x1, x2, x3) = (z1 − x1)
2 + (z2 − x2)

2 + (z3 − x3)
2

S.t. 0 ≤ x1, x2, x3 ≤ 1

0 ≤ Tbei ≤ min
(

Tmax, Tbattery

)
(Tbe1+Tbc1)

Re
≤ Fz1µmax

(Tbe2+Tbc2)
Re

≤ Fz2µmax

(29)

where Equation (28) is the mathematical model for the optimization of the optimum braking stability
discipline, and Equation (29) is the mathematical model for the optimization of the maximum
regenerative energy recovery discipline.

The two disciplines have the same variables (i.e., α, γ and λ); hence, if any variable changes,
the two disciplines will change at the same time. Whether they will simultaneously reach an optimum
state under complicated constraints is a key point in this study. A collaborative optimization algorithm
was selected to solve the optimization problem. Figure 2 shows the collaborative optimization
algorithm for the novel regenerative–mechanical coupled brake-by-wire system.



Energies 2018, 11, 2322 10 of 18

Energies 2018, 11, x FOR PEER REVIEW  11 of 20 

 

       

 

  

2 2 2

1 1 2 3 1 1 2 2 3 3

1 2 3

min     , ,

. .     0 , , 1

                                                                                              0 0.8

z-0.08 0.0
         

r g

r g

G x x x z x z x z x

S t x x x

L zh
z

L

L zh z

zL





     

 


  

 
 

  
 

 

 
 

 

8
                                0.15 0.3

z

0.25
         1                                                                    0.3 0.8

0.74

0.1
0.2

0.85
         1

r g

f g

f g

L zh
z

L

z L
z

L zh z

z
L zh z

zL






 


   



 
  

 
  

 
 

0.1
0.2

0.85
          0.2 0.8       

z

              

g r

z
h L

z
L


















    
  

 



 

(28) 

and 

       

 
 

 

2 2 2

2 1 2 3 1 1 2 2 3 3

1 2 3

max

1 1
1 max

2 2
2 max

min     , ,

. .       0 , , 1

            0 min ,

+
            

+
            

bei battery

be bc
z

e

be bc
z

e

G x x x z x z x z x

S t x x x

T T T

T T
F

R

T T
F

R







      


 


 

 


 


 

(29) 

where Equation (28) is the mathematical model for the optimization of the optimum braking 

stability discipline, and Equation (29) is the mathematical model for the optimization of the 

maximum regenerative energy recovery discipline. 

The two disciplines have the same variables (i.e.,  , 


 and  ); hence, if any variable changes, 

the two disciplines will change at the same time. Whether they will simultaneously reach an optimum 

state under complicated constraints is a key point in this study. A collaborative optimization algorithm 

was selected to solve the optimization problem. Figure 2 shows the collaborative optimization 

algorithm for the novel regenerative–mechanical coupled brake-by-wire system. 

 

Figure 2. Collaborative optimization algorithm. Figure 2. Collaborative optimization algorithm.

As shown in Figure 2, the collaborative optimization algorithm consists of a system level and
two disciplines. Adaptive simulated annealing, which has the advantages of better identification of
local optimal solutions, a high convergence speed, and low requirements for initial conditions [28],
was applied in this study because of the strongly nonlinear characteristic of the mathematical model.

In the optimization process, the system variables (z1, z2, z3) that exist as fixed values in each
discipline level are sent from the system level to the discipline level. Based on the system variables,
the shared variables (x1, x2, x3), which are satisfied by the constraints and objects of each discipline,
are determined via optimization in each discipline. The object of each discipline, which is calculated
using shared variables, is then sent to the system level and exists as fixed values in the system level.
If the object of each discipline satisfies the consistency constraints and the object of the current system
level satisfies the convergence condition, the optimization will be terminated, and the optimal values
will be exported; otherwise, the system level will resend the system variables to the discipline level.

4. Deep Learning Control Algorithm

In the design space consisting of the vehicle speed v, battery SoC, and braking severity z,
each parameter in the sample points has a large changing range, and a strong nonlinearity exists
between the optimization results and the corresponding sample points. Therefore, compared to
conventional methods, such as the response surface, neural network, and Kriging, the deep learning
method is more suitable for the development of a vehicle braking control algorithm [29] based on the
novel regenerative–mechanical coupled brake-by-wire system. By building a network model with
multiple hidden layers, the in-depth characteristics of the optimization results and the corresponding
sample points are analyzed through deep learning. Hence, the deep learning control algorithm can be
obtained based on the in-depth characteristics.

Aiming at the novel regenerative–mechanical coupled brake-by-wire system, a deep learning
network with an input layer, an output layer, and three hidden layers was built with the design
of experiment sample points treated as input parameters and the optimization variables treated
as output parameters. Each hidden layer had 10 nodes. The input and output layers had three
nodes. Through bottom-to-top supervised learning, the multiple-layer characteristics of the input
data will be represented in the form of weight values. The input parameters (v, z, and SoC) were then
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forward-propagated to build the deep learning control algorithm. The optimization parameters α̂, γ̂,
and λ̂ were calculated based on the deep learning control algorithm, and can be expressed as follows:

 α̂

γ̂

λ̂


T

=








 SoC

z
v


T

w1

+b1

w2

+b2

w3

+b3


w4

+b4


w5 + b5 (30)

where w1 is the 3× 10 weight matrix; w2–w4 are the 10× 10 weight matrices; w5 is the 10× 3 weight
matrix; b1–b4 are the 1× 10 bias matrices, and b5 is the 1× 3 bias matrix.

Combining Equations (1)–(8) based on the optimization variables α̂, γ̂, and λ̂, ÎL1, ÎL2, F̂s1, and F̂s2

can be expressed as follows:

ÎL1 = α̂γ̂mgzRe
2Ke

ÎL2 = α̂(1−γ̂)mgzRe
2Ke

F̂s1 =
(

η1α̂γ̂
2Rc tan(αs+ρs)

− (1−α̂)λ̂
4icµcRp

)
mgzRe (FN1 > Fs1)

F̂s1 = η1α̂γ̂mgzRe
2Rc tan(αs+ρs)

(FN1 ≤ Fs1)

F̂s2 =

(
η1α̂(1−γ̂)

2Rc tan(αs+ρs)
− (1−α̂)(1−λ̂)

4icµcRp

)
mgzRe (FN2 > Fs2)

F̂s2 = η1α̂(1−γ̂)mgzRe
2Rc tan(αs+ρs)

(FN2 ≤ Fs2)

(31)

where ÎL1 and ÎL2 are the braking currents on the left novel regenerative–mechanical coupled
brake-by-wire system of the front and rear axles, respectively (A); and F̂s1 and F̂s2 are the elastic
forces of the elastic element on the left novel regenerative–mechanical coupled brake-by-wire system
of the front and rear axles, respectively (N).

5. Simulation Results and Discussion

A braking simulation of the vehicle, which had a novel regenerative–mechanical coupled
brake-by-wire system, was realized under different braking conditions using the MATLAB®/Simulink®

(the Mathworks Co., VersionR2013b, Natick, MA, USA) software program to verify the deep learning
control algorithm.

The simulation conditions were set to (vinitial = 60 km/h, SoCinitial = 0.5), (vinitial = 60 km/h,
SoCinitial = 0.7), (vinitial = 40 km/h, SoCinitial = 0.5), and (vinitial = 40 km/h, SoCinitial = 0.7) based on the
common driving conditions of the target vehicle to compare the control parameters under different
working conditions. The simulation process consisted of six braking processes. Each braking process
had different braking severities of 0.05, 0.1, 0.15, 0.2, 0.3, and 0.4 (Figures 3–7). Table 2 lists the
simulation parameters.

Table 2. Simulation parameters.

Parameter Value Parameter Value

Kerb weight/(kg) 885 Coefficient of road adhesion 0.85
Axis base/(m) 2.347 Initial speed of braking/(km/h) 40, 60

Height of the mass center/(m) 0.54 Motor peak power/(KW) 11
Front axle to mass center distance/(m) 1.103 Motor nominal speed/(r/min) 1500
Rear axle to mass center distance/(m) 1.244 Number of motor 4

Wheel effective radius/(m) 0.304 Initial battery SoC 0.5, 0.7
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Figure 3. Simulation results of v and SoC.

With the change of the braking severity, the trend of the vehicle velocity and the battery SoC are
presented in Figure 3. As Figure 3 shows, during braking, the vehicle speed continuously decreases,
and the battery SoC continuously increases. Compared with high initial SoC (SoCinitial = 0.7), at low
initial SoC (SoCinitial = 0.5), the ability of recover electric energy is better, and the vehicle can recover
more electric energy with higher initial braking speed. Furthermore, at high initial SoC, the initial
braking speed has little effect on the regenerative braking energy recovery.
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Figure 4 shows the trend of the optimization variables α, γ, and λ during braking. At high initial
SoC and high initial braking speed (vinitial = 60 km/h), based on the characteristics of the in-wheel
motor and the battery in the target vehicle, the proportion of the total regenerative braking torque in
the overall braking torque is lower, and the proportion of the regenerative braking torque between the
front axle and rear axles is higher. Moreover, under other conditions, these two proportions change
only to a small extent. The vehicle speed and the SoC have little effect on the proportion of the friction
braking torque between the front and rear axles.

Figure 5 presents the braking energy recovery efficiency and the braking torque distribution.
Figures 6 and 7 illustrate the control parameters I and F, respectively. As Figure 5 shows, the change
in the vehicle speed has an impact on the regenerative braking energy recovery efficiency. Based on
the characteristics of the in-wheel motor and the battery in the target vehicle, it has a regenerative
braking energy recovery efficiency higher than 60 km/h, when the vehicle initial braking speed reached
40 km/h. At the low initial SoC, the vehicle has a higher regenerative braking energy recovery efficiency
than the high initial SoC. In the entire braking process, the braking force distribution coefficient is close
to the optimum value in the specified range, and the vehicle has good braking stability. Figures 6 and 7
show that based on the novel regenerative–mechanical coupled brake-by-wire system, the regenerative
braking current of the motor and the elastic force of the elastic element can be realized through
optimization variables α, γ, and λ.

As Figures 3–7 show, during braking, the vehicle speed continuously decreased, and the
battery SoC continuously increased. Compared to the current braking systems, in the novel
regenerative–mechanical coupled brake-by-wire system, a dynamic matching between the regenerative
braking torque and friction braking torque is realized by controlling the electromagnetic torque of
the motor and the elastic force of the elastic element to maintain a high braking energy recovery
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efficiency and a good braking stability. The entire braking system has a higher integration and a
simpler structure.

The required braking torque can be entirely provided by the regenerative braking torque when
the braking severity is low (z = 0.05). At the same time, friction braking is not part of the braking
process, and the vehicle had a high braking energy recovery efficiency. With an increasing braking
severity, the regenerative braking torque cannot provide the required braking torque, and friction
braking starts to occur. At this time, determining the control parameters that can maintain a good
comprehensive braking performance using conventional optimization methods is difficult. However,
based on the collaborative optimization algorithm, the target vehicle has a high energy recovery
efficiency and a braking force distribution coefficient close to the optimum value in the specified range.
Ultimately, during the entire braking process, the deep learning algorithm was developed based on
the collaborative optimization algorithm. The deep learning algorithm was obviously superior to the
conventional methods.

The multiple correlation coefficient (R2) was used to evaluate the accuracy of the control
parameters obtained using the deep learning control algorithm. The R2 values of α̂, γ̂, and λ̂ were
0.9889, 0.9817, and 0.9912, respectively.

A relative error between the control parameters of the deep learning control algorithm and the
online optimization values (α0, γ0, λ0) is defined to better evaluate the effectiveness of the deep
learning control algorithm: 

Sα =
∣∣∣ α0−α̂

α0

∣∣∣100%

Sγ =
∣∣∣ γ0−γ̂

γ0

∣∣∣100%

Sλ =
∣∣∣ λ0−λ̂

λ0

∣∣∣100%

(32)

where Sα, Sγ, and Sλ are the relative errors of α0, γ0, and λ0, respectively.
Figure 8 shows that compared to conventional methods [18,19], a smaller relative error can

be found between the control parameters of the deep learning control algorithm and the online
optimization values. The maximum value of the relative error was only 3.89%, which was within the
expected error by 5%. The online optimization simulation required 43.7 h. However, the simulation
based on the deep learning control algorithm required 6.9 s. The deep learning control algorithm can
solve the poor real-time performance problem of the online optimization.Energies 2018, 11, x FOR PEER REVIEW  18 of 20 
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Hence, the deep learning control algorithm has a higher control precision than the conventional
methods and a better real-time performance than the online optimization.

6. Conclusions

A deep learning control algorithm based on the novel regenerative–mechanical coupled
brake-by-wire system was proposed herein. The main concluding remarks are as follows:

(1) (A coupled braking mathematical model was built based on the novel regenerative–mechanical
coupled brake-by-wire system. A braking torque distribution strategy involving regenerative
braking and friction braking was also presented under a certain braking severity. Compared to
the current braking systems, the novel regenerative–mechanical coupled brake-by-wire system
had a higher integration and a simpler structure.

(2) To achieve an optimal braking performance, an optimization model was established based on
collaborative optimization theory. In this model, the comprehensive braking performance of the
vehicle was treated as the object of the system level, and the braking stability and the regenerative
energy recovery efficiency were treated as two disciplines. Optimal control parameters were
then obtained based on the novel regenerative–mechanical coupled brake-by-wire system by
coordinating the two objectives of the optimal braking stability and the optimal regenerative
braking energy recovery efficiency.

(3) By building a deep learning network, the deep learning control algorithm was developed using
the in-depth characteristics of the sample points and the offline optimization results to obtain a
higher control precision than the conventional methods.

(4) The deep learning control algorithm can solve the problem of the poor real-time performance
observed in online optimization. Hence, the deep learning control algorithm has a considerable
application potential.

The results of this study demonstrated the characteristics of the novel regenerative–mechanical
coupled brake-by-wire system and confirmed the feasibility of this system. This system offers an
improved system integration and a simpler structure for use in EVs compared to the current braking
systems. The deep learning control algorithm developed herein can serve as an important reference
for manufacturers and researchers aiming to achieve optimal comprehensive braking performance in
EVs with high control precision and good real-time performance.

The normal deceleration process was discussed herein. Considering emergency braking
conditions, a deep learning control algorithm with a wider applicability will be studied in the future.
Methods for reducing the error between the control parameters of the deep learning control algorithm
and online optimization values will also be studied.
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