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Abstract: In this paper, we study the Stackelberg game-based evolutionary game with two players,
generators and energy users (EUs), for monetary profit maximization in real-time price (RTP)
demand response (DR) systems. We propose two energy strategies, generator’s best-pricing and
power-generation strategy and demand’s best electricity-usage strategy, which maximize the profit
of generators and EUs, respectively, rather than maximizing the conventional unified profit of the
generator and EUs. As a win–win strategy to reach the social-welfare maximization, the generators
acquire the optimal power consumption calculated by the EUs, and the EUs obtain the optimal
electricity price calculated by the generators to update their own energy parameters to achieve
profit maximization over time, whenever the generators and the EUs execute their energy strategy
in the proposed Stackelberg game structure. In the problem formulation, we newly formulate
a generator profit function containing the additional parameter of the electricity usage of EUs
to reflect the influence by the parameter. The simulation results show that the proposed energy
strategies can effectively improve the profit of the generators to 45% compared to the beseline scheme,
and reduce the electricity charge of the EUs by 15.6% on average. Furthermore, we confirmed the
proposed algorithm can contribute to stabilization of power generation and peak-to-average ratio
(PAR) reduction, which is one of the goals of DR.

Keywords: smart grid; game-theoretic modeling; social welfare maximization; Stackelberg game;
pricing and power-generation strategy

1. Introduction

With advanced communication networks and intelligent controllable electrical devices or energy
users (EUs), the smart grid makes it possible to achieve the distributed control and the distributed
energy management (DEM) [1]. DEM plays a key role in the distributed monitoring, controlling,
scheduling, and optimization of the profit of both generators and demands for the implementation of
demand response (DR) programs [2]. DR, defined as the energy-usage changes of users in response to
varying electricity prices or to incentive payments [3], induces EUs to consume less energy during
periods of high wholesale market prices or at the peak power consumption. This price-based DR
program can be optimally implemented through a continuous interaction between the users and
the service provider. The user needs to adjust the electricity usage in consideration of the varying
electricity price over time, while the service provider also needs to properly adjust the electricity price
with the amount of power generation to motivate users to evenly use electricity over time [4]. The most
efficient use of the smart grid, for example, is the increasing of the energy efficiency through measures
such as the decrease of the peak-to-average ratio (PAR) of the energy demand; however, in reality,
this will determine the extent of the monetary profits in the generator and demand sides.
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To maximize the monetary profit (or social welfare), various studies on smart-home scheduling
have been completed, as follows: the formulation of a linear programming problem for smart-home
scheduling in consideration of the uncertainty of energy consumption [5], a Markov-chain model of the
scheduling problem and the development of the backtrack algorithm based on a decision threshold [6],
a dynamic-programming algorithm to schedule home appliances in consideration of multiple power
levels [7], the consideration of the distributed-load-management problem as a congestion game
with a dynamic pricing strategy to discourage the energy consumption at peak hours [8], and the
deployment of pricing strategies by local aggregators to control the energy load [9,10]. In [11],
an optimal management system of battery energy storage to enhance the resilience of the microgrid
is proposed while maintaining its operational cost at a minimum level. In [12], a two stage energy
management strategy for the contribution of plug-in electrical vehicles (PEVs) in demand response
programs of commercial building microgrids is addressed for energy management optimization.
In [13], by forming coalitions for gaining competitiveness in the energy market, a smart transactive
energy (TE) framework in which home microgrids (H-MGs) can collaborate with each other in a
multiple H-MG system is presented and analyzed. In [14], an optimization-based algorithm in which
an objective function premised on economic strategies, distribution limitations and the overall demand
in the market structure is proposed with emphasizing optimum use of electrical/thermal energy
distribution resources, while maximizing profit for the owners of the H-MGs.

Over the past few years, related studies that are based on game-theory modeling for the energy
management in a real-time price (RTP)-based DR have also been conducted. In [15], a cake-cutting game
(CCG) for the selection of discriminate prices for different users was investigated. In [4], an RTP-based
DR algorithm for the achievement of an optimal load control regarding the devices in a facility that is
obtained through the forming of a virtual electricity-trading process is proposed. In [16], an aggregate
game is adopted for the modeling and analysis of the energy-consumption control in the smart grid
and Nash seeking strategies are developed. In [17,18], the Stackelberg game was leveraged to model
the interaction between the demand-response aggregators and generators. In [19], the authors propose
a light-weight DR scheme for managing energy consumption based on a non-iterative Stackelberg
model and historical real-time pricing without iterations for the massive smart manufacturing systems.
In [20], a multiagent-based energy market for multi-microgrid systems using game-theoretic and
hierarchical optimization approaches is proposed to achieve the optimal operation of smart microgrids
in distribution systems. In [21], an advanced retail electricity market based on game theory for the
optimal operation of H-MGs and their interoperability within active distribution networks is proposed
and the optimal solution is achieved using the Nikaido-Isoda Relaxation Algorithm (NIRA) in a
non-cooperative gaming structure. In [22] and [23], a consensus-based distributed-energy-management
algorithm for both sides of an indirectly connected network is proposed. However, the following
shortcomings relative to the game structure and formulas for profit maximization can be identified in
the previous research, which have been addressed in this paper:

1. It is necessary to study an optimization methodology that maximizes the monetary profit of the
generators and the demands, respectively, rather than the optimization methodology based on
the unified profit of the generators and the demands [24,25].

2. As an revolutionary game based on the Stackelberg game structure, it is necessary to study that
the players (demands and generators) obtain the each other’s energy parameters, such as the
time-varying electricity price and an amount of electricity consumption with spying on each
other’s energy strategy to effectively and adaptively maximize their profit.

In view of these needs for research, in this paper, the Stackelberg game model where the generators
and the demands that are the players of the stackelberg game alternatively maximize their respective
profits using their own energy strategy over time while watching each other’s energy strategies is
studied. The contributions of this paper are as follows:
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1. We propose two energy strategies for profit maximization for both the generators and
EUs (Generator’s Best-Pricing and Power-Generation Strategy in Section 3.1, Demand’s Best
Electricity-Usage Strategy in Section 3.2) based on the Stackelberg game as an evolutionary game
where the players (demands and generators) alternately perform their energy strategy with
spying on each other’s energy strategy to update their own energy parameters to achieve profit
maximization over time in smart grid demand response. Whenever the generators and the EUs
execute their energy strategy in the proposed Stackelberg game structure, the generators acquire
the optimal power consumption calculated by the EU, and the EUs obtain the optimal electricity
price calculated by the generator. To the best knowledge of the authors, this game structure based
on the aforementioned parameter exchange (optimal power consumption and optimal electricity
price) for profit maximization in the smart grid demand response is first studied.

2. We newly formulate a generator profit function including the additional parameter,
the electricity-consumption of EUs, compared with that of the conventional profit function [26]
since the profit of generators can be influenced by the electricity-consumption of EUs.

3. We greatly improve the monetary profit of the generators and EUs using the proposed two energy
strategies by optimizing the amount of the power generation and the electricity price in the
generator side, and electricity consumption in the EU side.

4. As one of the simple and powerful electricity-usage control strategy of the demand that
is applicable to the time-varying electricity market, we newly propose a market-adaptive
electricity-usage scheduling algorithm which maximizes the demand’s profit by calculating
the amount of power that should be consumed according to the time-varying electricity price.

5. The proposed profit maximization algorithm can solve the existing PAR reduction problem
because the energy usage immediately increases as the electricity price goes down, and the
energy usage goes down as the price goes up according to the proposed game structure. It is
also possible to alleviate the problem that the price greatly fluctuates because if the price changes
greatly, the power plant will lose its benefits and will not be able to withstand it. The problem of
making power generation stable is consistent with reducing PAR, which is one of DR’s ultimate
goals. Stable power generation can reduce useless power generation, which makes our energy
resources the most efficient to use, and can contribute to addressing issues such as global warming
in the energy industry.

The Stackelberg game model is used to realistically model the profit maximization scenarios
wherein two players, the generators and the demands, repeatedly modify their energy strategies
by checking on each other’s energy strategy in the order of time. It is confirmed here that the
monetary profit of the both is optimized when the two players compete strategically over time. Further,
a modeling of the demand profit and the optimization of the EU energy usage is performed based on a
time-varying electricity price. Since the electricity price at different times can be significantly different
even in a single day, it is necessary to optimally schedule the electricity usage for all of the demands,
while the electricity-price changes are monitored. It is assumed here that the comprehensive judgment
and control of the EU electricity usage are optimally performed by the smart-home scheduler. In this
paper, we provide the profit maximization methodology based on the profit of the generators and EUs,
respectively, not the unified profit of the generators and EUs.

The rest of this paper is organized as follows: in Section 2, we formulate the new profit function of
the generators and the profit maximization problem for the generators and EUs, respectively, based on
the Stackelberg game. In Section 3, we propose two profit maximization algorithms as a solution of the
problem, and present the schematic overview and application of the proposed algorithms. In Section 4,
simulation results are presented and the practical benefits and advantages of the proposed algorithm
are described. Finally, we conclude the paper in Section 5.
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2. System Model and Problem Formulation

For the problem formulation, a smart grid with a network of K-distributed EUs and I generators
was considered. It was assumed that each EU k ∈ K = {1, . . . , K} and each generator i ∈ I = {1, . . . , I}
are directly connected as the communication topology of the network (i.e., any two nodes are connected
by a directed path). In this paper, it should be noted that the assumption of the strongly connected
communication network renders the distributed-energy-management problem to be more general
and relaxes the undirected-connection assumption [22]. A block-processing model was adopted to
schedule the load demands according to periodic time blocks. We divide the total scheduling time
into t time periods t ∈ T = {1, . . . , T} with a constant length tl . We consider that scheduling horizon
for an EU is 24 h (a single day), that is tl and T are set to 1 h and 24, respectively, in this paper.
All parameters and functions used in this paper are listed in Table 1. Furthermore, the systemic model
of the electricity buying and selling is shown in Figure 1. The notion used is listed in Table 1. The users
are equipped with an advanced metering infrastructure (AMI) and an energy-management controller
(EMC) [22]. Load information for each EU is exchanged between these two modules. The AMI is
used to schedule, control and optimize the electricity usage for each EU and enables bidirectional
communication between the EUs and the DEM which is connected to the generators. DEM plays a role
in optimizing the benefits of both the EU network (demand) and the generator network (energy supply)
based on the DR programs and real-time pricing to improve the energy-usage efficiency. Further,
the following three key optimization variables (the electricity price, the generation power, and the
demand power) are employed to realize the coordination of the generators and the EUs.

In the proposed evolutionary game, we assume that the players have perfect rationality.
They always act in a way that maximizes their profit, and are capable of obtaining the energy
information to calculate the best response to other players’ energy strategies. The tractability of the
perfect rationality game can be realized by using the infrastructure, such as smart meter, EMC, DEM
and wired/wireless communications to obtain maximum profit of the cooperative and win-win players.
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Table 1. Notation list.

Notations Meanings of Notations

K = {1, . . . , K}, k ∈ K The set of energy users (EUs)
I = {1, . . . , I}, i ∈ I The set of generators
T = {1, . . . , T}, t ∈ T Total scheduling time set

tl The constant time length
pt (cents/kWh) The electricity price per unit energy

Pi,t (kWh) The amount of the actual providable power
PL

i,t (kWh) The transmission losses
PT

i,t (kWh) The total amount of generated power

Ci,t

(
PT

i,t

)
(cents) The cost to generate power for generator i

ai

(
cents/kWh2

)
, bi (cents/kWh), and ci (cents) The fitting parameters of the cost function Ci,t

(
PT

i,t

)
di The coefficient for power loss

Pm
i and PM

i The minimum and maximum bound of PT
i,t

UG
i,t The profit function for generator i
UG

t The total profit for all generators
Rt Real profit of generators

Mi,t Maximum achievable profit of the generator i
Pk,t The amount of the electricity usage of UE k

P̂k,t
The amount of electricity to be used in the future

divided by the remaining time
∆Pk,t The additional or abandoned electricity usage
UEU

k The electricity charge for UE k
UEU The total electricity charge for all UEs

G = (N , A, U )
The Stackelberg game where N is a player set that is
composed of generators and EUs, A is the constraint

set, and U is the profit set
pm and pM The minimum and maximum prices of the electricity
Pm

k and PM
k The minimum and maximum electricity-usage

ϕk The minimum required electricity consumption
η? The optimum solution of P1

P?
i,t, p?t and P?

k,t The optimized value of Pi,t, pt and Pk,t
F A set of feasible solutions
LG The Lagrange dual function of P3

βi,t, γi,t, δt, εt, and θt The Lagrange multipliers

NG
M and NG

S
The number of iterations for the master-loop and

slave-loop in Algorithm 1
ω1, ω2, ω3, ω4, and ω5 The iteration steps for optimization

pt The base price as the historical average of pt
tw The window size of the time slots
UEU The total electricity charge accumulated for T

2.1. Generator Profit

As the player of the Stackelberg game for each time t, each generator i aims to maximize its own
profit by adjusting and optimizing the electricity price per unit energy pt (cents/kWh) and the amount
of the actual providable power Pi,t (kWh), excluding the transmission losses PL

i,t (kWh), in the total
amount of generated power PT

i,t = Pi,t + PL
i,t (kWh). To design a practical electric-power-transmission

system, the parameters of the modeling of the transmission-loss factors were considered since these
are inevitable in a power grid [22]. According to the micro-incremental transmission losses of each
generator [24], the transmission-loss amount PL

i,t that is induced by the i can be represented using the
following simple quadratic function:

PL
i,t = diPT

i,t
2 (1)
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where di is the loss coefficient. The total amount of generated power PT
i,t is derived by jointly solving

the Equation (1) and PT
i,t = Pi,t + PL

i,t as follows:

PT
i,t = Pi,t + PL

i,t = Pi,t +
1− 2Pi,tdi −

√
1 − 4Pi,tdi

2di
(2)

In reference to [25–27], the cost Ci,t

(
PT

i,t

)
can be represented by the quadratic function of PT

i,t,
as follows:

Ci,t

(
PT

i,t

)
= aiPT

i,t
2 + biPT

i,t + ci (3)

where ai

(
cents/kWh2

)
, bi (cents/kWh), and ci (cents) are the fitting parameters of the cost function,

and the minimum (maximum) bound of PT
i,t is denoted by Pm

i
(

PM
i
)
. Therefore, a new profit

function UG
i,t(Pi,t, pt

∣∣Pk,t) and the real-profit-to-maximum-achievable-profit ratio (RMR), with the
latter composed of the two profit functions for the i for each time t, was defined, as follows:

UG
i,t (Pi,t, pt

∣∣Pk,t) =
Real profit

Maximum achievable profit =
Rt(pt|Pk,t)

Mi,t(Pi,t , pt)

=
pt ∑K

k=1 Pk,t
ptPi,t−Ci,t(Pi,t+PL

i,t)

(4)

where Pk,t is the amount of the electricity usage of each EU k for each t. It becomes evident that
the newly defined profit function of (4) is more reasonable and practical compared with that of [26],
since the additional parameter Pk,t is considered in (4) to reflect the relationship between the real profit
and the maximum achievable profit. The generator total profit for each t is represented as the sum of
the profits of the i, as follows:

UG
t (Pi,t , pt

∣∣Pk,t) =
Rt(pt

∣∣Pk,t)

Mt(Pi,t, pt)
=

Rt(pt
∣∣Pk,t)

∑I
i=1 Mi,t(Pi,t, pt)

(5)

2.2. EU Profit

It was supposed that EUs schedule their energy consumption in consideration of the time-varying
electricity price to minimize their electricity charge without reducing the total amount of electricity
that should be used. The electricity charge accumulated until the t for the Pk,t of the k is written as
UEU

k (Pk,t
∣∣pt), as follows:

UEU
k (Pk,t

∣∣pt) =
t

∑
t=1
UEU

k,t (Pk,t
∣∣pt) =

t

∑
t=1

ptPk,t =
t

∑
t=1

pt
(

P̂k,t + ∆Pk,t
)

(6)

where P̂k,t is the amount of electricity to be used in the future divided by the remaining time, and
∆Pk,t is the additional or abandoned electricity usage for the current t in consideration of the current
electricity price pt.

Remark 1. Reducing the total electricity usage itself will obviously reduce the electricity charge, but its usage
is not intended. In this paper, ∆Pk,t was modeled to reduce the electricity charge through the adjusting of the
∆Pk,t while the total electricity consumption was retained. For example, the ∆Pk,t increased at the low pt and
decreased at the high pt in consideration of the setting of different prices for different periods by the generators.
Then, the total electricity charge accumulated until the t, and then UEU was introduced as the sum of each k
electricity charge, as follows:

UEU (Pk,t
∣∣pt) =

K

∑
k=1
UEU

k (Pk,t
∣∣pt) (7)
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2.3. Optimization of the Problem Formulation Based on the Stackelberg Game Model

In the game model of the present study, the generator acts as a follower to observe the electricity
usage of the EUs for each t and the maximization of its profit; then, the EU acts as a leader to observe
the generator electricity price of each t and the minimization of its electricity charge. Based on the
game model, the Stackelberg game was formulated as G = (N , A, U ), where N is a player set that
is composed of generators and EUs, A is the constraint set, and U is the profit set. Regarding P1,
the generator profit, UG

t is defined as the extent to which the generator can increase the profit given the
EU electricity usage. In this paper, the constraints of the power generation unit were not considered.
In other words, we assume that the power generators are able to flexibly adjust the amount of the
power generation to maximize their profit by the proposed dynamic algorithm in Section 3. To solve
P1, it was assumed that the generator can observe the EU electricity usage Pk. In P2, UEU

t is the EU
electricity charge that is for the maximization of its profit in consideration of the current electricity
price. The optimization problem for the two players is formulated as follows:

(P1) max
{Pi,t ,pt∈AG}

η = UG
t (Pi,t, pt

∣∣Pk,t) (8)

subject to:

AG =

(Pi,t , pt|Pk)

∣∣∣∣∣∣∣∣
Pm

i ≤ Pi,t ≤ PM
i

pm ≤ pt ≤ pM

K
∑

k=1
Pk,t ≤

I
∑

i=1
Pi,t

 (9)

(P2) min
{Pk,t∈AEU}

UEU(Pk,t
∣∣ pt) (10)

subject to:

AEU =

(Pk,t
∣∣ pt)

∣∣∣∣∣∣
Pm

k ≤ Pk,t ≤ PM
k

T
∑

t=1
Pk,t ≥ ϕk

 (11)

Here, pm and pM are the minimum and maximum prices of the electricity, and Pm
k and PM

k are the
minimum and maximum electricity-usage values of each k, respectively. For each responsive demand,
a certain adjustable range of the electricity usage maximizes its own profit through the adjusting of the
Pk,t for the t. Furthermore, the minimum required electricity consumption ϕk of each EU is available
for the entire time and an electricity amount should be efficiently used. This enables the EUs to shift
heavy consumption loads from the peak-price time slots to the nonpeak-price time slots [28].

3. Profit Maximization

In this section, the two profit-optimization algorithms which can maximize the social welfare,
which are for the generators and the EUs, are proposed based on the time-hierarchy structure of the
Stackelberg game.

3.1. Generator’s Best-Pricing and Power-Generation Strategy

In this subsection, to maximally increase the generator profit with the knowledge of the UE
energy consumption, the generator profit is maximized as a part of the Stackelberg game. Firstly,
to successfully acquire the P1 maximum profit, the nonconvex function of P1 was transformed into
the convex function using nonlinear fractional programming [29], since the solving of the nonconvex
function of P1 is extremely complex, and the optimum values can only be found using a brute-force
approach. Then, the Lagrangian dual decomposition was applied as a greedy-type iterative solution to
the transformed convex function to estimate the optimum argument set {Pi,t, pt}, where the constraint
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set AG is guaranteed. By exploiting the properties of nonlinear fractional programming [29], P1 is
equivalent to P3, as follows:

(P3) max
{Pi,t ,pt∈AG}

{
R(pt

∣∣Pk,t)− ηM(Pi,t, pt)
}

(12)

subject toAG, where η? is the P1 optimum solution when the {Pi,t, pt} is equal to the optimal argument

set
{

P?
i,t, p?t

}
. To mathematically prove that P3 is the convex and equivalent function, the theorem for

the transformation was given with the defining F as a set of feasible solutions and the maximum profit
as η? in the maximization problem P1, as follows [29]:

Theorem 1. η? = max
{Pi,t ,pt∈AG}

{
UG

t (Pi,t, pt
∣∣Pk,t)

∣∣∀{Pi,t, pt} ∈ F
}

=
R(p?t |Pk,t)
M(P?

i,t ,p
?
t )

if and only if,

max
{Pi,t ,pt∈AG}

{
R(pt

∣∣Pk,t)− η?M(Pi,t, pt)
}

= R(p?t
∣∣Pk,t) − η?M

(
P?

i,t, p?t
)

= 0, for R(pt
∣∣Pk,t) ≥ 0 and

M(Pi,t, pt) > 0.

Theorem 1 represents P1 in the fractional form that can equivalently be transformed into the
subtractive form of P3. To prove Theorem 1, the transformed function F(η) was defined as follows:

F(η) = max
{Pi,t ,pt∈AG}

{
R(pt

∣∣Pk,t)− ηM(Pi,t, pt)
}

(13)

By following the approaches of [29], it was possible to prove Theorem 1.

Proof of Theorem 1. Convexity and equivalence. �

Lemma 1. F(η) is exactly monotonically decreasing for η (i.e., F(η′) > F(η′′ ) if η′ < η′′ .

Proof. Let η′′ maximize F(η′′ ), then F(η′′ ) = max
{Pi,t,pt∈AG}

{
R(pt

∣∣Pk,t )− η′′M(Pi,t, pt)
}

= R(p′′t
∣∣Pk,t )−

η′′M(P′′i,t, p′′t )< R(p′′t
∣∣Pk,t )− η′M(P′′i,t, p′′t )≤ R(p′t

∣∣Pk,t )−η′M(P′i,t, p′t) = max
{Pi,t,pt∈AG}

{
R(pt

∣∣Pk,t )− η′M(Pi,t, pt)
}

= F(η′), where R( p′′t
∣∣Pk,t ) − η′M(P′′i,t, p′′t ) ≤ Ri,t( p′t

∣∣Pk,t ) − η′M(P′i,t, p′t) is reasonable,
because R( p′t

∣∣Pk,t ) − η′M(P′i,t, p′t) is the maximized value when the input value η′ is given in
the function F(·). �

Lemma 2. Let any set be {P′i,t, p′t} and the set satisfies η′ =
R( p′t|Pk,t )

M(P′i,t ,p
′
t)

, then F(η′) ≥ 0.

Proof. F(η′) = max
{Pi,t ,pt∈AG}

{
R( pt

∣∣Pk,t )− η′M(Pi,t, pt)
}
≥ R( p′t

∣∣Pk,t )− η′M(P′i,t, p′t) = 0. �

As shown in Lemma 1 and Lemma 2, it is natural that the transformed function F(η) is convex,
since F(η) is monotonically decreasing and converges to zero. Further, the convergence of F(η) to zero
is representative of the generator profit, η, reaching the maximum value. Thus, it became possible to
see P3 as equivalent to P1, and P3 is used as an equivalent objective function of P1 in the rest of this
paper. Furthermore, to illustrate the solving of P1 through P3 as pseudocode, we construct the iterative
algorithm, Algorithm 1: Generator’s Profit Maximization, in page 10. In Algorithm 1, the lines 3–8
are performed by the generators with the operation of the master-loop algorithm that is based on the
slave-loop algorithm.

Remark 2. When the number of master-loop iterations, NG
M, continues, the η increases and converges to η?

if F(η) < τ, as shown in the lines 3–8 in Algorithm 1. Note that, for the convergence of the function F(η),
the threshold parameter τ is set to approximately positive zero, as represented by τ ≈ + 0. Furthermore,
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we have introduced nonlinear fractional programming [29] to ensure that our proposed solution has stability
in reaching equilibrium. From Proof of Theorem 1, we confirmed that the P3 is not only equivalent to the P1,
but also a function which is monotonically decreasing and converges to zero (Lemma 1 and Lemma 2). The P3
is monotonically decreasing converges to zero when the iteration number NG

M of Master-loop algorithm in
Algorithm 1 increases, which means the equilibrium of P1 can be obtained with stability.

The slave-loop algorithm of Algorithm 1 line 5, can be considered as the solution of P3. By using
the Lagrange dual method [30], it was then possible to solve the convex optimization problem of P3 to
propose the slave-loop algorithm. To estimate the optimal arguments of P?

i,t and p?t , the Lagrange dual
function of P3 was derived as follows:

LG(Pi,t , pt, βi,t, γi,t, δt, εt, θt) = Rt(pt
∣∣Pk,t)− ηMt(Pi,t, pt)− βi,t ∑I

i=1
(

Pm
i − Pi,t

)
−

γi,t ∑I
i=1
(

Pi,t − PM
i
)
− δt(pm − pt)− εt

(
pt − pM)− θt

(
∑K

k=1 Pk,t −∑I
i=1 Pi,t

) (14)

where βi,t, γi,t, δt, εt, and θt are the Lagrange multipliers. The Lagrange dual problem of P3 can be
formulated as follows:

min
{βi,t ,γi,t ,δt ,εt ,θt}

max
{Pi,t , pt∈AG}

LG(Pi,t, pt, βi,t, γi,t, δt, εt, θt) (15)

By solving the following formulas of (16) and (17), which were derived using the
Karush–Kuhn–Tucker (KKT) conditions [30], it is possible to simply derive the optimal values, P?

i,t and
p?t , as follows:

∂LG
∂Pi,t

=
η(ai + bidi )

di
√

1 − 4diPi,t
− η + βi,t − γi,t + θt − ηpt

{
= 0, Pi,t > 0.
< 0, otherwise.

(16)

∂LG
∂pt

= −ηPi,t +
δt − εt + ∑K

k=1 Pk,t

I

{
= 0, pt > 0.
< 0, otherwise.

(17)

P?
i,t =

[
(A− ηbi ) ∗ (2ηai + ηbidi + di A)

(2ηai + 2di A)2

]+
(18)

p?t =

[
ai + aiB−

1
2 + bidiB−

1
2

di
+

βi,t − γi,t + θt

η

]+
(19)

where A = ηpt− βi,t +γi,t− θ, and B = 1− 4di(δi,t − εi,t +
K
∑

k=1
Pk,t)/Iη, [X]+ = max{X, 0}. Moreover,

the Lagrange multiplier βi,t, γi,t, δt, εt and θt can be updated by using gradient methods in a distributed
manner, as follows:

βi,t

(
NG

S + 1
)
=

[
βi,t

(
NG

S

)
−ω1

I

∑
i=1

(
Pm

i − P?
i,t
)]+

(20)

γi,t

(
NG

S + 1
)
=

[
γi,t

(
NG

S

)
−ω2

I

∑
i=1

(
P?

i,t − PM
i

)]+
(21)

δt

(
NG

S + 1
)
=

[
δt

(
NG

S

)
−ω3

I

∑
i=1

(pm − p?t )

]+
(22)

εt

(
NG

S + 1
)
=

[
εt

(
NG

S

)
−ω4

I

∑
i=1

(
p?t − pM

)]+
(23)
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θt

(
NG

S + 1
)
=

[
θt

(
NG

S

)
−ω5

(
K

∑
k=1

Pk,t −
I

∑
i=1

P?
i,t

)]+
(24)

where the iteration steps ω1, ω2, ω3, ω4, and ω5 are positive values, which are like a learning rate,
for a more rapid convergence of the algorithm, and the parameter NG

S is the number of iterations
for the slave loop in the line 5 of Algorithm 1: Generator’s Profit Maximization. The pseudocode of
the iterative slave-loop algorithm is proposed in Algorithm 3. This is the operating structure of the
master- and slave-loop algorithms, where the result of the slave-loop algorithm is the input of the
master-loop algorithm.

In this paper, we assumed that there are multiple power generators and multiple EUs as game
players in the proposed game algorithm. Each profit of the power generators and EUs, respectively,
was defined in Sections 2.1 and 2.2. However, we maximize the sum of the profits of the power
generators and the EUs, so there exist two profit sums for the power generators and the EUs, given by
Equations (5) and (7), respectively. If the profit sums are successfully maximized by the proposed
algorithm, the profit of each player can be distributed according to the pre-defined profit function
given by Equations (4) and (6) in Section 2.

The detailed description of the operation of Algorithm of Social-Welfare Maximization is as
follows. The Algorithm of Social-Welfare Maximization is the hierarchical bi-level iterative algorithm
with the Stackelberg-loop iteration number t ∈ T = {1, . . . , T}, and is composed of the two
pseudocode tables, Algorithms 1 and 2. We define the generators as the “leader”, and the energy users
as the “follower” as a game player in the proposed game structure. Originally t denotes time set, but it
is recognized as an iteration number. If the T is set to be 24 and the time interval is 1 h, the Algorithm of
Social-Welfare Maximization repeats 24 times until the Stackelberg-loop iteration number t becomes 24.
Whenever the iteration for t is performed, the proposed Algorithms 1 and 2 are performed in succession.
They play their algorithm in the Stackelberg game and do not play the game at the same time but
play alternately over time to “interact” with each other and maximize their profit. Algorithm 1 is for
generator’s profit maximization, and iterates with the master-loop iteration number NG

M until the line
6, R(p?t

∣∣Pk,t)− η?M(P?
i,t, p?t ) < τ, is satisfied. Note that the threshold parameter τ for the convergence

of the function R(p?t
∣∣Pk,t)− η?M(P?

i,t, p?t ) should be set to around positive zero, τ ≈ +0, by the proof
of Lemmas 1 and 2. Furthermore, before the line 6 is performed, the optimal value P?

i,t and p?t should
be calculated in the line 5 as an outcome of the Slave-loop Algorithm of Algorithm 1, Algorithm 3,
with the slave-loop iteration number NG

S . The Slave-loop Algorithm is performed to solve the Lagrange
dual problem P3 based on Equations (18)–(24). When the line 6 is satisfied, the maximized profit for
the generators is obtained with the optimal electricity price p?t and the optimal power generation P?

i,t.
To interact with each other and effectively maximize the profit, if Algorithm 1 ends, the optimal price
p?t calculated from Algorithm 1 is passed to the input of Algorithm 2, and Algorithm 2 is performed.
Algorithm 2 is for energy user’s profit maximization, and the specific methodology is described in
next Section 3.2. If Algorithm 2 is successfully performed and the maximum EU’s profit is calculated
with the optimal electricity usage of the EUs P?

k,t, the optimal electricity usage P?
k,t is also passed to the

input of Algorithm 1 (which means the “interact”) and t is incremented by one. We have described this
passing of values as “spy on” in Introduction. By running the algorithm repeatedly and alternatively
over time and spying on each other’s energy parameters, they can effectively maximize their own
profit. The Algorithm of Social-Welfare Maximization (combination of Algorithms 1 and 2, lines 1–18)
is as follows:
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Algorithm 1. Generator’s Profit Maximization (lines 3–8, performed by the generator, master-loop algorithm).

1: Input: time set t ∈ T = {1, . . . , T}.
2: While t ≤ T, do
3: Input: active generator set i ∈ I = {1, . . . , I}, Pi,t, pt, Pk,t = P̂k,t, η = 0, τ ≈ +0 (positive zero), NG

M = 1.

4: Initialize η = UG
t
(

Pi,t, pt
∣∣Pk,t

)
=

R(pt |Pk,t)
M(Pi,t , pt)

= 0.
5: Update P?

i,t and p?t from Slave-loop algorithm (“Algorithm 3”).
6: If R

(
p?t
∣∣Pk,t

)
− η?M(P?

i,t, p?t ) < τ

7: Return optimal parameters {P?
i,t, p?t } and optimal profit of generators, η? =

R(p?t |Pk,t)

M(P?
i,t ,p

?
t )

.

8: else Update η =
R(p?t |Pk,t)

M(P?
i,t ,p

?
t )

and NG
M = NG

M + 1, then Go to line 5.

Algorithm 2. Energy-User’s Profit Maximization (Market-adaptive Electricity-Usage Scheduling Algorithm,
lines 9–17, performed by the EU).

9: Input: p?t , active EU set k ∈ K = {1, . . . , K}, Pk,t, ϕk, t, T, tw, Pk,t.
10: For k ∈ K do
11: Calculate pt with p?t according to (26).
12: Calculate ∆Pk,t with pt according to (25).
13: Calculate P?

k,t with ∆Pk,t according to (27).
14: Update P̂k,t+1 with P̂k,t and ∆Pk,t according to (28).
15: end for
16: Calculate UEU

k,t with (7).
17: Let t = t + 1.
18: end while

Algorithm 3. Slave-loop Algorithm of the Generator’s Profit Maximization.

1: Input: active generator set i ∈ {1, . . . , I}, Pi,t, pt, Pk,t, ai, bi, ci, di, Pm
i , PM

i , pm, pM, βi,t, γi,t,. δt, εt, θt,. ω1,
ω2, ω3, ω4, ω5, NG

S = 1.
2: While βi,t, γi,t, δt, εt and θt are not converged do
3: for i ∈ I do
4: Update P?

i,t = P?
i,t
(

NG
S + 1

)
with (18), p?t = p?t

(
NG

S + 1
)

with (19), βi,t
(

NG
S + 1

)
with (20),

γi,t
(

NG
S + 1

)
with (21), δt

(
NG

S + 1
)

with (22), εt
(

NG
S + 1

)
with (23), and θt

(
NG

S + 1
)

with (24).
5: end for
6: Let NG

S = NG
S + 1.

7: end while

3.2. Demand’s Best Electricity-Usage Strategy

While the total electricity consumption was retained, the electricity charge of the EU was
minimized with the knowledge of the current electricity price pt, and this is another part of the
Stackelberg game along with Algorithm 2: Energy User’s Profit Maximization (Market-adaptive
electricity-usage scheduling algorithm) which is newly proposed in this subsection to solve P2.
Algorithm 2 is one of the electricity-usage controlling strategies of the demand that is applicable
to the time-varying electricity market. Firstly, it was assumed that the Pm

k and PM
k are the minimum

and maximum electricity-usage values for each t of each EU, respectively, and the total sum of the
electricity usage of the entire time for each EU should be greater than or equal to the minimum requisite
electricity consumption ϕk. Furthermore, the entire time of the scheduling of the electricity usage of
the EU was set to T ∈ T = {1, . . . , T}.

To initialize the electricity usage of each scheduling time before the applying of the proposed
algorithm, it was assumed that each EU is supposed to consume ϕk/T during every scheduling time,
and the electricity of ϕk is used for the entire time T. Further, P̂k,t was set as the amount of electricity
that the k is expected to use during the current t, and the initial value of Pk,t is allocated to ϕk/T. Then,
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in consideration of the electricity price of every scheduling time, the P̂k,t can be increased or decreased
by the fluctuation of the electricity price. The amount of change in the electricity usage that is due to
changes in the electricity price, ∆Pk,t, is as follows:

∆Pk,t = P̂k,t ∗
(

1− pt

pt

)
(25)

pt =

(
1− 1

tw

)
∗ pt−1 +

1
tw
∗ pt (26)

P?
k,t = P̂k,t + ∆Pk,t (27)

where pt is the base price as the historical average of pt based on the electricity prices of the previous
time slots, tw is the window size of the time slots, and P?

k,t is the adjusted electricity usage according to
the proposed algorithm. In Equation (25), a calculation of the amount of the change in the electricity
usage is performed using the ratio of the base price to the current price, thereby acknowledging that
the price that breaks past the average is a substantially increased price and the electricity consumption
is reduced by the rate of increase, and vice versa. Then, in Equation (27), the electricity usage is
updated for the current scheduling time.

To obtain insight regarding pt according to tw in (26), it was assumed that the tw values are 1,
3, and 5. When tw is 1, ∆Pk,t is not generated in its structure, thereby meaning that the electricity
consumption is calculated regardless of the electricity-price fluctuation, and this can be used for
the control of the proposed algorithm result. Alternatively, the increasing of tw to 3 or 5 means the
determination of how sensitively ∆Pk,t is able to react to the current market price, since it was assumed
that pt is the average of the prices in the previous tw occasions. This provides an opportunity to
adaptively reflect the market characteristics to the rapidly fluctuating or the gentle market. To retain the
total electricity consumption in the proposed algorithm, the ∆Pk,t is uniformly collected or distributed
for each remaining time block. If the ∆Pk,t is negative, the ∆Pk,t x amount is divided by the total
remaining time T− t, and it is then distributed among each of the scheduling time blocks, and P̂k,t+1 is
updated as follows:

P̂k,t+1 = P̂k,t − ∆Pk,t/(T − t) (28)

By performing (28), it is possible to constantly retain the electricity that is for consumption, ϕk.
We propose Algorithm 2: Energy User’s Profit Maximization reflecting the whole description and
formulas in Section 3.2 as a profit maximization algorithm performed by the EU.

Remark 3. Algorithm 2 was proposed to solve the problem P2. The equilibrium of P2 is involved in the iteration
t in Algorithm of Social-Welfare Maximization, which gradually reaches the equilibrium point whenever t
increases. According to the maximization structure of the proposed algorithm, if the pre-defined total energy
consumption ϕk are all distributed according to the algorithm, the equilibrium can be stably reached.

3.3. Complexity Analysis

The computational complexity of the Algorithm of Social-Welfare Maximization based on the
optimization technique used in this paper can be evaluated as follows. First, the complexity of
the gradient method updating dual variables to obtain the optimal price p?t and the optimal power
generation P?

i,t in Slave-loop Algorithm (Algorithm 3) of Algorithm 1 linearly increases with the
number of generators I and the number of iterations NG

S , i.e., O
{

NG
S I
}

where O{·} is Big O notation.
Second, as provided in Section 3.1, the dual function P3 is always convex by proof of Theorem 1,
and the gradient method was employed to update {βi,t, γi,t, δt, εt, θt} toward the optimal solution with
guaranteed convergence [29]. Thus, in Master-loop Algorithm of Algorithm 1, the complexity of the
Dinkelbach method [29] to update η is independent of I and linearly increases with the number of
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iterations T2, i.e., O
{

NG
M NG

S I
}

. Third, when we consider the number of EUs K in Algorithm 2 and the
number of iteration t, the complexity becomes O

{
tNG

M NG
S IK

}
. Therefore, the total complexity of the

proposed algorithm is O
{

tNG
M NG

S IK
}

. For comparisons, the complexity of the exhaustive search [31]

is roughly O{(K + I)(K+I)}, where K and I are the number of generators and EUs, respectively.

3.4. Schematic Overview and Application of Proposed Algorithms

In this paper, the two game players (generators and EUs) are supposed to participate in the
Stackelberg game, and play the game in order to maximize their monetary profit in the smart grid
demand response. We proposed two algorithms (Algorithm 1: Generator’s Profit Maximization and
Algorithm 2: Energy User’s Profit Maximization) in Sections 3.1 and 3.2, respectively, as an energy
strategy to achieve profit maximization, and the generators and the EUs play Algorithms 1 and 2
alternately in time, respectively, as shown in Figure 2. The proposed game structure is “dynamic game”
from the following two reasons:

1. The game players, generators and EUs, interact with observing the each other’s energy strategy
for profit maximization. The generators observe the electricity consumption of the EUs, and the
EUs observe the electricity price of the generators in the proposed game operation.

2. The proposed profit maximization game was constructed as an iterative algorithm where the
energy strategies (Algorithms 1 and 2) are repeatedly performed up to the specified number of
times, for example 24 times as 24 h a day.

They play their algorithm in the Stackelberg game and do not play the game at the same time
but play alternately over time since the EU needs to know how much the generator has set the
current electricity price in order to optimally control his energy consumption P?

k,t, and the generator
needs to know how much power the EU is currently consuming in order to determine the electricity
price p?t and the amount of power generation in each game play (the game play means the algorithm
operation). By running the algorithm repeatedly and alternatively over time and spying on each other’s
energy parameters, they can effectively maximize their own profit. The Algorithm for Social-Welfare
Maximization is detailed in Algorithms 1 and 2 as the Stackelberg-loop algorithm with the iteration
number T. The total architecture of the proposed social welfare maximization including Algorithms 1
and 2 is described in Figure 2 as an overview of the algorithms proposed in this paper.
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The proposed methodology to achieve the social-welfare maximization can provide the advantage
to maximize the monetary profit of the generators and EUs, but we also reveal the following considering
points expected in real-world implementation; 1. Algorithm 1 proposed to maximize the profit of the
generator in this paper derives a sub-optimal solution that can reduce the computational complexity
compared to the brute-force approach to be suitable for real-time optimization in smart grid demand
response. The performance of the algorithm can vary slightly depending on the initial point and the
values of the variables that make up the Algorithm; 2. Algorithms 1 and 2 proposed in this manuscript
can be implemented in a smart meter or the EMC as a form of software to automatically control the
power consumption of energy user’s appliances and facilities. It is a system that can operate only
in limited areas equipped with the AMI; 3. Generators are required to have the ability to flexibly
control their power generation to participate in the proposed algorithm. We need to consider practical
implementations to enable real-time operation of the proposed cooperative and simultaneous usage of
coalitional game theory methods.

1. In the EU side, the implementation method of the proposed profit maximization algorithm is
as follows: The proposed profit maximization algorithm and formulas is applicable to general
demand response applications between generators and EUs such as, residential households,
electrical appliances, new smart appliances and internet of things (IoT) devices as a real-world
scenario. In the EU side which can be used at high priced hours, we can effectively reduce
electricity charges by adjusting the energy usage according to the electricity price with
the proposed Market-Adaptive Electricity-Usage Scheduling Algorithm (Algorithm 2 in the
manuscript). To implement the Market-Adaptive Electricity-Usage Scheduling Algorithm,
automatic electricity usage controller can be needed to be implemented and connected to EU
applications (the residential households, IoT devices and etc.). The automatic electricity usage
controller can be developed by porting a functional software which quickly and dynamically
performs the automatic electricity usage control to an AMI or an EMC. In the case of AMI and
EMC, it is possible to transmit and receive electricity price information in real time through
power line communications in smart grid. Based on this, the proposed algorithm can be fully
implemented and operate to achieve energy usage optimization and electricity charge savings.
To summarize, EUs should choose their appliances or facilities to automatically control their
energy usage to maximize monetary profit, and if they are connected to a smart meter or EMC
equipped with our proposed algorithms, the proposed profit maximization system will simply
be able to operate. We think that the proposed system can be implemented in the direction of
utilizing existing infrastructure such as the smart meter and EMC.

2. On the generator side, the implementation method of the proposed profit maximization algorithm
is as follows: In order to realize the optimal power generation and optimal pricing based
on the proposed algorithm in the generators side, the generators should be able to integrate
and manage the total power generation and the electricity price by forming a coalitional for
profit maximization themselves. Or as a top authority for power generators that are already
integrated and managed by the government can implement the proposed coalitional game theory
methods. Or a third party such as a power retailer that runs various demand response programs
can implement the proposed game theory. If the proposed algorithm is implemented and
operated, it should be able to interact with another game player, energy user, with through power
line communication or wireless local area network (WLAN) on the smart grid for information
communication, such as real-time electricity price and electricity consumption exchange required
by this algorithm.

In view of appropriate time intervals for this real-time operation and implementation, we consider
the time interval of one hour is reasonable, and we can think about a smaller or larger interval based
on this one hour. For example, a 10-min interval that is smaller than 1 h is expected to cause confusion
because too much dynamic power generation and power consumption changes for both the generators
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and the energy users can be caused. On the other hand, if we set a time interval greater than one hour
to a time interval, the proposed profit maximization system can be somewhat inefficient if we run the
system once a day at a specific time because we have a fairly wide variation in power consumption
trends during a day. Therefore, it is reasonable to set the time interval appropriately between minimum
1 h and maximum 24 h in consideration of country, region and environment in which the proposed
profit maximization system operates.

4. Simulation Results

In this section, numerical results are provided to demonstrate the effectiveness of the proposed
algorithm. The system setup is as follows: six generators and 12 EUs are considered based on the
IEEE 39-BUS system [32]. The graph of the communication network of these generators and EUs
shows that they are strongly connected. The parameters of the EUs and the generators are given in
Tables 2 and 3 [32]. The constant time length tl was set to 1 h, and the total scheduling time was
set to T = 24 (one day) with the minimum requisite electricity consumption ϕk = T ∗

(
Pm

k + PM
k
)
/2.

Further, the initial value of the P̂k,t was set to P̂k,t = ϕk/T, and it was assumed that the lower bound
of the electricity price per unit of energy is nonzero, whereas the upper bound is 50 (cents/kWh).
The window size tw was set to be from 1 to 10. In the following results, the maximum number of
slave-loop iterations was set to 6.

Table 2. Parameters of generators for IEEE 39-BUS [32].

Generator Parameters

Node ai bi ci di Pm
i PM

i

1 0.0024 5.56 30 0.00021 60 339.69
2 0.0056 4.32 25 0.00031 25 479.10
3 0.0072 6.60 25 0.00011 28 290.4
4 0.0047 3.14 16 0.00022 40 306.34
5 0.0091 7.54 6 0.00041 35 593.80
6 0.0046 4.76 12 0.000121 30 443.41

Table 3. Parameters of EUs for IEEE 39-BUS [32].

Demand Parameters

Node Pm
k PM

k Node Pm
k PM

k

1 50 100.34 7 80 137.93
2 100 159.13 8 50 84.19
3 40 80.56 9 50 104.06
4 30 123.98 10 78 119.36
5 80 109.55 11 103 176.19
6 40 76.34 12 67 147.26

Figure 3 shows the evolution of the generation power (kWh) Pi,t and the electricity price
(cents/kWh) pt of each generator optimized by the proposed iterative Algorithm 1. “Iterations” in
Figure 3 is the number of master-loop iterations NG

M of Algorithm 1, and the result was averaged over
1000 independent simulations, each of which involved different scheduling time slots. From Figure 3,
it is evident that the convergence of the generation power and the price can be achieved within seven
iterations on average to maximize the UG

t . All of the values in each iteration change with satisfying the
AG in (9). To maximize the generator profit, the generation power of each generator converges to a
different optimal value, which is affected by the constant parameters such as ai, bi, ci, di, Pm

i , and PM
i ,

and the price converges to its optimal value in conjunction with the generation power.
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Figure 3. Generation power Pi,t and electricity price pt versus iteration with I = 6 generators.

Figure 4 demonstrates the evolution of the generator profit calculated with the employment of the
optimal values of the generation power and the electricity price from Figure 3. The optimization process
is performed using the proposed master- and slave-loop algorithms in Algorithm 1. Even though
the generator power curves in Figure 3 show fluctuations with the iterations, it is evident that all
of the curves continually increase as the iterations continue. Furthermore, a baseline scheme was
set as a profit maximization strategy which optimizes only one of the two optimization parameters
(Pi,t, pt) compared to the proposed Algorithm 1, where the other optimization parameter was fixed.
The “fixing” means that the fixed parameter was not optimized but its value is constant, and the fixed
value of Pi,t was set as just one of the possible values to

(
Pm

i + PM
i
)
/2. In Figure 4, it is confirmed that

the profit of the proposed algorithm is greater than that of the baseline scheme, thereby confirming the
proper operability of the algorithm. Furthermore, the proposed optimization problem in this paper
is a non-convex optimization problem (P1 in Section 2) and the global optimum for the non-convex
optimization problem is usually only achieved by using a brute-force approach (or exhaustive search).
In this paper, to solve P1, Lagrange dual method and non-linear fractional programming were applied
to find a sub-optimal point close to the global optimum. From Figure 4, the global optimum point was
further suggested, and it was confirmed that the difference from the sub-optimal point is within 1%
when the iteration is converged to 7. Since the sub-optimal point we found may differ depending on
the initial point in the proposed profit maximization algorithm. So we propose a method to calculate
multiple sub-optimal points with multiple initial points to determine the more maximized point among
the multiple sub-optimal points. In the implementation phase, this algorithm should be devised to
generate multiple initial points and calculate the sub-optimal point corresponding to the multiple
initial points.
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1 
 

 
Figure 4. Generator profit versus iteration.

Remark 4. It is not possible to run the baseline scheme by fixing the pt. When the pt is fixed, it is obvious that
the Pi,t will be set to the minimum value to maximize the profit according to the structure of Equation (4).

In Figures 5–7, the electricity price, the electricity usage of one of the EUs according to the price,
and the accumulated electricity charge are depicted over time. All of the results were simulated for
T = 24 h (one day) with 1-h intervals, and the window size was set to be tw = 3. Figures 5–7 show the
changes in the electricity price as Case #1: side-crawl trend, Case #2: rising-tide trend, and Case #3:
falling-tide trend, respectively, and these are case studies where the possible trends were analyzed in
the real market to determine the effectiveness of the proposed Algorithm 2. Please note that, regarding
the totals of Algorithms 1 and 2, Algorithm of Social-Welfare Maximization, the electricity prices of
all of these cases were calculated using Algorithm 1, while the electricity usage and the electricity
charge were calculated using Algorithm 2. Also, these three cases are three of the results that were
obtained by the performance of the entire Algorithm of Social-Welfare Maximization over 1000 times.
From Figures 5–7, the changes of the electricity usage of EU 1 show that the proposed Algorithm 2
operates in a market-adaptive manner (EU 1 is merely a representative of the EUs, and the rest of the
EUs show the same tendency), as the expectation of this is described in Section 3.2. Based on this
market-adaptive manner, the electricity usage is reduced when the electricity is expensive, whereas
the electricity usage increases when the electricity is cheap, thereby meaning that the total electricity
consumption is the same, but the electricity charge can be considerably reduced. Please note that
this means that the proposed algorithm can alleviate the existing PAR reduction problem because
the electricity usage immediately responds to the price according to the results of Figures 5–7. In the
real world implementation, it is also possible to alleviate the problem that the price greatly fluctuates
because if the price changes greatly, the generators will lose its profits and will not be able to withstand
it. We can contribute to stabilization of power generation and PAR reduction, which is one of the ultimate
goals of DR through our proposed algorithm. Figures 5–7 show that the average electricity usage is
the same in any trend according to the AEU , and the electricity charge can be greatly reduced from
13–18%. The comparator, which consumes the same power at all times, is “unadjusted” in the legend.
Furthermore, from Figures 5–7, it can be seen that the greater the variability in the market, the greater
the possibility of the adaptation to the market that facilitates the attainment of a greater benefit.
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We can think of the proposed game methodology as a type of DR because the demand is responsive
to price as the reviewer commented, but it is not exactly a DR program. In general DR should include
the ability to convert excess power consumption to optimal power consumption (“load reduction”),
as well as to provide price elasticity to eliminate inefficiencies due to fixed prices. In the proposed
game methodology, we do not reduce the power consumption of the energy user, but optimize how
efficiently the specified power consumption will be consumed in a given period of time. In Figures 5–7,
to maximize the profit of the EU, we estimated the adjusted electricity usage which should be consumed
for each hour when we know an amount of energy we should use during the day. When the electricity
price changes as shown in the top figure of Figures 5–7, respectively, the electricity charge can be
reduced by 13%, 18% and 16% when calculating the electricity usage as shown in the middle figure of
Figures 5–7 based on the proposed algorithm. We studied in this paper how to use the load efficiently
within the reduced load when the energy user receives an instruction to reduce the load on the DR.

Remark 5. In the proposed algorithm, the profit function of each generator and EU is defined mathematically in
Section 2 so that the profit generation and distribution can be fair. Each generator and EU does not need special
skills for fairness because it is an independent entity and can take its own profits by the defined profit function.

Figure 8 represents the way the market volatility (degree of change of the electricity price) provides
the EU with benefits when the window size changes from 1 to 10. The benefit function is first given in
Figure 8, as follows:

Benefit =
(

1− U
EU

UEU

)
∗ 100 (29)
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where UEU
is the total electricity charge that is accumulated for the T when the electricity usage is

unadjusted and allocated in a totally flat manner. Note that the reduction percentages in Figures 5–7
were calculated using Equation (29). Also note that, in Figure 8, the peak-to-average ratio (PAR) is an
approximate indicator of the electricity usage as it is known, and it was assumed that the change in
the PAR reflects the volatility of the electricity price, because the electricity usage fluctuates when the
electricity price fluctuates according to Algorithm 2. It is evident that Algorithm 2 responds sensitively
to the changes in the electrical price; that is, the smaller that tw is, the greater the benefit that is derived,
with the exception of the case where tw is 1. Here, tw is 1, and this means that the electricity usage
has not been adaptively adjusted to the market using Equation (26), while it is also accurate that the
PAR is 1. In the meantime, it is possible to observe the trends of the increasing benefit as the PAR
is increased, and this means that, as the market volatility is increased, Algorithm 2 can increase the
benefit. The purpose of this simulation, however, is not the raising of the PAR to increase the benefit.
The purpose is the demonstration of the benefit that is attained from the proposed algorithm when the
EU has some PAR.Energies 2017, 10, x FOR PEER REVIEW  20 of 22 
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Summary of Simulation Results and Insights

We showed the results of maximizing the profit of the generators through Algorithm 1 in Figures 3
and 4, and we demonstrated the results of maximizing the profit of the EUs based on Algorithm 2 in
Figures 5–7. In Figures 3 and 4, we confirmed that the profit of the generators can be improved to
about 45% compared to existing (baseline scheme) scheme, and the electricity charge of the EUs can
be reduced by 15.6% on average compared to that of when algorithm was not applied. Please note
that the amount of power consumption of the EUs is same when the algorithm was applied and not
applied. From Figures 3–7, we confirmed that the proposed profit maximization algorithms effectively
improves the monetary profit of generators and EUs. We summarize the gain of monetary profit from
the proposed algorithms in Table 4.

Table 4. The gain of monetary profit from the proposed algorithm.

Energy Strategy Gain of Profit

Algorithm 1: Generator Profit Maximization About 45% (compared to existing (beseline scheme) scheme)
Algorithm 2: Energy User Profit Maximization 15.6% on average (compared to that of when algorithm was not applied)
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To provide and investigate the influence of the changes of the PAR on the monetary profit
generated from the proposed algorithms, Figure 8 showed the change of the profit of the EUs.
From Figure 8, we confirmed that the EUs gain more profit as the PAR increases. What this means that
more EUs will participate in this game and algorithms when the PAR increases, and it can lead to PAR
reduction because the monetary gain that can be obtained for the current PAR has no choice but to be
limited, and it can be predicted that as many people share the profit, the PAR would decrease. This also
suggest the proposed algorithm not only can contribute to maximization of the profit of the generators
and the EUs, but also the desired goal of demand response, PAR reduction, at the same time.

5. Conclusions

In this paper, to maximize the monetary profit in real-time price DR systems, we formulated
the Stackelberg game-based non-convex optimization problem, and proposed two energy strategies,
Algorithm 1: Generator’s Profit Maximization and Algorithm 2: Energy User’s Profit Maximization,
as an optimal solution. In the problem formulation, we newly formulated the generator profit function
to reflect the influence of the electricity usage of EUs. To solve the non-convex optimization problem,
nonlinear fractional programming and the Lagrange-multiplier method were adopted in proposing
the energy strategy for the generators. Also, we newly proposed the energy strategy for the EUs
based on the time-window-based market-adaptive manner. We greatly improve the monetary profit of
the generators and EUs using the proposed two energy strategies by optimizing the amount of the
power generation and the electricity price in the generator side, and electricity consumption in the EU
side. In Figures 3 and 4, we confirmed that the profit of the generators can be improved to about 45%
compared to the existing (baseline) scheme, and the electricity charge of the EUs can be reduced by
15.6% on average compared to that of when algorithm was not applied. Furthermore, we confirmed
that the simulation result from Figure 8 suggests the proposed algorithm can contribute to not only
maximization of the profit of the generators and the EUs, but also the desired goal of demand response,
PAR reduction, at the same time.
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