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Abstract: Reducing or optimizing electrical power consumption is one of the most fundamental goals
within the current frameworks of smart energy management. This approach would be spread from
the industrial plants, characterized by high consumptions often well distributed throughout the day,
down to the domestic utilities, typically discontinuous and with limited consumption at the single
user level. More specifically, it is desirable for the latter case to be able to control in a simple and
effective way the power consumption of typical household appliances by means of technologies
that are already used and spread (such as tablets and smartphones) to become aware of their actual
impact, both economic and environmental. To this aim, the authors present the proof-of-principle of
user-friendly monitoring system for power consumption awareness based on the recent technologies
of Internet of Things (IoT) and Augmented Reality (AR). In particular, common devices such as
smartphones associated along with appropriate measurement nodes and a suitable app, developed
to the purpose, allow consumers to view in AR environment electrical consumption of their domestic
electrical loads to consciously decide whether to switch them off. Performance of both sensor
nodes and AR environment were preliminarily assessed in either laboratory experiments or actual
household context, highlighting the promising effectiveness of the proposed approach.

Keywords: power measurement; Augmented Reality; consumption awareness; IoT sensors

1. Introduction

Measuring is the first step to be aware about electrical consumption and, consequently, adopting
virtuous behaviors in terms of energy savings and efficiency [1]. In many countries, traditional
energy meters for billing the users’ energy consumption have been replaced by so-called Smart Meters
that, besides allowing billing based on real consumption, enable consumers to continuously monitor
their energy demand [2]. Smart meters can be, in fact, considered as the first link of an intelligent
data mining chain designated to acquire, analyze, forecast and visualize time series of energy to
detect and analyze different patterns of energy consumption. Recognized patterns are key factors
to infer and analyze the impact of consumers’ energy consumption behavior and energy forecasting
trend [3,4]. Moreover, recognized patterns can be used to integrate the smart meters with the possibility
of adapting domestic consumption according to an optimizing pattern [5].

This way, smart meters are considered the cornerstone to promote smart consumption of electrical
power, as demonstrated by several conducted surveys. As an example, in 2017, Smart Energy GB [6]
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asked Populus [7] to conduct a survey of energy behavior before and after upgrading to a smart
meter [8], to better understand if and how smart meters could involve changes or improvements.
The sample of survey has been divided in three different groups based on: (i) users who do not
understand what a smart meter is; (ii) users who understand what a smart meter is, but do not have
one; and (iii) users who have a smart meter. According to this survey, users who have a smart meter
are more likely than others to say they understand how much energy they use and how to save energy.

However, there are still barriers that limit benefit arising from smart meter use [9]. In this regard,
two important statewide surveys conducted in Vermont in 2015 and 2016 have highlighted that having
a smart meter has not reduced the electricity of many Vermont residents [10]. In particular, the survey
conducted in 2015 reports that, among users who knew that they have a smart meter, only 2.2% have
significantly reduced their electricity use, and 9.6% have reduced their electricity use a little bit. In 2016,
the percent of users who have significantly reduced their electricity use grew to 3.6% and to 14.1% for
those who have reduced their electricity use a little bit. According to the authors of this study, one
reason relies on the difficulty of users in accessing the information that smart meters provide and they
are not changing their behavior as a result [11]. From the technological point of view, the complexity of
the information displayed, the lack of a simple interface, and the way in which the data are reported on
the invoice certainly limit the interaction between the consumer and the smart meter [12]. Therefore,
smart meter technology appears to be underutilized.

It would be necessary to equip buildings with devices capable of ensuring a straightforward
interaction between the energy meter and the consumer to enable the consumer to know the household
consumption [13]. As an example, the Commission for Regulation of Utilities (CRU) of Ireland, in the
“Annual Survey of Residential and Small-to-Medium Enterprise (SME) Customers in the Gas and
Electricity Markets in Ireland, December 2017”, reports that replies suggest mobile app as the most
popular method for viewing usage (48% of survey respondents) with respect to 42% for access via
website and 10% for physical device.

It would also be important for the consumers to be aware of the consumption of their individual
loads, in addition to the overall consumption of their own home. Indeed, the average consumer
does not know, for example, the consumption of domestic appliances when they are in standby
mode [14]. Moreover, consumers do not know how much the power consumption is actually modified
by changing the temperature of the washing machine or oven by 20 ◦C. If the information were
immediate and easily accessible, the visualization of the lost power and its consequent cost would
encourage consumers to pay greater attention towards good energy saving practices.

Augmented Reality (AR) can be a valuable solution in this context [15]. The term AR means
an enrichment of the human sensory perception, through further information in the form of data,
geographic maps and holograms, artificially added to reality. Elements that “increase” reality can be
added through a mobile device, such as a smartphone, with the use of vision (smart glasses), listening
(earphones) and manipulation (gloves) devices that add multimedia information to the reality already
perceived [16]. Differently from Virtual Reality (VR), where additional information is prevalent and
consumers are immersed in a fully simulated environment, in AR applications, people continue to
live and experience the common physical reality, but enjoy and/or take advantage of additional
information or manipulation of the reality itself. Moreover, several experiences in different application
fields, from education to maintenance, highlight the better results achieved by means of AR-based
presentation of information with respect to the traditional graphs and plots in terms of immediacy,
directness and ease of use [17–20].

In this paper, the authors present the proof-of-concept of a user-friendly system, based on an AR
interface, for household power consumption monitoring to make consumers aware of the consumption
and the impact of their domestic loads on power demand. In particular, the system mainly relies upon

• A set of smart low-cost sensor nodes realized according to the current makers’ approach
(i.e., with commercially available components). The nodes have to be installed between the
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power supply socket and a load or set of loads and measure the Root Mean Square (RMS) value
of voltage and current, the demanded active power and the Power Factor (PF) of the load.

• An IoT-based communication layer for the transmission of the measured values to an
adequate platform.

• A suitable app for smartphones and tablets capable of presenting and rendering measured values
in AR environment to users for their “augmented power consumption awareness”. In particular,
consumers can easily access to data by means of their device camera; when a load enters in the
camera view, its electrical parameters appear as a label overlying the real object.

2. The Sensor Node

The main element of the user-friendly monitoring system consists of sensor nodes installed
between power supply sockets and loads that have to be monitored [21]. Each sensor node (Figure 1)
consists of three functional blocks: (i) analog front end, through which the voltage and current
signals are adapted and connected to the next blocks; (ii) analog to digital conversion and numerical
processing section, which digitizes the received signals and processes them to measure the active
power; and (iii) transmission unit, which transmits the measured parameters from the processor to the
IoT platform [22]. In the following, the three functional blocks are described in detail.

Figure 1. Block diagram of the realized sensor node.

2.1. Analog Front End

According to the recent IoT and Do-It-Yourself (DIY) paradigms, the analog front-end has been
realized by means of COTS (commercial off-the-shelf) components; in particular, two commercial
cost-effective sensors have been adopted for acquiring the voltage and current waveforms.

The voltage sensor board along and its circuit schematic are shown in Figure 2a,b, respectively.
In particular, the voltage sensor is based on a high value resistance R12 that limits the current flowing
in the isolating transformer ZMPT101B. The transformer secondary current is converted to a voltage
drop on the resistance R11, that is conditioned through two bandpass filters. To adapt the voltage
levels to the range of the adopted Analog to Digital Converter (ADC), the voltage is amplified by a
variable gain through the potentiometer R5 and a DC offset equal to Vcc/2 is added by means of an
opamp, Vcc being the supply voltage of the next microcontroller section.

The current sensor, shown in Figure 3a, is the board ACS 712 [23], which is based on a Hall
effect sensor, whose Hall voltage is amplified, filtered and added to a DC voltage according to the
conditioning circuit depicted in in Figure 3b.

Both sensors stand out for their low cost, which makes them particularly suitable for deploying
monitoring systems involving several sensors distributed on different electrical plants. The main
drawback consists in the difficulty of achieving their specifications, since information about these
low-cost devices is generally poor or even absent [24]. Due to the complete lack of either information
or specifications about the adopted sensors, a preliminary stage of metrological characterization turned
out to be necessary.

Performance of the voltage sensor has been assessed by means of a calibrator Fluke 5700A, whose
relative uncertainty is lower than 2 ppm. In particular, the calibrator has been configured to generate a
sinusoidal voltage, with frequency of 50 Hz and Root Mean Square (RMS) values within the range
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between 200 and 260 V, with a step of 10 V. This interval was chosen considering that the companies
supplying electricity must guarantee, in Italy, a voltage whose RMS rated value is 230 V with a
tolerance of 10%, according to the current CEI EN 50160 standard [25].

(a) Sensor board. (b) Sensor schematic.

Figure 2. Adopted voltage sensor.

(a) Sensor board. (b) Sensor schematic.

Figure 3. Adopted current sensor.

Both input and output signals of the voltage sensor were acquired through the two channels of a
Tektronix TDS 5034B digital oscilloscope, configured to acquire five periods of the 50 Hz voltage, with
a sampling rate equal to 25 kS/s. Through a Personal Computer, samples were transferred from the
oscilloscope memory and, thanks to a straightforward algorithm, RMS value of the output voltage
and the phase displacement ∆φ between sensor output and input were measured. For each voltage
value set on the calibrator, 100 repeated measurements were performed to estimate the mean value
and standard deviation σ of the considered parameters.

The obtained results are shown in Figure 4. The blue circles represent the mean RMS values of the
sensor output for different inputs; the red dashed line shows the linear fit of the experimental points.
In the considered voltage range, the measured values remarkably fit a linear trend, with an estimated
transduction function equal to

Vout = 0.0018Vin + 0.0014 (1)

In Figure 5a,b, the estimated performance parameters are shown. In particular, Figure 5a shows
the sensor non-linearity in terms of differences ∆V between mean RMS values of the output with
respect to the interpolated ones of Figure 4. Furthermore, for each experimental point, 3σ bounds of
the observed RMS values are indicated to appreciate the repeatability of the sensor output. Figure 5b,
instead, shows the means of the measured phase displacements ∆φ between the output and the input
waveforms. For this quantity, 3σ bounds is also reported.
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Figure 4. Estimated characteristic of the adopted voltage sensor.

(a) Non linearity. (b) Phase displacement.

Figure 5. Performance parameters of the adopted voltage sensor.

Differently from what can be expected for a low-cost sensor, experienced non-linearity and phase
displacement are compatible with zero [26]. As regards the deviation ∆V, its absolute value remains
lower than 0.4 mV, whereas the experimental standard deviation of 100 measures exhibits slight
variations with respect to the input voltage, so that the 3σ is always lower than 0.5 mV. With reference
to the phase displacement ∆φ, the mean value is always lower than 0.8 mrad, while the 3σ is lower
than 0.5 mrad.

Further tests were conducted to estimate the same performance factors on different sensors, thus
gaining information similar to a B-type uncertainty approach. In particular, 10 voltage sensors were
considered and the estimated performance factors are reported in Table 1. In addition, for these tests,
the overall performance of the chosen sensor turned out to be satisfactory; as an example, experienced
3σ bounds for RMS voltage values corresponded to about 2 V expanded uncertainty on the input
voltage if propagated according to Equation (1).
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Table 1. Performance factors evaluated on a set of 10 voltage sensors.

Input [V] ∆Vavg [mV] 3σ∆V [mV] ∆φavg [mrad] 3σ∆φ [mrad]

200 0.6 4.5 0.3 6.9
210 −0.7 4.5 0.7 5.6
220 −0.1 3.3 0.9 6.1
230 0.8 3.9 0.1 5.4
240 0.5 3.8 −0.7 6.5
250 0.9 4.2 −0.7 5.5
260 0.3 4.4 −0.4 6.0

A similar characterization was performed for the current sensor. The reference current to be
supplied to the sensor was obtained by coupling the Fluke 5700A calibrator with the Fluke 5725A
current amplifier, whose maximum absolute uncertainty was equal to 5.23 mA. The input current was
set with a sinusoidal shape, frequency equal to 50 Hz and RMS variable from 1 to 11 A, with a step
of 1 A. In addition, in this case, the sensor input and output were acquired through the oscilloscope
and, for each test condition, 100 repeated measurements of both RMS of the output voltage and phase
displacement between output and input were carried out; the obtained results are shown in Figure 6.

Figure 6. Estimated characteristic of the adopted current sensor.

In addition, the current sensor exhibits a quite linear characteristic, whose estimated transduction
function is:

Vout = 0.1374Iin − 0.0074 (2)

The experienced non-linearity and phase displacement are shown in Figure 7a,b .
In Figure 7a, the current sensor is characterized by a notable repeatability (3σ lower than 2 mV); the

deviation ∆V of the mean output RMS, on the contrary, reaches 9 mV (corresponding to about 12 mA
according to Equation (2)). Sensor non-linearity usually has to be compensated; however, due to the
specific measurement application, it was neglected since its effect on power measurements corresponds
to about 2 W on purely resistive load (such as stoves and irons). As regards the phase displacement ∆φ,
its mean value is lower than 2 mrad. In addition, the standard deviation is characterized by very low
values, except for the first experimental points, where the amplitude of the input and output signals
were not adequate to obtain accurate phase measurements. Finally, performance factors associated
with a set of 10 current sensors were estimated; obtained values, shown in Table 2, assured reliable
results for the considered application.
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(a) Non linearity. (b) Phase displacement.

Figure 7. Performance parameters of the adopted current sensor.

Table 2. Performance factors evaluated on a set of 10 current sensors.

Input [A] ∆Vavg [mV] 3σ∆V [mV] ∆φavg [mrad] 3σ∆φ [mrad]

1 0.7 8.3 1.1 32
2 −1.6 9.1 1.2 22
3 0.1 8.5 −0.3 15
4 0.1 8.0 −2.8 13
5 1.4 9.5 −1.0 11
6 −0.1 8.4 −0.4 8.2
7 −0.4 8.8 −1.3 6.4
8 0.6 9.3 −1.8 7.8
9 0.9 8.7 1.9 7.8
10 0.1 9.4 −0.4 4.7
11 −0.6 8.7 2.3 5.6

2.2. Digitalization and Data Processing

The analog front end is connected to a Lopy4 device from Pycom (Figure 8), an embedded system
based on Espressif ESP32, a micropython enabled chip whose main characteristics are:

• CPU Xtensa dual-core 32-bit microprocessor, operating at 240 MHz and performing at up to
600 DMIPS;

• Hardware floating point acceleration; and
• 512 kB RAM memory and 4 MB flash memory.

The ESP32 integrates various peripherals such as General Purpose I/Os, 4 Timers and two 12-bit
Successive Approximation Register (SAR) ADCs, each one equipped with nine analog channels.
The Lopy was programmed in micropython to acquire and digitize, with a sampling rate of 1 kS/s,
N = 100 samples from two analog channel CH1 and CH2 connected to the voltage and current sensor,
respectively. Acquisitions were scheduled by a timer that generates interrupt events in which sampling
and A/D conversion on both channels are started. In addition, in this case, the phase displacement
associated with the sequential acquisition of 2 ADC channels was neglected due to the considered
measurement application. The Lopy then stores the samples in two vectors that have to be processed to
measure the electrical quantities of interest. In particular, the RMS values of both voltage and current
signals are evaluated according to the well known formulas:

VRMS =

√√√√ 1
N

N−1

∑
i=0

v2
i IRMS =

√√√√ 1
N

N−1

∑
i=0

i2i (3)
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where N is the number of acquired samples, and vi and ii stand for the ith voltage and current sample,
respectively. The measured active power P is estimated as:

P =
1
N

N−1

∑
i=0

vi · ii (4)

The power factor PF is finally evaluated as the ratio between the active power and the apparent
power S = VRMS · IRMS:

PF =
P
S

(5)

Since these results have to be transmitted, another timer is used to wait 5 s before starting a new
acquisition of other 100 voltage and current samples.

Figure 8. Adopted embedded system for signal processing and measurement data transmission.

2.3. Data Transmission

An interesting feature that led the authors to chooce the Lopy microcontroller is the offered
opportunity of realizing data digitization, processing and transmission on a single, low-cost board [27].
The Lopy is a multi-bearer microcontroller that is able to communicate via LoRa, Wi-Fi, and Bluetooth
protocols. These features make it particularly suitable for the development of devices to be integrated
into IoT platforms [28].

Given the proposed application, which involves the use of sensor nodes in the home environment,
the Lopy was programmed to use a Wi-Fi connection, nowadays available in almost every home
building; nevertheless, slight modifications in the code implemented on the Lopy would allow
operating with the other protocols for long range coverage, thus making the WiFi connection not a
mandatory requirement.

Regarding the communication protocol, although the ESP32 is able to exchange HTTP messages
through the TCP/IP protocol over a Wi-Fi connection, it was preferred to use a lighter protocol,
in accordance with the IoT approach [29]. IoT provides for the dissemination of a large number of
devices, typically sensors, which must transmit data. It is therefore necessary to address protocols that
require the transmission of short packets and are optimized to obtain the dual advantage of preserving
the life of the sensors batteries and limiting the bandwidth consumption [30].

The adopted protocol was Message Queuing Telemetry Transport (MQTT) [31], standardized
by ISO/IEC 20922:2016 and based on a publish/subscribe paradigm. Users concerned with the
exchange of information are called Clients; Clients transmitting data are referred to as Publishers; and
Clients interested in receiving data are called Subscribers. Differently from typical client–server model,
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transmitter and receiver are not directly connected and even one Client can ignore the existence of
the others; the message exchange between them is managed by another component, referred to as
the Broker. In particular, the Publisher sends information directly to the Broker. The Broker handles
and distinguishes the data received from different Publishers by means of a particular associated
topic. A Client wishing to receive data must subscribe to the Broker, specifying one or more topics
he is interested in receiving the update on. The Broker, then, after receiving data from a Publisher,
transmits the information to the Clients that are subscribed to that topic.

The Lopy has thus been programmed to perform the following operation:

• Searching for WiFi connections. If the Lopy joins an available Wi-Fi network, it receives an IP
address. Usually, Wi-Fi routers function as a DHCP server and automatically assign dynamic IP
addresses to any device that plugs into network.

• If a WiFi connection is successfully established, the Lopy has to start the MQTT Client which
initiates connection with the Broker. Several free Brokers are available on the Internet; due to
privacy and security policy, a proprietary Broker by Nexus TLC with identity access control was
preferred to gather data and integrate them in the AR environment. The connection is configured
as “robust”, so that the Lopy detects when the MQTT connection drops and tries the reconnection.

• If the MQTT connection is accepted, active power, current RMS values and power factor measured
by the measurement algorithms are sent to the Broker for publication under a specific topic
composed by the unique MAC address of the LoPy (for privacy and security issues) and PM
(Power Meter) followed by an integer number (e.g., macaddress/PM3).

The steps described above are periodically repeated and published according to a delay time
of 5 s. The Broker receives the data and updates all the Clients subscribed to the topic, so that all
authenticated users can receive updated measurements using PC, Smartphone, Tablet.

The entire realized sensor node is shown in Figure 9, where the circuit that receive 230 V AC in
input and provides the 5 V DC necessary to supply the Lopy and the sensors is also highlighted.

Figure 9. Prototype of sensor node for power measurement of domestic load based on COTS.

3. Augmented Awareness through Augmented Reality Approach

As stated above, consumption awareness improves if home consumers can easily visualize the
actual and current load power. To this aim, power measures obtained by the sensor nodes have
to be rendered in the environment as close as possible to the images of corresponding load. AR
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turned out to be the most promising solution, even though the traditional approaches based on
markers for item recognitions typically dissuade users due to both preliminary stage of markers
distribution and ecstatic deterioration of their home environment. The authors hence decided to move
towards a fully markerless technology, based on object visual recognition, integrated in a mobile app.
To implement a proof-of-concept of the proposed approach, a suitable AR app, namely Consumption
AR, was realized in Android Studio [32] by Nexus TLC. The app exploited the framework MAXST
AR SDK v3.5.2 [33], an all-in-one engine providing required features for the implementation of AR
applications on mobile terminal. As already stated above, the proposed approach consists in rendering
useful power measurements data when a domestic load is inside the camera’s view of a smartphone or
tablet; this way, the consumers, through the display of their device, see a 3D virtual object containing
the last power consumption measure and other useful information, overlapped to the load of interest
in the actual environment. To this aim, a training session is preliminarily carried out to make AR app
capable of recognizing the domestic loads and requesting the right updated data to the server.

MAXST AR SDK allows the detection of load of interest without markers or labels, but its
tracking system uses natural features of the environment recognition. In particular, it exploits a Visual
Simultaneous Localization and Mapping (VSLAM) technique [34], which collects feature points of
3D space (in this case, the space containing the domestic load that has to be monitored), only with a
camera, then creates a virtual map of the environment and saves it as a file (Figure 10).

Figure 10. Features extraction process based on VSLM.

Feature points could be corners, lines, planes or blobs that are a region of a digital image in which
some properties are almost constant; the environment has to provide sufficient feature points in a wide
range of distance between the user and appliance to be monitored [35]. Features points should have
the following characteristics:

• quickly recognizable;
• do not to vary significantly under different lighting conditions or with blurred image; and
• are robust for different viewing.

The AR app indicates to the user the number of key frames identified and added to the map.
When desired, the mapping process can be stopped and the file saved. Mapping process has to be
repeated for each domestic load that has to be monitored.

In principle, libraries based on machine learning and artificial neural networks (ANNs) for
image recognition could be adopted; unfortunately, their use and implementation do not fit with
the considered purposes. Training ANNs for several objects requires more time than the adopted
approach based on VSLAM, thus increasing: (i) the risk of weighing down the app; and (ii) the
possibility of making recognition errors due to incomplete/incorrect training. Moreover, unless very
long training sessions are carried out, similar objects in different house positions should be mixed up.
On the contrary, the adopted solution is very light and based on the collection of feature points of both
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objects of interest and environment, thus making not necessary the exact recognition of each object of
interest. This way, similar objects located at different positions of the house are correctly considered as
separate appliances.

On startup of the AR view module, smartphone camera is invoked from the Android Operating
System and the live images acquired by the camera are continuously displayed; this way, user can
observes the actual environment through the display. Features extraction module continuously extracts
in background feature points from the image in the camera’s view to build the so-called virtual map,
which is compared with those already saved on the smartphone by a proper features matching module.
If the virtual map matches one of the stored map, an HTTPS request containing the identifier of
the PM associated to the identified map is sent to the Server. Once the HTTPS request is received,
the Server will: (i) extract the identifier number from the request; (ii) use the identifier number to
access the proper data into the database; and (iii) return to the AR app an HTTPS response which
contains the last available measures of PM corresponding to received identifier number (Figure 11).
Finally, when AR app has received the HTTPS response from Server, it updates content of a text frame
graphic model with received measures, rendering a 3D virtual object containing last values of active
power, current and PF measured from the sensor node, overlapped to the domestic load in the actual
home environment.

Figure 11. Proposed approach for power consumption awareness based on Augmented Reality.

4. Platform Performance Assessment

The realized platform was assessed on an actual domestic environment as case study. Four sensor
nodes, each of which characterized by its own MAC address, were installed to supply and monitor
different loads: (i) a coffee machine; (ii) a toaster; (iii) an iron; and (iv) a satellite TV box-set. The sensor
nodes were programmed so that they associate the measured electrical quantities to the topics from
PM1 to PM4, respectively. With regard to their performance, comparisons of the values measured by
the sensor nodes with those granted by a Voltech PM100 power meter assured the reliability of the
realized PMs; differences were never greater than 20 W between the powers measured by sensor nodes
and PM100.

To test the sensor nodes connections, one MQTT Client among those already available on web or app
stores has to be installed on PC, tablet or smartphone; in the considered case study, the free app MyMQTT
was installed on a smartphone. Once information about Broker address, used port and security login
parameters (username and password) is given to the MQTT Client app, it is possible to receive on the
smartphone all the information related to the topics handled by the Broker to which the subscription has
been made. As an example, Figure 12 shows the app dashboard after the user has subscribed to the topics
of its interest. From an open access/source point of view, the payload format of the MQTT message is
also reported to allow the use of the AR app also with smart meters different from those proposed by the
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authors. It should be noted that the measurement results now can be viewed from anywhere, provided
an Internet connection is available. Moreover, the robustness of the connections, both WiFi and MQTT,
was tested by randomly dropping them and verifying their automatic reconnection.

The successive step was the assessment of the AR app in both training and rendering operations.
With regard to the first item, to start registration of a new device, the user has to push “Add Device”
in the AR app main menu (Figure 13a). Before starting a new training operation, it is required that the
user indicates the specific Device ID (the MAC address considered above) and MQTT topic used by
the PM, associated with the domestic load, to publish measures on the Broker (Figure 13b). Once the
Device ID and the topic are entered, the session for domestic load recognition can be started by pressing
the “Start Mapping” button. AR app shows in real time the images captured from the camera and the
features points identified by the detection algorithms, represented on the display by means of red dots
(Figure 14a). When a sufficient number of feature points are detected, a key frame is identified [36]. In the
AR App, this condition is highlighted by: (i) a color change of dots representing the features points from
red to azure; and (ii) the anchor progress indicator that achieves 100% (Figure 14b). After the key frame
1 is detected, it is possible to detect new feature points by moving the smartphone slowly in different
directions, but keeping the object in the camera’s view. This way, new key frames are added to enrich the
map allowing to recognize the object of interest from different observation angles (Figure 15). Using a
medium-performance smartphone with a 13 MPixel camera, the identification process takes 20–30 s.

Once the feature extraction process is completed, it possible to run the AR view module, by
pressing the “AR View” button in the main menu, and generating the AR environment. As an example,
after defining a suitable number of key frames associated with the desired load, whenever the coffee
machine is recognized in the image framed by the camera, a pop up window will appear, as shown in
Figure 16, reporting the measures regarding the associated topic. In a similar way, all the considered
loads can be taken into account; as an example, in Figure 17, recognition and rendering operations are
shown for the load associated with the topic 00AEF1CA1212/PM2. Finally, the AR App was also tested
on an Android-based tablet, thus assuring the application portability (Figure 18).

Figure 12. Screenshot of received MQTT messages.
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Figure 13. Screenshot of AR app for topic association and features extraction.

Figure 14. Features extraction process on an actual domestic appliance.

Figure 15. Features extraction from different points of view for robust object recognition.
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Figure 16. Screenshots of the realized app while rendering power measures in AR.

Figure 17. Features extraction and AR data rendering for load associated with 00AEF1CA1212/PM2.

Figure 18. Examples of AR data rendering by means of medium-level tablet.
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5. Conclusions

The study dealt with an AR based approach for improving consumers awareness about
their home power consumption. In particular, the authors have presented a proof-of-concept of
user-friendly system for the monitoring of the power consumption, based on an AR interface that
exploits technological devices spread in every home as smartphone and tablet. The system is
based on sensor nodes designated to measure power factor, current and active power absorbed
by household appliances.

The node has been realized by means of low-cost COTS components, according to the recent
paradigms of IoT and DIY. Nevertheless, preliminary metrological characterization conducted in
laboratory experiments highlighted specifications in term of non-linearity and repeatability suitable
for the considered application. The sensor node has been implemented in such a way as to transmit
measured values every 5 s through MQTT protocol to a proprietary Broker realized by Nexus TLC;
this way, all authenticated users who know the MQTT topic can easily access the power data.

To make the access to power information simple and easily associate it with the corresponding
load, a proper AR environment has been adopted to render the measured power values on a
smartphone or tablet when the load to be monitored is in the camera view. To this aim, a preliminary
training stage is mandatory to associate the load of interest with the MQTT topic containing the related
measures; a proper app has preliminarily been implemented for this purpose for Android platforms,
due to the higher programming freedom with respect to iOS-based systems. The app was tested on
different devices, to assess the reliability of the proposed approach.

Ongoing activities are mainly focused on the optimization of the AR App: (i) the label will be
characterized by a color (green, yellow or red) to indicate the exceeding of a limit chosen by the
consumer; (ii) the AR environment will be completed with a virtual button that allows to instantly
disconnect or connect the load to the power supply; and (iii) data will be stored in a historical
database that consumers can consult from the App to view their daily, monthly, or annual trend
of consumption. Moreover, after the proof-of-concept about the proposed methodology presented
here and implemented on Android platforms, authors and Nexus TLC are currently developing iOS
version of the App and will support the application later to follow the evolution process of the mobile
operating systems.
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