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Abstract: Induction motor parameters are essential for high-performance control. However, motor
parameters vary because of winding temperature rise, skin effect, and flux saturation. Mismatched
parameters will consequently lead to motor performance degradation. To provide accurate motor
parameters, in this paper, a comprehensive review of offline and online identification methods is
presented. In the implementation of offline identification, either a DC voltage or single-phase AC
voltage signal is injected to keep the induction motor standstill, and the corresponding identification
algorithms are discussed in the paper. Moreover, the online parameter identification methods
are illustrated, including the recursive least square, model reference adaptive system, DC and
high-frequency AC voltage injection, and observer-based techniques, etc. Simulations on selected
identification techniques applied to an example induction motor are presented to demonstrate their
performance and exemplify the parameter identification methods.

Keywords: induction motor; parameter identification; offline parameter identification; online
parameter identification; recursive least square; model reference adaptive system; signal injection;
extend Luenberger observer; sliding mode observer; extend Kalman observer; artificial intelligence

1. Introduction

Induction motors (IMs) are widely used in practical industrial applications due to the low cost,
high robustness, and high reliability [1]. To achieve high control performance, various control methods
like field orientation control (FOC) [2], direct torque control (DTC) [3,4], and model predictive control
(MPC) [5,6] are developed for industrial IMs. Among the motor control strategies, the indirect
field orientation control (IFOC) [7] is dominated due to its superior dynamic performance and easy
implementation; while for the FOC, the decoupling between the torque and the flux is introduced,
enabling the IM operating as a DC motor. Notably, no matter which method is used, the drive
performance highly depends on motor parameters. For instance, in the IFOC method, the rotor
flux position is calculated by adding the measured rotor angular frequency from a speed sensor
and the computed slip angular frequency from the torque command. Accordingly, the rotor flux
orientation of the IFOC heavily depends on the slip frequency, which is relative to the rotor resistance
and rotor inductance. Meanwhile, the d-axis current reference is supplied to the current regulator
in the dq-reference frame, and the reference current is calculated considering the ratio of flux and
magnetizing inductance. Moreover, the stator resistance is essential for the flux estimation, especially
in low-frequency applications. As a consequence, the parameter deviation degrades the control
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performance. The degradation is reflected in two ways: the inaccurate current reference calculation
for the control loops and the improper slip frequency computation for the rotor flux orientation. In
all, mismatched parameters have negative influence on the motor drive performance. In addition,
the accurate parameter identification of motors is also beneficial to the sensor-less speed control [8,9],
motor temperature monitoring (health status monitoring) [10–12], and fault diagnosis [13,14].

In general, typical parameters that are used in the control of motors include the stator resistance
Rs, stator leakage inductance Lls, magnetizing inductance Lm, rotor resistance Rr, and rotor leakage
inductance Llr. In practical cases, an inverter is provided by a manufacturer, while the motor is from
another manufacturer. Therefore, parameters are unknown when the motor is fed by the inverter that
is not from the same manufacturer. Hence, the offline identification should be developed to obtain
these parameters. The identified parameters can not only ensure a successful start-up of the motor but
also offer the initialization for online identification. According to the voltage supplied to the motor,
offline parameter identification techniques can be grouped into two categories: DC-voltage-injected
and single-phase-AC-injected strategies. The methods based on injecting a DC voltage usually focus
on the steady-state equivalence of the motor in such a way that the stator resistance is calculated or
estimated [15], and the transient current response is then analyzed to determine the rotor resistance
or the magnetizing inductance [16–18]. Notably, in this case, the delays induced by the inverter
nonlinearity and control [19–21] should be compensated for an accurate voltage reconstruction.
Similarly, the methods by injecting single-phase-AC-signals [22–25] also result in an equivalent circuit
to calculate the parameters. Further offline identification algorithms have been presented in the
literature; e.g., the recursive least square method in [26]. Compared with DC-voltage-injected methods,
these methods can provide more information of the parameters.

During the motor operation, effects of the temperature rise, skin effect, and flux saturation will
inevitably drift the parameters. The heat induced by motor power losses leads to the motor temperature
change and thereby affecting the stator and rotor resistance. Furthermore, the rotor frequency and
temperature in respect to the skin effect will contribute to the rotor resistance variations. Finally, the
magnetizing flux level may cause saturation, which in turn affects the magnetizing inductance. As
a consequence, motor parameters are deviated from their nominal values in operation. To ensure
the performance of the IM systems, online parameter identification is necessary to provide real-time
parameters. Among all the necessary motor parameters, only certain of them have a significant impact
on the overall control performance during operation. Thus, the online identification usually aims at
one or several parameters. Many efforts have been made to the online parameter identification. For
instance, in [27–29], the recursive least square technique was presented, where the over-parameter
problem was discussed and solved by using an improved model with a predetermined stator resistance.
In [30–37], a model reference adaptive system (MRAS) based method was introduced, and in this case,
the rotor resistance or the rotor time constant is estimated, particularly, for the sensor-less speed control
systems. Additionally, in [38,39], a DC signal was injected to the motor to estimate the stator resistance,
and subsequently the stator temperature. Alternatively, in [40–42], a high frequency AC signal was
added to the d-axis current reference (i.e., an AC signal is injected) to estimate the motor parameters.
In addition, online estimation algorithms based on the extend Luenberger observer, sliding mode
observer, and Kalman filter were investigated in [43–54]. More methods of artificial neural network
(ANN) and genetic algorithm (GA) were explored in [55–62].

With the discussion and consideration, the aim of this paper is to provide a detailed and
comprehensive review of the offline and online parameter identification methods for IM systems.
These illustrated methods are categorized as shown in Figure 1, where key references of those methods
can be found. The rest of this paper is organized as follows: Section 2 summarizes the offline methods
for motor parameter identification. Section 3 overviews the online parameter estimation techniques
for IMs. Simulation results of selected parameter identification methods are provided in Section 4 in
order to benchmark their performance. The paper is concluded in Section 5 with further remarks on
parameter identification in motor drive applications.
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rotor of the IM is coupled to the loads. Therefore, an offline identification procedure is usually 
performed before the motor is started up. This procedure is also called self-commissioning. One of 
the two most-commonly used offline identification methods is to inject a DC voltage to the motor. 
Another one is to inject a single-phase AC voltage to the motor instead of performing the traditional 
blocked-rotor test, where the motor keeps standstill, since the rotating magnetic field cannot be 
established without taking special measures. 

2.1. DC-Excited Methods 

In the DC-excited test, the pulse width-modulation (PWM) is applied to the phase-A bridge of 
the inverter, and lower switches of the phase-B and phase-C are turned on. Thus, an average DC 
voltage is injected to the motor. After the motor current comes to the steady state, the equivalent 
circuit can be obtained, as it is shown in Figure 2. Accordingly, the stator resistance Rs can be 
calculated by measuring the relative DC current through a current sensor. Meanwhile, the DC-link 
voltage of the inverter is considerably high, while the output voltage of the inverter is very low, 
resulting in a small duty cycle of the PWM signal. In this case, the inverter non-linearity [19–21] 
related to the dead-time, turn-on and turn-off delays, and the drop voltage becomes significant. To 
solve this issue, the output voltage error compensation is required. On the other hand, the ratio 
between the current difference and voltage difference can be obtained, and thus, the resistance is 
attained, after two DC-excited voltages are supplied to the motor [15]. 
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Figure 1. Classification of parameter identification methods for induction motors (IMs).

2. Offline Parameter Identification

In general, the standard no-load and blocked-rotor tests are applied to an IM to measure its
parameters. However, the motor is usually installed and connected with an inverter, and thus the rotor
of the IM is coupled to the loads. Therefore, an offline identification procedure is usually performed
before the motor is started up. This procedure is also called self-commissioning. One of the two
most-commonly used offline identification methods is to inject a DC voltage to the motor. Another one
is to inject a single-phase AC voltage to the motor instead of performing the traditional blocked-rotor
test, where the motor keeps standstill, since the rotating magnetic field cannot be established without
taking special measures.

2.1. DC-Excited Methods

In the DC-excited test, the pulse width-modulation (PWM) is applied to the phase-A bridge of
the inverter, and lower switches of the phase-B and phase-C are turned on. Thus, an average DC
voltage is injected to the motor. After the motor current comes to the steady state, the equivalent circuit
can be obtained, as it is shown in Figure 2. Accordingly, the stator resistance Rs can be calculated by
measuring the relative DC current through a current sensor. Meanwhile, the DC-link voltage of the
inverter is considerably high, while the output voltage of the inverter is very low, resulting in a small
duty cycle of the PWM signal. In this case, the inverter non-linearity [19–21] related to the dead-time,
turn-on and turn-off delays, and the drop voltage becomes significant. To solve this issue, the output
voltage error compensation is required. On the other hand, the ratio between the current difference and
voltage difference can be obtained, and thus, the resistance is attained, after two DC-excited voltages
are supplied to the motor [15].
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Furthermore, other methods based on the transient voltage or current responses are also developed
to obtain more parameters in addition to the stator resistance after the DC-excited test. For instance,
in [16,17], a high frequency disturbance and a step reversal voltage were injected, respectively, to
identify parameters by means of a first-order recursive least square estimator. In [18], the stator
resistance Rs, rotor resistance Rr, and magnetizing inductance Lm are measured using the observed
discharging waveform, after the power devices of the inverter are switched off. Nevertheless, the DC
signal injection method (i.e., the DC-excited methods) is dedicated to identify the stator resistance.
When more parameters should be identified, additional methods should be associated with the
DC-excited test.

2.2. Single-Phase-AC-Injected Methods

In the single-phase-AC-injected test, the voltage phase difference between the phase-A and
phase-B is 180◦, while the PWM signal for the phase-C is the same as that for the phase-B. Therefore, a
single-phase AC voltage is equivalently applied to the motor, and the phase-B and phase-C are shorted.
Hence, as the motor is kept at a standstill (i.e., the rotating speed ωr = 0), the following assumptions
should be reasonable:

• Slip ratio s = (ωe − ωr)/ωe = 1, and the motor equivalent circuit is shown in Figure 3.
• When the injected voltage frequency is high enough, jωeLm >> Rr + jωeLlr is satisfied, and thus

the magnetizing inductance can be neglected, as shown in Figure 4.
• Considering Lls = Llr in the calculation.
• Ignoring the influence of the skin effect on the rotor resistance and the leakage inductance.

Energies 2018, 11, x FOR PEER REVIEW  4 of 21 

 

Furthermore, other methods based on the transient voltage or current responses are also 
developed to obtain more parameters in addition to the stator resistance after the DC-excited test. For 
instance, in [16,17], a high frequency disturbance and a step reversal voltage were injected, 
respectively, to identify parameters by means of a first-order recursive least square estimator. In [18], 
the stator resistance Rs, rotor resistance Rr, and magnetizing inductance Lm are measured using the 
observed discharging waveform, after the power devices of the inverter are switched off. 
Nevertheless, the DC signal injection method (i.e., the DC-excited methods) is dedicated to identify 
the stator resistance. When more parameters should be identified, additional methods should be 
associated with the DC-excited test. 

2.2. Single-Phase-AC-Injected Methods 

In the single-phase-AC-injected test, the voltage phase difference between the phase-A and 
phase-B is 180°, while the PWM signal for the phase-C is the same as that for the phase-B. Therefore, 
a single-phase AC voltage is equivalently applied to the motor, and the phase-B and phase-C are 
shorted. Hence, as the motor is kept at a standstill (i.e., the rotating speed ωr = 0), the following 
assumptions should be reasonable: 

• Slip ratio s = (ωe − ωr)/ωe = 1, and the motor equivalent circuit is shown in Figure 3. 
• When the injected voltage frequency is high enough, jωeLm >> Rr + jωeLlr is satisfied, and thus the 

magnetizing inductance can be neglected, as shown in Figure 4. 
• Considering Lls = Llr in the calculation. 
• Ignoring the influence of the skin effect on the rotor resistance and the leakage inductance. 

au

lsL

mL

rR lrL

ai

sR

 

Figure 3. Single-phase AC equivalent circuit, where ua is the stator voltage of phase-A respectively, 
Lls is the stator leakage inductance, and Llr is the rotor leakage inductance. 

ua

ia

Rs Lls Rr Llr

 

Figure 4. Single-phase AC equivalent circuit in high frequency, where the magnetizing inductance of 
the motor is neglected. 

2.2.1. Motor Equivalent Circuit Based Methods 

If a single-phase AC voltage is supplied to the motor, the AC voltage can theoretically be 
reconstructed with the switching states and the DC-link voltage, where the AC current of the motor 
can be measurable. Meanwhile, the phase difference between the voltage and current can be obtained 
by means of the Fast Fourier Transform (FFT) method. Therefore, the equivalent circuit impedance 
as well as its real and imaginary parts can be acquired. Accordingly, the motor parameters can be 
estimated in two ways. 

Figure 3. Single-phase AC equivalent circuit, where ua is the stator voltage of phase-A respectively, Lls

is the stator leakage inductance, and Llr is the rotor leakage inductance.

Energies 2018, 11, x FOR PEER REVIEW  4 of 21 

 

Furthermore, other methods based on the transient voltage or current responses are also 
developed to obtain more parameters in addition to the stator resistance after the DC-excited test. For 
instance, in [16,17], a high frequency disturbance and a step reversal voltage were injected, 
respectively, to identify parameters by means of a first-order recursive least square estimator. In [18], 
the stator resistance Rs, rotor resistance Rr, and magnetizing inductance Lm are measured using the 
observed discharging waveform, after the power devices of the inverter are switched off. 
Nevertheless, the DC signal injection method (i.e., the DC-excited methods) is dedicated to identify 
the stator resistance. When more parameters should be identified, additional methods should be 
associated with the DC-excited test. 

2.2. Single-Phase-AC-Injected Methods 

In the single-phase-AC-injected test, the voltage phase difference between the phase-A and 
phase-B is 180°, while the PWM signal for the phase-C is the same as that for the phase-B. Therefore, 
a single-phase AC voltage is equivalently applied to the motor, and the phase-B and phase-C are 
shorted. Hence, as the motor is kept at a standstill (i.e., the rotating speed ωr = 0), the following 
assumptions should be reasonable: 

• Slip ratio s = (ωe − ωr)/ωe = 1, and the motor equivalent circuit is shown in Figure 3. 
• When the injected voltage frequency is high enough, jωeLm >> Rr + jωeLlr is satisfied, and thus the 

magnetizing inductance can be neglected, as shown in Figure 4. 
• Considering Lls = Llr in the calculation. 
• Ignoring the influence of the skin effect on the rotor resistance and the leakage inductance. 

au

lsL

mL

rR lrL

ai

sR

 

Figure 3. Single-phase AC equivalent circuit, where ua is the stator voltage of phase-A respectively, 
Lls is the stator leakage inductance, and Llr is the rotor leakage inductance. 

ua

ia

Rs Lls Rr Llr

 

Figure 4. Single-phase AC equivalent circuit in high frequency, where the magnetizing inductance of 
the motor is neglected. 

2.2.1. Motor Equivalent Circuit Based Methods 

If a single-phase AC voltage is supplied to the motor, the AC voltage can theoretically be 
reconstructed with the switching states and the DC-link voltage, where the AC current of the motor 
can be measurable. Meanwhile, the phase difference between the voltage and current can be obtained 
by means of the Fast Fourier Transform (FFT) method. Therefore, the equivalent circuit impedance 
as well as its real and imaginary parts can be acquired. Accordingly, the motor parameters can be 
estimated in two ways. 

Figure 4. Single-phase AC equivalent circuit in high frequency, where the magnetizing inductance of
the motor is neglected.

2.2.1. Motor Equivalent Circuit Based Methods

If a single-phase AC voltage is supplied to the motor, the AC voltage can theoretically be
reconstructed with the switching states and the DC-link voltage, where the AC current of the motor
can be measurable. Meanwhile, the phase difference between the voltage and current can be obtained
by means of the Fast Fourier Transform (FFT) method. Therefore, the equivalent circuit impedance
as well as its real and imaginary parts can be acquired. Accordingly, the motor parameters can be
estimated in two ways.



Energies 2018, 11, 2194 5 of 21

Firstly, seen from Figure 3, all the motor parameters except for the stator resistance Rs can be
calculated by injecting two stator AC signals with frequencies being ω1 and ω2 to the motor [22–24],
where nonlinear equations should be solved. In [23], the calculation procedures based on the T-form
circuit, Γ-form circuit, and inverse-Γ-form circuit are discussed in detail. Seen from Figure 4, the
equivalent circuit is simplified. Thus, it is easy to calculate the parameters in the equivalent circuit,
which is employed in [25]. Compared with the first method mentioned above (see Figure 3), it does
not require solving nonlinear equations, and thus the computation burden is less but the results are
more precise. However, since the injected AC voltage frequency is relatively high, the influence from
the skin effect becomes unignorable.

2.2.2. Recursive Least Square Method

The least square (LS) method can also be applied to identify the motor parameters offline. The
principle of the LS-based identification is to minimize the square of the error between the actual and
the estimated parameters, making the estimated parameters converge to the actual values. Then,
parameters are identified. Instead of solving large matrix equations, the iterative approach of the
recursive least square (RLS) is developed as

θ̂(N + 1) = θ̂(N) + K(N + 1)
(
y(N + 1)− ϕT(N + 1)θ̂(N)

)
K(N + 1) = P(N)ϕ(N + 1)

[
1 + ϕT(N + 1)P(N)ϕ(N + 1)

]−1

P(N + 1) = P(N)− K(N + 1)ϕT(N + 1)P(N)

(1)

where N is an integer related to the discrete time, θ is the unknown parameters (to be identified),
y is the measurements, ϕ depends on the previous input and output samples, P is the covariance
matrix. For a linear regression model described as y(N) = ϕ(N)θ(N), if y and ϕ are obtained from the
model, the parameters in θ can be identified through the RLS by iterating (1). Accordingly, the motor
mathematical model for the RLS algorithm at standstill is built up, which can also be found in [26].
In [26], a vector-constructing method was employed to eliminate the differential calculation and digital
low-pass filtering, and thus it increases the noise immunity and reduces the complexity.

Although the above methods in the single-phase-AC-injected test can obtain the rotor resistance
and leakage inductance, the skin effect of the rotor bar is also significant, leading to inaccurate
identification of the rotor resistance and leakage inductance. As aforementioned, since the injected AC
signals are usually of high frequency, the skin effect cannot be neglected anymore.

3. Online Parameter Identification

Due to the winding temperature increase, skin effect, and flux saturation, as aforementioned,
the electrical parameters are varying during operation. Thus, it is necessary to identify parameters
in real-time. Many attempts have been made in the literature, where various techniques are applied.
Regardless of these complicated algorithms, simple online compensation methods based on the motor
inherent thermal and electromagnetic characteristics are employed. For example, the stator resistance
can be adjusted according to the linear temperature-resistance relationship [63], if a thermal sensor
(PT100) is embedded in the motor. The magnetizing inductance can be corrected online using the
magnetizing current or flux based on the magnetizing curve [8] measured in no-load tests. Even
though the compensation approach can obtain motor parameters, it is not universal for all applications.
Hence, the algorithms based on the motor mathematical model or artificial intelligence are discussed
in the following.

3.1. Recursive Least Square Technique

Among various identification algorithms, the recursive least square (RLS) is widely used, as it is
fast, efficient, and easy to implement. The general RLS algorithm is described above in (1). Based on
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this, an RLS algorithm with a suitable forgetting factor λ was proposed in the literature to improve the
identification convergence rate as

θ̂(N + 1) = θ̂(N) + K(N + 1)
(
y(N + 1)− ϕT(N + 1)θ̂(N)

)
K(N + 1) = P(N)ϕ(N + 1)

[
λ + ϕT(N + 1)P(N)ϕ(N + 1)

]−1

P(N + 1) = λ−1[P(N)− K(N + 1)ϕT(N + 1)P(N)
] (2)

where λ defines the weight of the history data. In order to apply the RLS algorithm to IMs for online
parameter identification, the mathematical model of the IM operating at the speed of ωr was analyzed
in [27–29,64], where the assumption of dωr/dt = 0 was made to realize the decoupling between the flux
and unknown parameters. Furthermore, a speed constraint was derived in [28] in detail. Moreover, the
number of estimated parameters θi (i = 1, 2, 3, 4, 5) is more than the number of the independent electrical
parameters, where the non-linear relationship of θ3/θ2 = θ4/θ5 can be found among the estimated
parameters according to [64] (i.e., it is over-parameterized). Thus, if an unconstrained minimization
is employed in the RLS algorithm, it fails to compute θ2 as the second column of the matrix R = ϕT ϕ

has a very low value, resulting in that the algorithm is highly sensitive to noise, called ill condition
(θ2 problem). In order to overcome this problem, solutions were developed in two ways, where
either an unconstrained minimization was investigated by considering the constraint θ3/θ2 = θ4/θ5,
or a constrained algorithm was involved. For example, Ref. [28] provides two approaches. More
specifically, the stator resistance was pre-determined and the original mathematical model for RLS
identification is modified; on the other hand, an iterative algorithm was adopted along with the
constraint. Furthermore, in [64], a constrained minimization is proposed to guarantee the convergence
and accuracy.

Nonetheless, the RLS estimation algorithm requires the following inputs: the stator currents,
voltages, and their derivatives. Here, the currents can be measured, while the voltages are reconstructed
using the switching states and the DC voltage. Due to the noise and harmonics in these inputs, filters are
necessary but introduce delays, which thus should be compensated. To achieve accurate identification
of motor parameters, various filters are developed or employed in the literature, including the Bessel
low-pass analog filters, digital finite-impulse response (FIR) differentiator filters [27,64], Butterworth
filters [28], and Chebysheve’s filters [29]. The detailed implementation procedure of the RLS algorithm
is shown in Figure 5.
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Furthermore, the forgetting factor will affect the RLS algorithm performance to a large extent.
If the forgetting factor decreases, the latest data will largely affect the results. Thus, the identified
parameters converge quickly, while the stability is reduced; i.e., the algorithm is apt to diverge. On the
contrary, if the forgetting factor increases, the convergence process is slower, and consequently, the
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identification takes more time to track the actual values while the stability is improved. In particular,
when the forgetting factor is set to 1, the estimation algorithm will degenerate to the conventional RLS.
Hence, an appropriate forgetting factor should be set considering the tradeoff between the convergence
rate and the algorithm stability. In general, the forgetting factor can be determined within 0.9 to 1.0.

3.2. Model Reference Adaptive System Technique

The model reference adaptive system (MRAS) technique is a relatively matured method, which
has been applied in parameter identification due to its simple structure and easy implementation.
The basic principle of the MRAS is described in Figure 6. As observed in Figure 6, an actual motor
is included as the reference model, while the motor mathematical model that contains the unknown
parameters is taken as the adjustable model. The inputs of the two models are the same. Through an
adaptive law, the estimated parameters will converge to their true values by driving the error vector
between the outputs of the reference and adaptive models to zero. Therefore, the unknown parameters
can be identified online by applying the MRAS.
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Based on the error signal formulation in the MRAS model, various MRAS-based identification
methods are investigated; e.g., the methods based on the electromagnetic torque [30–33], rotor flux [34],
stator voltage [31,35], active power [30–33], reactive power [30–33,36], back electromagnetic field
(EMF) [34], etc. In [32,33], the applications of the instantaneous active power, reactive power, and
electromagnetic torque for the rotor resistance identification were discussed. In this case, the reference
models are based on real measurements of the motor current, while the adaptive models are based
on the observer results of the motor mathematical model. In addition, in [37], a unified adaptive
model was presented. Different configuration parameters in the unified model correspond to various
functional candidates to derive the reference and adjustable models for the MRAS identification, where
the dq rotor flux, dq stator voltage, electromagnetic torque, active and reactive power are included.

Clearly, one of the key issues of the MRAS techniques is to design the adaptive law. Usually, the
Popov’s and Lyapunov’s criteria are employed to derive the adaptive mechanisms. Meanwhile, it is
indicated that the two criteria are actually equivalent in terms of designing the adaptive scheme for
the MRAS identification method. As a result, the parameters are estimated according to the criteria,
where a proportional-integral (PI) or integral (I) controller is typically adopted.

Most of the MRAS-based identification methods focus on the estimation of the rotor resistance or
rotor time constant in the sensor-less speed control systems. Additionally, the stator resistance was
also estimated in [65,66]. However, limited by the convergence speed and the algorithm stability, when
three or more parameters should be identified at the same time, it is difficult for the MRAS-based
parameter identification techniques to find a suitable adaptive law that satisfies the stability criteria.
In other words, the MRAS-based parameter identification methods have difficulty in identifying more
motor parameters.
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3.3. Signal Injection Based Technique

When a DC or AC offset voltage is added to the voltage reference for the IM, the motor parameters
can be calculated by extracting the superimposed voltage and current. Although the injected voltage
components may interfere the motor drive system, methods based on the signal injection to identify
motor parameters have attracted much popularity due to their high robustness against measurement
errors. In the following, the DC signal injection and high-frequency AC signal injection methods
are discussed.

3.3.1. DC-Signal Injection

A DC offset voltage can be applied to the motor by superimposing a DC component into the stator
voltage reference in the αβ- or abc-reference frame [38]. Figure 7 exemplifies the implementation of the
DC-signal injection in the αβ-reference frame for online parameter identification. With this method,
the stator resistance can be calculated according to the ratio of the applied DC offset voltage and the
DC bias current as

Rs =
uoffset

DC

ioffset
DC

(3)

where uoffset
DC is the DC offset voltage and ioffset

DC is the extracted DC bias current (from the measurements).
It should be noted that because of the high bandwidth of the current control loop, the DC offset
reference voltage will be cancelled out. Therefore, the DC bias current has to be removed from the
feedback currents in the closed-loop control system, as shown in Figure 7.

Another method to eliminate the current closed-loop impact focuses on adding a sine-wave
current to the current references in the dq-rotating reference frame [11,39], as it is shown in Figure 8.
The frequency of the additional currents is the same as the stator angular frequency ωe, and its
amplitude is the value of the DC offset current ioffset

DC . They can be expressed as

∆isd = ioffset
DC cos ωet, ∆isq = −ioffset

DC sin ωet (4)

where ∆isd and ∆isq are the currents added to the d-axis and q-axis reference current loop, respectively,
as shown in Figure 8.
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Since the expected DC offset current is mixed with the fundamental-frequency and harmonic
currents, various approaches are developed in the literature to extract the DC component for online
parameter identification. For instance, a notch filter was adopted in [11,39] to extract the DC component
from the measured current. The rejection bandwidth of the notch filter is narrow, and around the notch
frequency (e.g., the fundamental frequency), an infinite negative gain is obtained [67]. Thus, the AC
components after the filtering are eliminated, and the desired DC component can be obtained. On the
other hand, the mean value method was employed to obtain the DC component in [12]. As it is known,
the average value of an AC current is zero during one period, while a DC current will shift the average.
Thus, the DC current can be separated from the measured current by averaging it. Furthermore, the
inverter non-linearity has an influence on the DC voltage. The effects of dead time, device voltage
drop, and turn-on/turn-off delay were discussed and compensated in [11,12].
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As shown in Figure 7, the injected DC offset in the αβ-reference frame will be transformed into
AC components in the dq-rotating reference frame, leading to extra torque pulsations at the supplied
stator frequency. A detailed analysis of the torque pulsation has been presented in [12], where it
was further demonstrated that the amplitude of the torque pulsation is proportional to the injected
DC current level instead of load-dependence. In order to reduce the torque pulsations, it has been
introduced in [68] to inject a second-order harmonic to the current in the αβ-stationary reference frame.
Such an algorithm contributes to the mitigation of the q-axis current ripples. In addition, it is worth
mentioning that the DC current cannot be injected continuously, since the current will induce extra
power losses, resulting in a temperature increase. That is, the DC signal should be periodically injected
to avoid significant power losses [39].

Furthermore, the motor temperature can also be obtained from the estimated stator resistance
according to the linear relationship [63] as

R
R0

=
T + k
T0 + k

(5)

where R and R0 are the resistances at the temperatures T and T0, respectively, k being the temperature
coefficient, R0 and T0 are the initial values, and R and T are the estimated.
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3.3.2. High Frequency Carrier Signal Injection

Similarly, a high-frequency carrier voltage can be applied to the motor by superimposing a
high-frequency AC component to the voltage references [40,41], as shown in Figure 9. If the frequency
fh is high enough, the slip frequency for the high frequency component is considered to approach 1, i.e.,
s = (f h − f r)/f h ≈ 1. In this case, the equivalent model of the injected high frequency component [42] is
derived as shown in Figure 10. Therefore, the rotor resistance and leakage inductance can be calculated
by using the high-frequency carrier voltage ∆us_hf and current ∆is_hf. Meanwhile, the high-frequency
carrier current should be extracted from the measured current. To do so, in [40], a band-stop filter was
employed to remove the fundamental-frequency current. In addition, other options by means of a
band-pass filter or fast Fourier transform (FFT) are also possible to separate the high frequency carrier
current from the measurements, as discussed in [40].
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Furthermore, delays appear due to the current sampling, computation, and PWM processing in
digital control systems [69]. Such delays will bring phase errors between the high-frequency voltage
and current. Therefore, in [42], the online phase delay compensation was presented under different
frequencies. Although the high frequency signal injection method can identify most of the motor
parameters, the carrier frequency is usually at 200 Hz or above, resulting in that the switching frequency
of the inverter should be higher to avoid the carrier distortion. Therefore, the method based on the
high frequency carrier signal injection is not as popular as the DC signal injection approach for online
parameter identification in IMs.

3.4. Observer Based Technique

An observer can also be employed to identify motor parameters. Basically, the observer outputs
are subtracted by the motor actual measurements, and then multiplied with a matrix L. Subsequently,
the multiplication is added to the state equations of the observer, resulting in a so-called Luenberger
observer as { .

x̂(t) = Ax̂(t) + L|ŷ(t)− y(t) |+ Bu(t)
y(t) = Cx̂(t)

(6)

where ˆ represents the estimated variables, x(t) is the state variables, y(t) is its outputs, and u(t) is
the inputs at time t. For the IM parameter identification, as the motor model is nonlinear, it is then
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approximated using the Taylor expansion to linearize the model around the previous estimated state.
To ensure the validity of this process, the linearization should be a good approximation of the nonlinear
model. With these considerations, extended Luenberger observers (ELO) were proposed to identify
motor parameters in [43–46], where the unknown parameters were augmented to state variables. Thus,
the dimension of the state variables was expanded. More specifically, in [43], a full-order extended
Luenberger observer (FELO) and a reduced order extended Luenberger observer (RELO) for the IM
parameter identification were derived, where a joint flux-speed observer and a joint flux-rotor time
constant observer were also employed. Furthermore, in [46], three different FELOs related to the motor
parameters were implemented and validated.

Additionally, the extended Kalman filter (EKF) is an optimization algorithm that can overcome
the noise sensitivity issues in the RLS algorithm. Similar to the ELO, the EKF attempts to address the
nonlinear issue using a linear approximation, where the linearization of the current state estimation
is performed. For the IM parameter identification, there are the inherent nonlinearities in the IM,
and however, the EKF is well suitable to process nonlinearities. Thus, it is feasible for the parameter
identification. In general, there are prediction and filtering stages in the EKF algorithm, where the
future predicted states are determined in the prediction stage and the estimated states are obtained
by adding corrections to the predicted states. A detailed EKF algorithm was discussed in [47] to
estimate the inverse rotor time constant according to the measured stator currents and rotor speed.
In this case, the magnetizing inductance was obtained through a look-up table according to the
function between the magnetizing current and inductance. Furthermore, in [49], the EKF and RLS
were combined to identify motor parameters, where the former (i.e., the EKF algorithm) focuses on the
rotor resistance and the latter (i.e., the RLS algorithm) is dedicated to the estimation of the rotor inertia
constant, damping constant, and disturbed load torque. However, the implementation of the EKF
demands a high computational burden. Therefore, many solutions were demonstrated to overcome
this problem in the literature. For instance, in [48], a reduced-order EKF model was presented to
lower the computation efforts to approximately one third of that demanded by the full-order EKF.
Furthermore, Barut et al. have made more efforts on the estimation problem in terms of the stability
and computation [50,51]. More specially, in [50], the “braided” EKF algorithm that consists of two EKFs
was demonstrated to estimate the stator resistance and rotor resistance. As there are two EKF models
in this algorithm, the estimated parameter Rs or Rr in the previous EKF model is then passed on to the
next EKF model, where it is considered to be constant in the process. In [51], a bi-EKF algorithm was
proposed for the rotor and stator resistance estimation, in which a single EKF algorithm was employed.
More specifically, based on two extended IM models, the single EKF algorithm uses consecutively two
inputs. As a result, less memory is required than the previous “braided” EKF algorithm.

Another observer—the sliding mode observer (SMO)—employs the non-linear high-gain feedback
in a way that the estimated states are driven to a hypersurface. In the hypersurface, theoretically,
the estimated output and the measured match well. In this observer, the non-linear gain is typically
implemented with a switching function as

sgn(x) =

{
1, if x > 0
−1, if x < 0

(7)

where x indicates the error between the observed states and measurements. Compared to the Kalman
filter, the SMO algorithms are also of high attractiveness, but the implementation is relatively simpler.
An SMO-based parameter identification method can provide high robustness, where a suitable adaptive
law should be employed. In [8], an SMO with the Popov’s hyper-stability theory was developed to
estimate the rotor speed and stator resistance, where the magnetizing inductance was given according
to a predetermined magnetizing curve. Furthermore, a Luenberger-SMO along with the Lyapunov’s
function was adopted to estimate the stator and rotor resistance, where the errors between the estimated
and measured were multiplied by the Luenberger gain and the sliding-mode gain for the feedback



Energies 2018, 11, 2194 12 of 21

correction in [53,54]. In this case, the Luenberger observer corrects the estimated values, while the
sliding mode term determines the robustness of the observer. Nevertheless, with an appropriate
observer, the motor parameters can be identified online with high robustness.

3.5. Other Methods

In addition to the above parameter identification methods for IMs, there are other online parameter
identification possibilities based on the artificial intelligence technique; e.g., artificial neural network
(ANN), genetic algorithm (GA), and machine learning. When using an ANN algorithm for parameter
identification [55–59], the type of the neutral network and the number of the layers should be
determined first. Online training based on a learning rule will then be processed to minimize the error
function, and consequently, the weights can be adjusted to calculate the parameters. For example,
in [59], a two-layer feed-forward neural network was investigated, where a back-propagation technique
was adopted to train the algorithm for the rotor resistance identification. In contrast, in this case, the
stator resistance was separately estimated using a recurrent neural network. Moreover, the GA is a
searching algorithm based on the natural selection and evolution. It is of high robustness and thus, the
GA is widely applied in global optimization. Since the GA is not limited by the abilities (e.g., continuity,
differentiability), it can decompose complex issues that the traditional algorithm cannot solve, showing
its great potential in estimating motor parameters. Such a possibility can be found in [60–62]. However,
because of the low convergence rate, it is difficult to apply the GA in practical online applications.
Lastly, with the declining price of data storage, a large amount of historical data can be stored and
processed. In that case, machine-learning techniques may emerge in the parameter identification of IM
systems. Nevertheless, according to the above discussions, a summary of the parameter identification
methods for IMs is presented in Table 1 in terms of typical identified-parameters and implementation
issues, where rotor time constant Tr = Lr/Rr.

Table 1. A summary of parameter identification methods for IMs.

Categories Methods Typically Identified
Parameters Implementation Issues

Offline
identification

DC-excited Rs
Reconstructed voltage error caused by the
inverter non-linearity

Single phase AC
injection Rr, Lm, Lls, Llr

Inaccurate rotor impedance because of the skin
effect

Online
identification

Recursive least square Rr, Lm, Lls, Llr

Limited speed acceleration as the assumption
of dωr/dt = 0;

Noise and harmonics sensitivity

Model reference
adaptive system

Tr Difficult to design a suitable adaptive law to
satisfy the stability criteria of the algorithmRs

DC signal injection Rs

Reconstructed voltage error caused by the
inverter non-linearity;

Torque pulsation caused by injected DC signal

High frequency carrier
signal injection Rr, Lls, Llr

High switching frequency demand;

Inaccurate rotor impedance because of the skin
effect

Extended Luenberger
observer Tr Difficult to design a gain matrix L

Extended Kalman filter Rs, Rr Heavy calculation burden

Sliding mode observer Rs, Rr
Difficult to design an appropriate non-linear
high-gain and adaptive law

Artificial neural network Rs, Rr
Dependence on training samples, long training
time and low precision

Genetic algorithm Rs, Rr, Lm, Lls, Llr
Low convergence rate and historical data
storage demand
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4. Simulation Results

In this section, in order to verify the feasibility, accuracy, and dynamic performance of the
discussed algorithms, an example inverter-fed IM system is adopted to show the simulation results in
MATLAB. On one hand, the methods based on the recursive least square, model reference adaptive
system, and DC injection are commonly used and easily implemented. On the other hand, seen
from Table 1, only one or certain specific parameters are obtained from each method, and thus it
is insufficient to obtain a number of parameters if only one method is applied. Therefore, methods
based on the RLS, MRAS, and DC signal injection are selected to provide their identification results
by considering parameter variations in this section. It should be noted that certain parameters of
the algorithms should be tuned properly according to requirements in practice. Nevertheless, the
simulations are performed to demonstrate the algorithms. The nominal parameters of the IM are
shown in Table 2, and the switching frequency of the inverter is 1 kHz. In the simulation model,
the stator leakage inductance and rotor leakage inductance cannot be separated, and thus Lls = Llr
is considered.

Table 2. Parameters of the induction motor in simulations.

Parameters Values

Rated power 160 kW
Rated voltage 1287 V
Rated current 88 A

Rated frequency 84 Hz
Stator resistance 0.223 Ω
Rotor resistance 0.103 Ω

Stator leakage inductance 0.00158 H
Rotor leakage inductance 0.002076 H
Magnetizing inductance 0.0438 H

4.1. Offline Recursive Least Square Method

The offline RLS method is firstly implemented in simulations, where the frequency of the supplied
single-phase-AC voltage is 50 Hz. The Butterworth filter is utilized and discretized by the Euler
method to the obtained voltage, current, and their derivatives for further calculation. The estimated
parameters are shown in Figure 11. Since there is a tuning period of the RLS algorithm, the estimated
parameters shown in Figure 11 are demonstrated from t = 0.5 s. As it can be observed in Figure 11,
the estimated values converge to the nominal values after some iterations. The final estimated values
as well as the percentage errors are provided in Table 3. It is demonstrated in Table 3 that the errors
are always below 0.8%, thus the offline RLS algorithm can accurately identify the motor parameters.
In practice, due to nonlinearity, the estimation accuracy may be degraded, and therefore, certain
nonlinearity compensation methods should be adopted.

Table 3. Identification values of the IM using the offline RLS method at steady state.

Parameters Rs Ls σ Tr

Rated values 0.223 Ω 0.04538 H 0.07849 0.4454 s
Estimated values 0.2229 Ω 0.04524 H 0.07879 0.4487 s
Estimated error 0.0448% 0.308% 0.38% 0.74%
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Figure 11. Identification results of the IM using the offline recursive least square method, where the
stator inductance Ls = Lls + Lm, the total leakage factor σ = 1 − Lm

2/Ls/Lr and Lr = Llr + Lm.

4.2. Online Recursive Least Square

The online RLS technique in the dq-reference frame is applied to the motor according to [28], and
the related parameter configuration is as follows:

• The cut-off angular frequency of the Butterworth filter is 200 rad/s.
• The forgetting factor is set to 0.95.
• The initial values of parameters are set to zero.

When the stator resistance is considered first, the corresponding online estimated parameters are
shown in Figure 12. Similarly, there is an adjusting period for the online RLS technique, and thus, the
results are presented from t = 0.5 s.

Due to the impacts of the temperature, skin effect, and flux saturation, parameters are changing
during the motor operation in practice. To validate the dynamic response of the online RLS algorithm,
parameter step variations are imposed through the motor model in the simulation to represent the
extreme situation in the simulation. Accordingly, the rotor resistance increases to two times at t = 1.5 s,
and on the contrary, the magnetizing inductance decreases to a half at t = 2.0 s. It can be observed in
Figure 12 that the performance of the online RLS technique is very good, since the estimated values
approach the actual values although it takes some iterations to follow the new changed parameters. The
estimated values along with parametric error are summarized in Table 4. It can be seen in Table 4 that
the steady-state error is small, and thus, the online RLS algorithm can identify parameters accurately
in real time, where the nonlinearity should be considered. In addition, seen from Figure 12, there
is a slight fluctuation in the estimated rotor time constant from 0.5 s to 1.5 s, but the error is in a
reasonable range.
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Figure 12. Identification results of the IM using the online recursive least square algorithm, where the
rotor resistance and magnetizing inductance were changed at t = 1.5 s and 2 s, respectively.

Table 4. Identification values of the IM using the online RLS algorithm at steady state.

Parameters Ls σ Tr

Rated values 0.02348 H 0.14805 0.23277 s
Estimated values 0.02416 H 0.14626 0.24336 s
Estimated error 2.89% 1.2% 4.55%

4.3. Model Reference Adaptive System

The MRAS method based on rotor flux models is performed to estimate the motor parameter
(i.e., the rotor time constant) according to [34]. In order to verify the effectiveness and feasibility of
the MRAS method, the rotor resistance is changed from the rated value to two times of the rated at
t = 1 s. The corresponding estimated rotor time constant is shown in Figure 13, where kp = 0.001 and
ki = 0.1 are the proportional and integral gains of the PI controller, respectively. The estimated value
converges to the actual value in a short period. Accordingly, the actual and estimated parameters are
respectively 0.22699 Ω and 0.22260 Ω at steady state. It can be observed in Figure 13 that the estimated
line almost overlaps with the rated curve, and thus the estimated error at steady state is small.



Energies 2018, 11, 2194 16 of 21

Energies 2018, 11, x FOR PEER REVIEW  16 of 21 

 

 

Figure 13. Estimated rotor time constant of the IM using the model reference adaptive system method, 
where the rotor resistance was changed at t = 1 s. 

4.4. DC Signal Injection 

The algorithm in [11] is applied to the motor to identify the stator resistance, where the injected 
DC current is chosen as 10 A. With the injection occurring at t = 0.5 s, the stator resistance can be 
calculated by measuring the DC offset voltage and current. The result is shown in Figure 14, where 
the sharp decrease of the command torque leads to a fluctuation of the estimated stator resistance at 
around t = 0.6. As the responsive DC bias current requires a period to reach the steady state because 
of the motor inductance, the estimated stator resistance follows the rated value at t = 1.5 s. Then, a 
step variation of the stator resistance is applied, and it takes almost 1 s to track the actual value. 
Compared to the actual resistance Rs = 0.446 Ω, the estimated Rs = 0.4414 Ω at steady state is within 
an error of 1%. Accordingly, it is very clear that the DC signal injection method can obtain very high 
precision, and the effectiveness of the method is verified. 

0 0.5 1 1.5 2 2.5 3
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Actual value

Estimated value

 

Figure 14. Estimated stator resistance of the IM using the DC signal injection method, where the stator 
resistance was changed at t = 1.5 s. 

Figure 13. Estimated rotor time constant of the IM using the model reference adaptive system method,
where the rotor resistance was changed at t = 1 s.

4.4. DC Signal Injection

The algorithm in [11] is applied to the motor to identify the stator resistance, where the injected
DC current is chosen as 10 A. With the injection occurring at t = 0.5 s, the stator resistance can be
calculated by measuring the DC offset voltage and current. The result is shown in Figure 14, where
the sharp decrease of the command torque leads to a fluctuation of the estimated stator resistance at
around t = 0.6. As the responsive DC bias current requires a period to reach the steady state because of
the motor inductance, the estimated stator resistance follows the rated value at t = 1.5 s. Then, a step
variation of the stator resistance is applied, and it takes almost 1 s to track the actual value. Compared
to the actual resistance Rs = 0.446 Ω, the estimated Rs = 0.4414 Ω at steady state is within an error of
1%. Accordingly, it is very clear that the DC signal injection method can obtain very high precision,
and the effectiveness of the method is verified.
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From the above-discussed algorithms, the percentage errors of the estimated parameters at steady
state are further summarized as shown in Table 5. Among these methods, the offline RLS can provide
precise results. However, further online identification techniques should be used to track parameter
variations in practice. By contrast, the online RLS identification algorithm has less accuracy. When
the MRAS or DC-signal injection method is adopted, only one parameter can be identified, and the
identification result is relatively accurate. In addition, the DC signal injection has the slowest response
because of the magnetizing inductance, whereas the response time of the MRAS relies on the values
of kp and ki, as demonstrated in the above simulations. The online RLS algorithm can converge to
the steady state after a few iterations. As a consequence, in all, if several electrical parameters of IMs
are expected to be obtained, different algorithms should be combined to exploit their characteristics
in practice.

Table 5. Estimated error of the selected identification algorithms at steady state.

Parameters Rs Ls σ Tr

Offline RLS 0.0448% 0.308% 0.38% 0.74%
Online RLS - 2.89% 1.2% 4.55%

MRAS - - - 0.05%
DC signal injection 1% - - -

5. Conclusions

The control performance of induction motors highly depends on the knowledge of motor
parameters. Many attempts have thus been made for offline parameter identification, and they are
mainly divided into the DC-excited-based and single-phase-AC-injection-based methods. However,
due to the temperature change in motors, skin effect, and also flux saturation, motor parameters are
varying during operation. In this case, offline parameter identification methods lose the effectiveness.
That is, the motor control performance cannot be ensured. Therefore, online parameter identification
algorithms have been developed to obtain the motor parameters in real-time. For the online parameter
identification, it can be achieved mainly using the recursive least square method, the model reference
adaptive system, the signal injection, and additional observers. This paper aims at providing a review
of offline and online parameter identification techniques for motor drive applications. The basic
principle of the above methods was illustrated in this paper, and the main implementation issues and
solutions were also discussed. In order to demonstrate these techniques, simulations on an induction
motor with the discussed parameter identification methods were performed.
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