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Abstract: Plug-in hybrid electric buses (PHEBs) is some of the most promising products to address
air pollution and the energy crisis. Considering the switching between different working modes often
bring about sudden changes of the torque and the speed of different power sources, which may lead
to the instability of the power output and affect the driving performance and ride comfort, it is of great
significance to develop a real-time optimal energy management strategy for PHEBs to achieve the
optimization of fuel economy and drivability. In this study, the proposed strategy includes an offline
part and an online part. In the offline part, firstly, the energy conversion coefficient s(t) is optimized
by linear weight particle swarm optimization algorithm (LinWPSO), then, the optimization results of
s(t) are converted into a 2-dimensional look-up table. Secondly, combined with three typical driving
cycle conditions, the gear-shifting correction and mode switching boundary parameters that affect the
drivability of the vehicle are extracted by dynamic programming (DP) algorithm. In the online part,
combined with the s(t), the gear-shifting correction and mode switching boundary parameters which
are obtained through offline optimization, the real-time energy management strategy is proposed to
solve the trade-off problem between minimizing the fuel consumption and improving the drivability
and riding comfort. Finally, the proposed strategy is verified with simulation, the results show that the
proposed strategy can guarantee the engine and the electric motor (EM) work in the high-efficiency
area with optimal energy distribution while keeping drivability in the variation of driving circle.
The overall performance is improved by 18.54% compared with the rule-based control strategy.
The proposed strategy may provide theoretical support for the optimal control of PHEB.

Keywords: plug-in hybrid electric bus; linear weight particle swarm optimization; dynamic
programming; fuel economy; drivability

1. Introduction

In recent years, new energy vehicles have developed rapidly due to the demand for energy
conservation and environmental protection. Plug-in hybrid electric vehicles (PHEVs) have attracted
much attention due to their combination of the advantages of pure electric vehicles and fueled
vehicles [1–3]. The powertrain of PHEVs is usually composed of motors, engines, and other power
sources, which are coordinated to form a variety of working modes through the clutch or the planetary
gear. Over the past few years, PHEVs with different configurations have been applied to various
fields [4], whereas in the public transport areas, the single-shaft parallel configuration equipped with
automated mechanical transmission (AMT) has become very popular owing to its compact architecture
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and efficient operating modes [5]. The performance of the PHEV is closely related to the energy
management strategy (EMS). A reasonable EMS can allocate the power flow efficiently, give full play
to the advantages of the engine and motor, and achieve the best performance of the vehicle.

Generally speaking, the EMS of PHEVs can be divided into two categories: the rule-based
EMS and the optimization-based EMS. The rule-based strategies have shorter computation times
and reliable application, and the rules can be set by drawing on practical engineering experience,
with reference to engine optimal operating points and offline optimization strategy extraction [6].
The rule-based control strategies include deterministic rule-based methods and fuzzy logic rule-based
methods [7]. For example, some researchers proposed a classical rule-based energy management
strategy for PHEVs, which exhibited good reliability and stability in test driving cycles [8–10]. At the
same time, many scholars have proposed fuzzy logic rules [11–13]. Although the rule-based EMS
is easy to formulate, its rules need to be determined by a large number of experiments or practical
calibrations. Once the working conditions change, it is necessary to set new rules, otherwise the fuel
economy may get worse. Compared with the rule-based control strategy, the optimal control strategy
can provide better energy allocation.

The optimization-based approaches can be further divided into global optimization and real-time
optimization. As global optimization algorithms, dynamic programming (DP), particle swarm
optimization (PSO) and genetic algorithm (GA), are widely applied in the solution process of the energy
management problem of PHEVs [14,15]. Since the use of DP algorithm might be an effective way to
design a theoretically global optimal EMS [16,17], a lot of studies on the DP-based strategy for PHEVs
have been carried out. Peng [18] used the DP algorithm to optimize the fixed condition and obtained
an improved control regulation. However, this method is only beneficial to the vehicles running on
a fixed route. Once the route changes or the working conditions are unknown, it is not applicable.
To solve the above problem, references [19–21] employed a driving pattern recognition technique of
switching among the control rule sets extracted from DP results of each representative driving pattern,
and the generality of the rules was realized. Besides, considering the time consuming of DP, it is
difficult for a DP-based algorithm to be realized in practice from an engineering perspective. Chen [22]
used quadratic programming and simulated annealing method together to obtain the optimal result.
Compared with the DP algorithm, computation time was saved without affecting the calculation
accuracy. In [23,24], a novel pseudo-spectral power management algorithm was presented, and the
results showed that this algorithm was numerically more efficient than DP and was able to achieve a
solution very close to that of DP.

For real-time optimization control, the equivalent consumption minimization strategy (ECMS)
and model predictive control (MPC) are the two most representative methods. On the basis of real-time
information provided by historical driving data, mathematical models or intelligent transportation
systems, MPC can predict the torque requirements of vehicles and optimize the energy allocation ratio
to achieve low fuel consumption and emission [25,26]. However, the MPC control effect depends on the
future driving information prediction accuracy, which remained to be an open question for now [27–29].
Based on Pontryagin’s minimum principle, the ECMS simplifies the dynamic optimization problem into
an equivalent instantaneous optimization problem, which reduces the computational complexity of
the optimal algorithm and is suitable for real-time controllers. In ECMS, energy conversion coefficient,
i.e., s(t) is a key dynamic variable, which determines the real-time performance [30]. In order to
obtain accurate s(t), many scholars have presented improved methods. Reference [31] obtained s(t) by
predicting the future road speed, but this method needs a lot of accurate prediction. Kessels [32] used
fuzzy control-based ECMS to deal with the complex relation between fuel economy and the state of
charge (SOC). However, the s(t) accuracy of this method depends on the knowledge and experience
of the expert. In [33,34], feedback control was used to adjust the s(t). However, due to the discharge
characteristics of large capacity batteries, this method cannot be directly applied to PHEBs. Based on
these valuable research works, using optimization methods may be a fruitful direction in ECMS to
obtain an optimized s(t).
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However, the EMS mentioned above mainly concentrate on the fuel economy and the emissions
without considering the drivability and the ride comfort. For the PHEB, the switching between different
working modes often brings a sudden change of the torque and the speed of different power sources,
which leads to the instability of the power output and affects the driving performance and ride comfort.
At the same time, the frequent gear-shifting will also affect the drivability of vehicles. Therefore, it is
worthwhile to study the improvement of the drivability and ride comfort on the premise of ensuring
fuel economy. In [35,36], an insightful method that simultaneously optimizes the power split and
the gear-shifting is proposed. However, due to the closely interactive relationship between power
split and gear-shifting, it would break the optimal decisions and worsen the vehicle fuel economy
considerably if any changes happen to the optimal gear-shifting to obtain good drivability. Moreover,
the simultaneous optimization would highly increase the calculation burden [37]. Therefore, it is
necessary to decouple the gear-shifting logic from the whole optimization.

In this paper, considering the improvement of the drivability and economic performance of the
PHEB, a real-time EMS is proposed. The proposed strategy includes an offline part and an online
part. The offline optimization consists of two parts: the first part is to obtain the energy conversion
factor s(t). First, the driving cycles are divided into segments based on actual bus stops, then the s(t)
of each segment is optimized by linear weight particle swarm optimization algorithm (LinWPSO).
The optimization results of s(t) can be used to make real-time adjustments to online control strategy.
The second part is that the corresponding control parameters that affect the vehicle drivability and
riding comfort are extracted by DP algorithm, which includes AMT gear-shifting strategy and mode
switching boundary parameters. In the online part, combining with the s(t), AMT gear-shifting
correction and mode switching boundary parameters which are obtained through offline optimization,
the real-time EMS is proposed to solve the trade-off problem between minimizing the fuel consumption
and improving the drivability and ride comfort.

The organization of this paper is as follows: Section 2 illustrates the compositions and
mathematical models of the plug-in hybrid powertrain. Section 3 describes the problem formulation
and the optimal strategy. The AMT gear-shifting correction and mode switching boundary parameters
are extracted in Section 4. Then, the optimization results and the comprehensive performance analysis
are presented in Section 5. The conclusions are presented in Section 6.

2. Configuration of the Power Drive System and the PHEB Control Method

2.1. Configuration of the Power System and Work Mode

The schematic of the single-shaft parallel hybrid configuration with AMT is shown in Figure 1.
In this configuration, the engine and the electric motor (EM) can drive the vehicle separately or together,
and it also has the function of braking energy recovery. The fundamental parameters of the target
vehicle researched in this paper are shown in Table 1.

Table 1. Main parameters of the PHEB.

Items Detailed Information

Total vehicle mass 18,000 kg

Engine CNG, 5.9 L, nominal power: 172 kw,
Max torque: 678 Nm

EM Permanent magnet, max torque: 750 Nm,
Nominal/peak power: 70 kw/115 kw

Battery Capacity: 120 Ah, voltage: 336 V
AMT 5-speed, gear ratio: (6.11, 3.66, 2.17, 1.42, 1)

Final drive 6.14
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As shown in Figure 1, the hybrid system has five typical operating modes: pure electric mode,
engine driving mode, hybrid driving mode, driving charging mode, and braking energy recovery mode.
In actual operation, with the appropriate energy management strategy, the hybrid system switches
among these modes according to different torque requirements to improve the energy economy. In the
following subsection, the quasi-static models of components are established.

2.2. System Models

2.2.1. Vehicle Longitudinal Dynamics

According to the vehicle longitudinal dynamics equation, the traction acting on the wheel Ft can
be written as:

Ft = Fi + Fro + Fl + Fst (1)

where Fi, Fro, Fl and Fst are the acceleration resistance term, the rolling resistance term, the aerodynamic
drag force term, and the gradient resistance term, respectively. Their expressions are shown as follows:

Fi = m× .
vrv (2)

Fr = ( fr1 + fr2 × v)×m× g× cos a (3)

Fl =
1
2
× ρa × CD × A f × v2

rv (4)

Fst = m× g× sin a (5)

where m is the vehicle mass, g is the gravity acceleration, fr1 and fr2 are the rolling resistance coefficient,
ρa is the air density, CD is the aerodynamic drag coefficient, Af is the bus frontal areas, α is the road
angle, vrv is the vehicle speed.

According to (1)–(5), the vehicle’s main reducer demand torque Twh could be obtained as follows:

Twh =

{
rwhFt + Jwh

.
wwh + Twh,loss, if v > 0

0, if v = 0

}
(6)

where rwh is the wheel radius, Jwh is the wheel moment of inertia, Twh,loss is the wheel torque loss,
.

wwh is the wheel acceleration.
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2.2.2. Transmission System Model

The transmission system model includes the gearbox model and the main reducer model.
The gearbox plays an important role in the powertrain, changing the gear ratio to meet the traction
requirements of the vehicle under different driving conditions. The main reducer is used to transmit
the torque and the speed of the gearbox to the driving wheels. The structure of the main reducer is
similar to that of the gearbox, but it has only one transmission ratio. The relationship between angular
velocity at the input of the gearbox wgb and the wwh can be calculated by:

wgb = igb × wwh (7)

At the same time, the demand torque of the gearbox Tgb could be obtained as follows:

Tgb =


Twh

ηgb×igb
i f Twh ≥ 0

Twh×ηgb
igb

i f Twh < 0
(8)

where ηgb is the efficiency of transmission system, igb is the total ratio of transmission system.

2.2.3. Engine Model

There are many kinds of engine modeling methods, which mainly include experimental modeling
and theoretical modeling. In theoretical modeling methods, it is difficult to apply to the optimization
algorithm, because the model is complex, the calculation time is long, and the parameters that need
to be identified are numerous. Therefore, the steady-state model of a CNG engine is adopted in this
paper, the fuel consumption at each moment can be obtained by checking the fuel consumption MAP
of the engine:

.
m f =

Te × we × be

367.1× r× g
(9)

where ωe is the speed of engine, ρ is the density of CNG, be is the fuel consumption rate. The be could
be obtained by look-up table according to Te and ωe at any given time, the fuel consumption contour
map is shown in Figure 2.
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2.2.4. EM Model

This paper chooses permanent magnet synchronous motor, which can work as a traction motor
and a generator inthe driving process and the braking process, respectively. The EM model is built
using experimental data as well as the engine model.
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When the EM is used as a traction motor, the EM power Pm can be calculated by Equation (10)
and when the EM is used as a generator, Pm can be calculated by Equation (11):

Pm =
Tm ×ωm

ηm
(10)

Pm = Tm ×ωm × ηg (11)

where ωm is the speed of EM. ηm and ηg are the efficiency when the EM is used as the motor and the
generator, respectively. ηm and ηg could be obtained through look-up table, and the EM efficiency
diagram is shown in Figure 3.
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2.2.5. Battery Model

For simplicity, the battery is assumed to operate at aconstant temperature and is modeled by the
Rint model [14,15], as shown in Figure 4.
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Figure 4. Rint model of the battery.

According to Ohm’s law, the output load voltage is expressed as:

VBT(SOC, IBT) = Voc(SOC)− Ri(SOC, sign(IBT)) · IBT (12)

where IBT is current of battery, Voc (SOC) and Ri (SOC, sign (IBT)) are the open circuit voltage and the
internal resistance of the battery, respectively, which are all related to SOC. The relationships between
battery SOC and open circuit voltage are fitted according to the experimental results, as shown in
Figure 5.
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According to the Equation (12), the battery output power PBT could be obtained as follows:

PBT = VBT · IBT = Voc · IBT − Ri · I2
BT (13)

By simple circuit analysis and calculation, the output current of battery IBT could be obtained
as follows:

IBT(SOC, sign(PBT)) =
Voc(SOC)−

√
V2

oc(SOC)− 4Ri(SOC, sign(IBT)) · PBT
2Ri(SOC, IBT)

(14)

Then, the state equation of SOC can be calculated by:

SOC(k) =
1

Q0

t=k∫
t=k−1

IBT(SOC(k− 1), sign(PBT))dt + SOC(k− 1) (15)

where SOC(k) is the SOC of the battery at the time k, Q0 is the capacity of the battery.

3. The Energy Management Optimization for REEBs

PHEB energy management strategy is the core function of the vehicle controller, which has a great
impact on vehicle performance. For the single axis parallel hybrid city bus with AMT, the frequent
gear-shifting and mode switching process will be accompanied by power interruptions, which affects
the riding comfort and driving stability. Therefore, it is necessary to consider the drivability of the
vehicle. To improve this situation, a novel algorithm is brought forward to improve the fuel economy
and the drivability of the PHEB in any given city-bus driving cycle. The diagram of the algorithm is
shown in Figure 6. As shown in Figure 6, the proposed strategy includes two parts, i.e., the offline part
and the online part.

To clearly show the proposed strategy, the detailed procedure can be divided into three parts.
Part one: s(t) is obtained through offline optimization. First, the driving cycles are divided into
segments according to the actual positions of the bus stops. Then, the s(t) of each segment is optimized
by LinWPSO. Last, the optimization results of s(t) are converted into a 2-dimensional look-up table,
which can be used to make real-time adjustments to online control strategy. Part two: the AMT
gear-shifting correction and mode switching boundary parameters that have obvious influence on
the drivability of the vehicle are obtained by an offline DP algorithm. Part three: combined with the
parameters of offline optimization, a real-time optimal EMS can be developed to solve the instantaneous
optimization problem for the studied PHEB. Finally, the proposed strategy was verified in a real-world
driving cycle in simulation.
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3.1. Real-Time Optimal Energy Management Strategy 
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3.1. Real-Time Optimal Energy Management Strategy

The ECMSis used more in the PHEV energy management strategy. It makes the electrical
consumption of the motor equivalent to fuel consumption, and it also makes the overall equivalent fuel
consumption of each moment of the system minimum to achieve local optimal. The ECMS-based PHEV
energy management strategy can be described like this: at a certain time t, there is an optimal control
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vector [u∗ECMS(t)], which minimizes the system cost function JECMS(t) at this moment. Their expressions
are shown as follows:

JECMS(t) =
.

m f (t) + s(t)× .
mm,eq(t) (16)

[u∗ECMS(t)] = argminJECMS(t) (17)

where
.

m f (t) is the engine fuel consumption rate, s(t) is the energy conversion coefficient, which canbe
attained by the following offline optimization.

.
mm,eq(t) is the equivalent fuel consumption rate of the

motor, u∗ECMS(t) is the control variable.
The standard ECMS only considers the energy distribution. However, while concerning the

energy distribution, this paper also considers the driving performance of the vehicle. Therefore,
based on ECMC, this paper proposes a new real-time management strategy. The optimal control
problem is to find the control input u∗(t) to minimize the following cost function:

J1(t) = δ
[ .
m f (t) + s(t)× .

mm,eq(t)
]
+ (1− δ)

.
mm,eq(t) (18)

where δ is the mode switching boundary parameters, which can be attained by the next offline
optimization. When δ = 1 the engine and EM work together to drive the vehicle, when δ = 0, the EM
drives the vehicle alone.

The EM equivalent fuel consumption rate
.

mm,eq(t) can be obtained:

.
mm,eq(t) =

1
Qlhv

×
{

1
ηm(Tm,req(t),ωm(t)) × Tm,req(t)×ωm(t), Tm,req(t) > 0

ηm(Tm,req(t), ωm(t))× Tm,req(t)×ωm(t), Tm,req(t) < 0
(19)

where Qlhv is the low calorific value of fuel, ηm,req(Tm,req(t), ωm(t)) is the EM efficiency, Tm,req(t) the EM
demand torque, ωm(t) is the EM speed.

For a single-axis parallel PHEB, when the clutch is closed, the engine speed is equal to the motor
speed, so the energy distribution ratio is replaced by the torque distribution ratio. The best control
vector is shown as follows:

[u∗(t)] = [T∗e (t), T∗m(t), r∗AMT(t)]
T (20)

where T∗e (t) is the engine torque, T∗m(t) is the EM torque, r∗AMT(t) is the AMT gear-shifting rules,
which can be attained by the following offline optimization.

Considering the actual operating performance of the PHEB, the operating state of the engine,
EM and battery should be limited by the following constraints:

ωm,min≤ ωm(t) ≤ωm,max

Te,min(ωe(t))≤ Te(t)≤ Te,max(ωe(t))
Tm,min(ωm(t), SOC(t))≤Tm(t)≤ Tm,max(ωm(t), SOC(t))

SOCmin≤ SOC(t)≤SOCmax

rAMT,min≤ rAMT(t)≤ rAMT,max

(21)

where ωm,min, ωm,max are the EM speed lower limit and upper limit, Te,min(ωe(t)), Te,max(ωe(t)) are
the engine torque lower limit and upper limit, Tm,min(ωe(t),SOC(t)), Tm,max(ωe(t),SOC(t)) are the EM
torque lower limit and upper limit, SOCmin, SOCmax are the battery SOC lower limit and upper limit.
rATM(t) is the gear of the AMT, rATM,min, rATM,max are the maximum gear and minimum gear.

3.2. s(t) Optimization

In order to get better economic performance with the ECMS control strategy, the choice of s(t)
is especially critical. If the value of s(t) is large, the engine fuel consumption will increase. On the
contrary, the power consumption will increase and the battery SOC will drop at a faster rate. Moreover,
the s(t) should not be set to a static coefficient or a fixed value, which will affect the performance of
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the vehicle. Therefore, it is necessary to optimize s(t) in the real time according to the information of
vehicle driving conditions and battery SOC.

As repeated operations on the same routine route are characteristic of urban buses, the total daily
running mileage of the vehicle is known, and the distance between the vehicle stops is also fixed,
so the equivalent coefficient s(t) can be optimized under known conditions. Yang [38] provided a new
method to optimize s(t), which has achieved good results. The specific implementation process is
shown in the Figure 7. There are in total four steps.

In step 1, the driving conditions were divided into several parts based on actual bus stations,
then, the bus station and the vehicle speed are selected as input variables for subsequent optimization.

In step 2, historical data collected from different parts are used to design the reference SOC.
Therefore, the reference SOCr can be obtained as follows:

SOCr = SOCi − (SOCi − SOCl) ·

n−1
∑

i=1
fili + fn(D−

n−1
∑

i=1
li)

j
∑

i=1
fili

(22)

fi = Td
i · li (23)

where SOCi is the initial SOC of the battery, SOCl is the minimum value of the battery SOC, n is the
number of the bus station, j is the total number of the bus stations, fi is the coefficient of SOC changing

rate, li is the distance between stations, D is the driving distance of the vehicle, Td
i is the average

demand torque.
In step 3, based on the reference SOC, the s(t) of each part is optimized by LinWPSO. For LinWPSO,

the inertia weight factor can be written as:

χ = χmax −
T × (χmax − χmin)

Tmax
(24)

where T, Tmax are the current iteration number and the maximum iteration number, respectively. Xmax

is the initial weight factor, Xmin is the final weight factor.
The objective function JP can be shown in the following equation:

JP =
∫ tj

ti

(
.

m f + s
Pb
H f

)
dt (25)

where ti, tj are the start and end time, respectively. Pb is the power of the battery, Hf is the low heat
value of the gas, s is the energy conversion coefficient.

Then, the s(t) can be obtained as:

s(t) = si +
√

1− k2 · si (26)

k = min
(

SOCn − SOCl
SOCr − SOCl

, 1
)

(27)

where si is the initial s(t), k is the coordination variable, SOCn is the current SOC.
In step 4, the s(t) of each part can be displayed in the form of the 2-dimensional look-up tables.

For the specific calculation process, please refer to [37].
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4. Dynamic Programming

4.1. Problem Formulation

In the application of the DP algorithm, the discrete-time form of the system state-space model
canbe expressed as follows:

X(k + 1) = fk(X(k), U(k)) + X(k) k = 0, 1, . . . , N − 1 (28)

where X(k) is the state variable, U(k) is the control variable.
In order to constrain the parameters that affect the drivability of the vehicle, such as AMT

gear-shifting correction and mode switching boundary parameters, namely, frequent gear-shifting and
frequent engine start-stop, the engine start-stop state variables Se(k) and the gearbox state variables
g(k + 1) are set as follows:

Se(k) =

{
1, engine on
0, engine off

(29)

(k + 1) =


5, g(k) + ug(k) > 5
1, g(k) + ug(k) < 1
g(k) + ug(k) otherwise

(30)

where g(k + 1) is the current gear number, the value of the gear-shifting signal ug(k) could be −1, 0
and 1, which represent downshifting, sustainability, and upshifting, respectively, so the ug(k) can be
written as:
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ug(k) =


−1, downshift
0, sustaining
1, upshift

(31)

Based on the above analysis, taking the engine start-stop and AMT gear-shifting into account,
the state vector X(k) and the control vector U(k) of the system are described as follows:

X(k) = [SOC(k), g(k), se(k)]
T (32)

U(k) = [um(k), ug(k)]
T (33)

where um(k) is the ratio of the EM torque to the input torque of the gearbox.
The optimal control problem is to find the control input U(k) to minimize the following

cost function:

J =
N−1

∑
k=0

L(X(k), U(k)) =
N−1

∑
k=0

m f (X(k), U(k)) +
N−1

∑
k=0

S(k) (34)

where N is the time of the drive cycle. L is the instantaneous cost at phase = k. S(k) is the penalty
function for gear-shifting and engine start-stop, which can be expressed as:

S(k) = α|g(k + 1)− g(k)|+ β|se(k + 1)− se(k)| (35)

where α is gearbox gear-shifting penalty factor, β is engine start-stop penalty factor.
The value of penalty factor are α = 2.5, β = 1, which are obtained through multiple simulation

calculations. As Equation (28) shows, the cost function consists of two parts, namely, the CNG
consumption of the engine and the drivability of the vehicle. In the optimization process, to ensure that
the components work within a reasonable range, the operating state of the engine, motor, battery and
transmission must be constrained. The specific constraints are as the same as in Equation (21).

4.2. Parameter Extraction

The optimization results of the DP algorithm are sensitive to the driving conditions. It is difficult
to reflect the actual driving situation of the city bus in a single driving cycle. Therefore, three typical
driving cycle conditions are introduced: China typical urban bus driving cycle, Manhattan bus
drive cycle (CYC_MANHATTAN), and West Virginia suburban driving schedule (WVUSUB).
The corresponding AMT gear-shifting correction and mode switching boundary parameters are
shown in Figures 8 and 9.
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Figure 9. The distribution of operating points of engine and motor in three driving cycle conditions.
(a) Manhattan; (b)China typical; (c) WVUSUB.

As shown in Figures 8 and 9, the gear position and mode switching boundary conditions
optimized by the DP are not only related to the vehicle speed, but also related to the vehicle energy
demand. The combination of simulations of multiple driving cycle conditions can be as close as possible
to the actual driving conditions and achieve the simulation effect under full working conditions.

Since the driving cycle time is longer during the simulation process, the data in the Figures 8
and 9 do not represent all the gearspoints and mode switching boundary parameters, but the data
obtained by extracting certain samples from the overall data. In order to extract the gear-shifting
correction and the mode switching parameters conveniently, which are shown in Figures 10 and 11,
separately, the data optimized by the three working conditions are superimposed and displayed in
the same picture, As shown in Figure 10, the solid black line represents the upshift line, and the black
dotted line represents the downshift line. As shown in Figure 11, the black solid line is the boundary
line representing the pure electric mode switching to the engine participating mode, and the black
dashed line represents the reverse switching boundary line.
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5. Verification and Discussion

Through the off-line optimization, the parameters that affect the vehicle’s economic performance
and the drivability are obtained. These parameters are combined together to form the PHEV real-time
optimization energy management strategy.

In this section, the proposed EMS is verified by a simulation. To verify the proposed strategy,
the Beijing typical city bus driving cycle is chosen as the test driving cycle, as shown in Figure 12.
This working condition is extracted from the actual driving conditions of several Beijing buses.
The mileage of a single driving cycle is 6.81 km, with 10 stops, 21 acceleration sections and 10 traffic
lights. According to the vehicle’s full-day driving range of 200 km, an average of 30 selected driving
cycles are required for one day. Therefore, in the simulation, 30 driving cycles were taken as input
conditions. Table 2 shows the statistics of Beijing typical citybus driving cycle.
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Table 2. The statistics of the Beijing typical citybus driving cycle.

Cycles Driving Time Travel Distance Average Speed Maximum Speed Maximum Acceleration Maximum Deceleration

1 1804 s 6.81 km 13.6 km/h 63.8 km/h 2.33 m/s2 −3.44 m/s2

In order to show the advantages of the proposed strategy, the control performance, the fuel
consumption and the comparison result of the drivability with different strategies are given in
the following part, in which the effectiveness, the fuel economy improvement, and the drivability
are verified.

5.1. Control Performance of Proposed Control Strategy

To verify the control performance of the proposed strategy, the simulation works are carried out
under Beijing typical city bus driving cycle. The initial SOC is set as 100%, and the terminal SOC is set
as 30%. The results are shown in Figures 13–15.

Figure 13 show the basic simulation results, including battery SOC of hybrid powertrain,
engine output power, and EM output power, which can reflect the control performance of the proposed
strategy. It can be seen from Figure 13 that SOC has decreased steadily during the entire mileage and
remains at 0.3 by the end of the journey. When the SOC is higher, the motor’s braking energy recovery
is less, and when the SOC is lower, the motor’s braking energy recovery is more.
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Figure 13. Overall simulation results of PHEB in real-time control strategy. (a) vehicle speed; (b) the
battery SOC; (c) engine power; (d) motor power.
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Figure 14. Simulation results for a single driving cycle 1 (1). (a) the simulated vehicle speed and the
actual vehicle speed; (b) the battery SOC.

Since the overall operating data is too large, it is not suitable for observation, so the condition that
the battery SOC is 0.7 is utilized for our explanation. As shown in Figure 14, the simulated vehicle
speed is the same as the actual vehicle speed. In addition, the battery SOC continues to decrease with
the operation conditions, the SOC of the initial state is 0.7, and the SOC of the terminal state is 0.678,
which conform to the trend of the energy consumption.

As shown in Figure 15a, the s(t) adopted in the proposed method would change with the variation
of the driving condition along the whole bus routine. Under the selected driving cycle conditions,
the EM and engine torque are shown in Figure 15b, the output torque of engine and EM could satisfy
the demand torque of hybrid powertrain to ensure the drivability of PHEB. To avoid the low-efficiency
working area of engine, the EM is controlled to drive the vehicle in most of time, engine will start
to provide the driving torque when the demand torque exceeds the max torque of motor or the
battery SOC is lower than the threshold. When the PHEB is operating under the braking conditions,
the demand torque is negative. As shown in Figure 15b, the large amount of braking torque occurs in
the driving cycle, because some emergent braking situations would occur occasionally in the actual
driving condition, and when that situation happens, the mechanical braking system is controlled to
compensate for the insufficient braking torque provided by motor to ensure the safety of the vehicle.

Figure 15c,d show the engine state and AMT gear position information under single cycle
conditions. When the Engine State = 1, the engine is on, when the Engine State = 0, the engine
is off. The engine starts only when the motor’s max torque cannot satisfy the required torque from the
driving cycle. Owing to the high power of the motor and the existence of AMT, the bus in most parts
of the trip can be operated in pure electric mode.
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After the above simulation verification, it can be determined that the designed PHEB real-time
energy management strategy meets the needs of adapting to the changing driving conditions of the
vehicle. Therefore, the proposed strategy is proved to be effective.

5.2. Energy Consumption

In this part, in order to evaluate the performance of the proposed real-time optimized
control strategy, the rule-based control strategy and standard ECMS were taken as the benchmark.
The simulation results are shown in Figure 16 and Table 3. As shown in Figure 16, for the three control
strategies, the electricity energy stored in the battery is consumed to the expected lower limit in the
end. Therefore, the electric consumption of the above strategies are similar with each other. However,
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the rule-based control strategy tends to deplete the battery energy in advance, the ECMS can consume
the battery evenly throughout the routine, and the proposed methods have similar trends as the ECMS.

Furthermore, as shown in Table 3, under the similar electric consumption, the energy consumption
produced by the proposed strategy is slightly higher than that produced by the standard ECMS but
significantly lower than that of the rule-based control strategy. It is understandable from the results
that the rule-based control strategy have the worst fuel economy by using experience to set rules,
the ECMS takes advantage of local optimization about this driving cycle to achieve better fuel economy,
whereas the adopted method considers the drivability of the vehicle to improve driving comfort at the
expense of fuel consumption.

On the one hand, the optimization results of s(t) reflect the advantages of the proposed strategy,
the vehicle controller would perform the more reasonable torque distribution combined with the
optimized s(t), and then significantly reduce the fuel consumption. By the reasonable energy
distribution of the proposed strategy, the working efficiency of the two power sources is high. As shown
in Figure 17, most of the operating points of the engine are close to the engine optimal operating
line, and the motor mainly runs in the high efficiency area. On the other hand the adopted method
considers the drivability of the vehicle to improve driving comfort at the expense of fuel consumption.Energies 2018, 11, x FOR PEER REVIEW  18 of 22 
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5.3. Drivability

To highlight the advantages of the proposed strategy compared with the standard ECMS and the
rule-based control strategy, some comparisons are carried out during the drivability of the PHEB in
this part. According to the parameters extracted in Section 4.2 that affect the drivability of the vehicle,
the comparison curve about shifting rules and engine start-stop status in the given driving cycle are
shown in Figures 18 and 19.

As shown in Figure 18, the proposed method has fewer gear-shifts than the other two strategies.
At the same time, the number of engine starts-stops is less than with the other two strategies, as shown
in Figure 19. Therefore, the energy management strategy proposed in this paper can improve the
drivability of the vehicle and improve driving comfort.Energies 2018, 11, x FOR PEER REVIEW  19 of 22 

 

(a)

(b)
 

Figure 18. Comparison of engine start-stop times between three strategies. (a) the proposed strategy 

and the ECMC; (b) the proposed strategy and the rule-based strategy. 

 

Figure 19. ATM gear-shifting frequency comparison between three strategies. 

Next, from the perspective of the overall performance, a quantitative comparative analysis of 

the three strategies is carried out. This paper introduces the overall performance index Jmulti to 

evaluate the control effect about fuel economy and the drivability in the form of weighted calculation 

of each indicator. The Jmulti can be written as: 

multi fJ M shift state = +  +   (36) 

where Mf is the fuel consumption per 100 km, the unit is m3/100 km, shift is the average number of 

shifts per kilometer, state is the average number of start-stop per kilometer of engine. 

Table 4 shows the simulation results of the three control methods under Beijing typical citybus 

driving cycle conditions. As shown in Table 4, compared with the rule-based control strategy, the 

ECMS has reduced fuel consumption, but since the ECMS does not consider the drivability, the gear-

shifting frequency and engine start-stop times are as the same as the rule-based control strategy, the 

overall performance is only 6.61% improvement. However, though the EMS proposed in this paper 

has an increase in fuel consumption compared with ECMS, due to the influence of the drivability, the 

gear-shifting frequency and engine start-stop times are significantly reduced, so the overall 

performance is 18.54% improvement compared with the rule-based control strategy. Therefore, it can 

Figure 18. Comparison of engine start-stop times between three strategies. (a) the proposed strategy
and the ECMC; (b) the proposed strategy and the rule-based strategy.

Energies 2018, 11, x FOR PEER REVIEW  19 of 22 

 

(a)

(b)
 

Figure 18. Comparison of engine start-stop times between three strategies. (a) the proposed strategy 

and the ECMC; (b) the proposed strategy and the rule-based strategy. 

 

Figure 19. ATM gear-shifting frequency comparison between three strategies. 

Next, from the perspective of the overall performance, a quantitative comparative analysis of 

the three strategies is carried out. This paper introduces the overall performance index Jmulti to 

evaluate the control effect about fuel economy and the drivability in the form of weighted calculation 

of each indicator. The Jmulti can be written as: 

multi fJ M shift state = +  +   (36) 

where Mf is the fuel consumption per 100 km, the unit is m3/100 km, shift is the average number of 

shifts per kilometer, state is the average number of start-stop per kilometer of engine. 

Table 4 shows the simulation results of the three control methods under Beijing typical citybus 

driving cycle conditions. As shown in Table 4, compared with the rule-based control strategy, the 

ECMS has reduced fuel consumption, but since the ECMS does not consider the drivability, the gear-

shifting frequency and engine start-stop times are as the same as the rule-based control strategy, the 

overall performance is only 6.61% improvement. However, though the EMS proposed in this paper 

has an increase in fuel consumption compared with ECMS, due to the influence of the drivability, the 

gear-shifting frequency and engine start-stop times are significantly reduced, so the overall 

performance is 18.54% improvement compared with the rule-based control strategy. Therefore, it can 

Figure 19. ATM gear-shifting frequency comparison between three strategies.



Energies 2018, 11, 2177 20 of 22

Next, from the perspective of the overall performance, a quantitative comparative analysis of the
three strategies is carried out. This paper introduces the overall performance index Jmulti to evaluate
the control effect about fuel economy and the drivability in the form of weighted calculation of each
indicator. The Jmulti can be written as:

Jmulti = M f + α · shi f t + β · state (36)

where Mf is the fuel consumption per 100 km, the unit is m3/100 km, shift is the average number of
shifts per kilometer, state is the average number of start-stop per kilometer of engine.

Table 4 shows the simulation results of the three control methods under Beijing typical citybus
driving cycle conditions. As shown in Table 4, compared with the rule-based control strategy,
the ECMS has reduced fuel consumption, but since the ECMS does not consider the drivability,
the gear-shifting frequency and engine start-stop times are as the same as the rule-based control
strategy, the overall performance is only 6.61% improvement. However, though the EMS proposed
in this paper has an increase in fuel consumption compared with ECMS, due to the influence of the
drivability, the gear-shifting frequency and engine start-stop times are significantly reduced, so the
overall performance is 18.54% improvement compared with the rule-based control strategy. Therefore,
it can be concluded that the PHEB with the proposed strategy can reduce fuel consumption and
improve the vehicle drivability simultaneously.

Table 4. Comprehensive performance comparison.

EMC
Mf

(m3/100 km)
Shift State

Comprehensive Evaluation

Jmulti Improvement

Rule-based 36.45 7.58 7.46 62.86 —
ECMS 31.67 7.65 7.90 58.70 6.61%

Proposed 32.24 5.29 5.73 51.20 18.54%

6. Conclusions

In this paper, a novel real-time optimal EMS based on parameter optimization for the single-shaft
parallel PHEB with AMT is proposed. The work presented in this paper can be summarized as follows:

(1) In response to the fuel economy problem, combined with the complex but regular characteristics
of the bus routine, a linear weight particle swarm optimization algorithm was used to obtain
the optimal array of s(t) by minimizing the fuel consumption. Considering the drivability of the
PHEB, the DP algorithm was used to extract the parameters of the mode switching boundary and
the AMT gear-shifting correction. Then, the novel algorithm is brought forward to improve the
fuel economy and the drivability of the PHEB, combined with the s(t), gear-shifting correction
and mode switching boundary parameters.

(2) The proposed strategy was verified in a real-world driving cycle simulation. Results show that the
proposed energy management strategy is effective in improving the fuel economy of the PHEB
by moving the working points of the two power sources into the high-efficiency area. In addition,
the results also verify that the proposed strategy ensures the drivability by their reduction of
AMT gear-shifting frequency and the engine start-stop times. The overall performance is 18.54%
improvement compared with the rule-based control strategy.
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