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Abstract: Lithium-sulfur (Li-S) batteries are an emerging energy storage technology with higher
performance than lithium-ion batteries in terms of specific capacity and energy density. However,
several scientific and technological gaps need to be filled before Li-S batteries will penetrate the
market at a large scale. One such gap, which is tackled in this paper, is represented by the estimation
of state-of-health (SOH). Li-S batteries exhibit a complex behaviour due to their inherent mechanisms,
which requires a special tailoring of the already literature-available state-of-charge (SOC) and SOH
estimation algorithms. In this work, a model of SOH based on capacity fade and power fade has been
proposed and incorporated in a state estimator using dual extended Kalman filters has been used to
simultaneously estimate Li-S SOC and SOH. The dual extended Kalman filter’s internal estimates of
equivalent circuit network parameters have also been used to the estimate maximum available power
of the battery at any specified instant. The proposed estimators have been successfully applied to
both fresh and aged Li-S pouch cells, showing that they can accurately track accurately the battery
SOC, SOH, and power, providing that initial conditions are suitable. However, the estimation of the
Li-S battery cells’ capacity fade is shown to be more complex, because the practical available capacity
varies highly with the applied current rates and the dynamics of the mission profile.

Keywords: extended Kalman filter; Lithium-Sulfur battery; maximum available power; state of
charge; state of health

1. Introduction

Growing demands from original equipment manufacturers (OEMs) and users for lighter batteries
with a higher capacity has lead to research into and development of new energy storage technologies
such as Lithium-Sulfur (Li-S) batteries. This technology represents a suitable alternative to nowadays
broadly used Lithium-ion (li-ion) battery cells as they are characterized by six times higher theoretical
specific energy and two times higher theoretical energy density than traditional Li-ion batteries [1].
Furthermore, Li-S batteries are expected to be cheaper, as they use sulfur as a raw material, [1] and
safer [2]. However, there are still obstacles to their successful large-scale commercialization. The first
type of obstacles is related to the actual cell performance and lifetime, which are hindered problems
such as the fast capacity fade during cycling [3] and the high self-discharge at high state-of-charge
(SOC) levels [4]. While the chemical challenges are addressed at cell development or material level [5],
there are also practical challenges that have to be addressed by system design, in order to operate the
Li-S cells in a safe and optimal way due to their complex chemistry [6].
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1.1. State-of-Charge and State-of-Health Estimation

The battery management system (BMS) is vital in the practical use of batteries, as it takes care of
the safe and efficient operation of the battery [7]. Typically, advanced BMSs include state estimation
functions, which provide information about state-of-charge (SOC) and state-of-health (SOH), which
are crucial for effective and reliable battery function and also useful to the user.

Many different methods for the state estimation have been proposed in the literature.
Frequently-mentioned methods for SOC estimation are: ampere-hour counting, open-circuit voltage
(OCV) based, model based, impedance based, static battery characteristics based, fuzzy logic and
machine learning based estimations [8]. Each of these methods has its advantages and drawbacks,
which makes them suitable for different battery technologies. SOH estimation is usually based on
various capacity and/or impedance estimation techniques and also correlations of those quantities
to some observable effects [7]. These estimation techniques are usually tailored to specific battery
chemistries, as they might have unique attributes and behaviour. It is possible to find many works
which have been done on widely used Lead-acid [9–11], Nickel-metal Hydride (NiMH) [12–14]
and Lithium-ion [11,15,16] batteries. However, these methods, successfully applied to other battery
chemistries, are not directly applicable for Li-S batteries, due to the particularities of this technology.
For example, the Coulomb counting method is not suitable due to the high self-discharge [4] and
due to the variable shape and length of voltage charging curve, which is caused by the polysulfide
shuttle and ’history’ effect [17]. Moreover, the Li-S batteries have a unique shape of the open-circuit
voltage [18], which is flat for the interval 0 to 70% SOC. Furthermore, a voltage ‘dip’ occurs during
discharging between the high and the low voltage plateaus, which causes non-monotonic voltage trend.
This reduces their observability and it prevents the use of any open-circuit voltage based technique.

To the present day, in the field of Li-S batteries, there has been proposed and demonstrated
only a limited number of functional approaches to SOC estimation. A technique based on Kalman
variant estimators (extended Kalman filter (EKF), unscented filter and particle filter) was presented in
reference [19]; in that work, the filter was applied to the battery model, developed in reference [20],
in a classical manner, meaning that the SOC was estimated according to a combination of Coulomb
counting and voltage response of the battery. The SOC was estimated with a root square mean error
(RSME) of 0.0114 for mixed pulse discharge profile scenario and 0.0217 RSME for New European
Driving Cycle (NEDC) driving profile for the correct initial state. In a scenario, when the initial
SOC was lower than the actual battery state (0.7 instead of 1), the estimated SOC by EKF converged
quickly towards the reference state. However, when the initial SOC was set lower (i.e., 0.6), the
estimated state did not converge over one full discharge. Moreover, when the estimation was applied
to partially charged cell (initial reference SOC was 0.6), the estimator showed a poor accuracy and
in the case of initial estimator SOC being set to 1, it also did not converge over one full discharge.
Another approach for state estimation of Li-S batteries, discussed in reference [18], is based on the
observability of the SOC from the battery parameters, such as open-circuit voltage and internal
resistance. This method can provide advantages as these identified parameters might be easier to
track and express during the laboratory degradation tests than the complex battery voltage response
used in previously mentioned approach. The first step, following this approach, is to implement an
online battery parameter identification algorithm. Three identification algorithms: gradient descent,
genetic algorithm and prediction error minimization were investigated and compared in reference [21],
where also the SOC estimation of a NiMH battery based on an adaptive neuro-fuzzy inference system
(ANFIS) was demonstrated, which can be in a similar way applied to the Li-S battery. Furthermore,
the parameter identification can be also based on the extended Kalman filter, which was presented
for Li-S batteries in reference [22], and it was directly used in a dual Kalman filter manner for the
SOC estimation of Li-S batteries. Accordingly, we can summarize that there exists already some base
ground for the SOC estimation at Li-S batteries. Nevertheless, the robustness of estimation needs to
be improved, especially in cases when the initially set SOC does not match the actual battery SOC,
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then the convergence has to be ensured. Moreover, the estimation needs to be validated not only at the
fresh cell, but also at an aged cell, as battery parameters change during aging.

The area of SOH estimation for Li-S batteries has not been covered at all. Therefore, in this
paper we introduce a combined SOC and SOH estimation algorithm, which is based on the parameter
identification method introduced by Propp et al. [22]. The proposed SOH estimation method allows
to estimate the capacity fade and resistance change caused by the battery aging without the use of
any degradation model, which is especially beneficial at the current stage of reduced knowledge and
practical experience with the Li-S batteries.

1.2. Maximum Available Power Estimation

Besides the SOC and SOH estimation, another function required of the BMS is estimation of
the available power. Especially in electric vehicle applications, there are certain situations when the
high power is required from the battery, for example during the acceleration. In these situations,
the safety operation limits can be reached quickly, which will result into limitation of the provided
power and its sudden decrease, causing an unexpected and possibly dangerous situation for a driver.
Therefore, the estimation of the available power is applied to predict the maximum power which can
be provided, typically in period of 1 to 20 seconds. In this way, the provided power can be limited
from the beginning, causing the smooth operation and expected continuous decrease later on [7].

There are usually considered to be three main methods for the estimation of the available power.
The first is based on a characteristic map, which is stored in a memory of the BMS. It is composed
of static relationships of power towards the other battery states and quantities and it is obtained
offline from the battery tests. During aging, some of the battery parameter changes, and thus the
characteristic map has to be updated. The advantage of this method is its easy implementation and
simplicity. However, it does not reflect the dynamic states of the battery accurately and it might
be difficult to adjust it during the aging due to lack of the reference measurements (at maximum
power). Moreover, it might required considerable space of the memory to store all the data with the
inter-dependencies [7,23].

The second method is based on a dynamic battery model. The maximum power is then predicted
according the accuracy of the battery model, reflecting the dynamic states. The obvious advantage
of this method in our context is that the battery parameters can be identified online. Therefore, the
battery parameters would be adjusted according to aging and also specific chemistry effects (a history
effect of the Li-S batteries) to provide more precise estimated [7,24].

The third method, considered for this purpose, uses ANFIS. However, an additional filtering is
required for training on power pulses. Moreover, the real-time applicability on a low cost hardware is
questionable [7,25].

To the authors’ best knowledge, there are no examples of maximum available power estimator for
Li-S batteries in the literature. Thus we target this area in this work and present such estimator.

This paper is structured as follows. The methodology for modelling and state estimation is
described in Section 2. This includes definitions of battery states in terms of state of charge, health
and maximum available power; and a description of the considered Li-S battery model. The section
introduces a standard implementation of an Extended Kalman filter, an online parameter identification
method, a maximum available power estimation approach and a metric for an estimation evaluation.
The specific implementation of the SOC and SOH estimation algorithms is presented in Section 3. The
results for SOC, SOH and maximum available power estimation are described and shown in Section 4.
The paper is concluded in Section 5.
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2. Methodology

2.1. State Definitions

States of the battery receive a great amount of an interest. However, they are not always perceived
in the same and unique way. There is more consensus about the state-of-charge definition, which is
usually understood as an amount of charge, which is available to be extracted from the actual battery
capacity [7,26]. Sometimes, the nominal capacity term is used instead of the actual capacity [27].
However, that might lead to an incorrect assumption of neglecting the capacity change during the
battery life. Moreover, the amount of the extractable charge in the battery varies with the temperature
or the applied current. The capacity dependence of the current is typically described by Peukert’s
law [28]. Extending the Peukert equation by a temperature dependency was described in [29].

As an indicator for the state of health of the battery, the most commonly used is a change in
the actual capacity, a capacity fade [10,13]. Some methods estimate the capacity fade according to
its relationship to the change of impedance, which is usually growing during the battery aging [30].
Furthermore, the impedance was accommodated as an another indicator for the SOH [15,26] and it is
also related to the maximum available power of the battery, as the impedance growth contributes a lot
to the power fade. However, other factors might also be considered for the SOH estimation [27], as for
example the porosity of the electrodes [31] or the terminal voltage [32].

The maximum available power is the power actually achievable from the battery with respect to
its safety limits and internal and external conditions [7].

To summarize, it is important to clearly state which definition is followed in the work. Definitions
in this work are based on [7,26], where the initial capacity Q̄cap is the maximum extractable charge
from the fully charged battery at the beginning of life under the specific conditions (i.e., temperature,
C-rate, cut-off limits). The actual capacity Qcap represents the maximum extractable charge from the
fully charged battery at the actual battery age under the specific conditions. The definitions for the
initial internal resistance R̄0 and the actual internal resistance R0 correspond to similar definitions to
the capacity definitions, but to the internal resistance instead of the capacity.

State-of-charge: SOC represents a present amount of charge Qpresent, which is possible to extract
from the battery, related to the actual capacity. It is noted as χ and expressed as:

SOC = χ =
Qpresent

Qcap
. (1)

State of health: SOH consists of two quantities representing capacity fade ηQ and internal resistance
change ηR. The SOH can be written as:

SOH = [ηQ ηR]
T . (2)

The capacity fade (ηQ) is computed as the actual capacity divided by the nominal capacity at the
beginning of life:

ηQ =
Qcap

Q̄cap
. (3)

The internal resistance change (ηR) is computed as the internal resistance at the beginning of life
divided by the actual internal resistance:

ηR =
R̄0

R0
. (4)

Maximum available power: Pdis.max/Pch.max is considered in this work to be limited only by current
and voltage limits. Generally, it can be written as:
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Pmax = IV, (5)

where both current I and voltage V are limited to not exceed their own safety limits.

2.2. Li-S Battery Model and Its Parametrization

For the estimation of defined states, it is necessary to relate the behaviour of the Li-S cells to them.
For the relationship of parameters over the SOC, the Thevenin electrical circuit network, illustrated in
Figure 1a, and its behavioural representation, illustrated in Figure 1b, were applied. The details of the
derivation of this model are presented in our previous work [20]. In this paper, we introduce the model
briefly as the algebra of the following sections rely on it. Tests were based on discharging OXIS Energy
3.4 Ah long life Li-S cells in different temperatures with varying current rates shown in Figure 1c.
The original idea of the application of different current pulses was to capture the open-circuit voltage
(VOC), the internal resistance (R0) and the transient behaviour of the cell (R1, C1) over its discharge
range in addition to exploring the effects of the current rate.

Figure 1. (a) Thevenin equivalent circuit model used for modelling the Li-S battery, (b) behavioural
equivalent circuit model used for modelling the Li-S battery, (c) mixed pulse discharge test—the detail
on three current pulses, (d) a typical continuous charging/discharging profile for a Li-S cell (measured
at 25 ◦C).

However, it was found that the rate dependencies of the model parameters are small and that they
could be neglected without decreasing the model accuracy significantly. Since the model’s intentional
usage is also the state estimation, polynomial functions in the form of

fparameter(χ) = p10x9
1 + p9x8

1 + p8x7
1 + p7x6

1 + p6x5
1 + p5x4

1 + p4x3
1 + p3x2

1 + p2x1 + p1 (6)

were fitted describing the parameters over the SOC. While fitted polynomial functions are generally a
standard method, it is difficult to reproduce the harsh transitions between the high- and low-plateau
of the Li-S cells with them. Therefore, two polynomial functions were combined for the VOC and R0

and joined together at the transition point. The model implements combined functions for the VOC
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fVOC(χ) = (1− γm,c(χ)) fVOC−low(χ)

+γm,c(χ) fVOC−high(χ)
(7)

and R0

fR0(χ) = (1− γm,c(χ)) fR0−low(χ)

+γm,c(χ) fR0−high(χ).
(8)

Since the linearisation of the applied Kalman filter methods need differentiable functions, γ

combines both polynomials smoothly

γm,c(χ) :=


0, if a,

1
2 + 1

2 sin (2m(χ− c)) , if b,
1, if c,

(9)

where the conditions a, b and c stands for the different ranges of the function:

a : 2m(χ− c) < −1
2

π,

b : − 1
2

π ≤ 2m(χ− c) <
1
2

π,

c : 2m(χ− c) >
1
2

π,

(10)

where m is a scaling factor for the maximal gradient of the sinusoidal function, determining the
transition range between both polynomials and c represents the point where both functions are equally
represented. The resulting state space model has the form

ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + D(t)u(t),
(11)

which relies on the nonlinear functions of VOC, R0, C1, R1 over the SOC. The dynamic states x = [x1 x2]
T

of the system are the voltage over the RC circuit Vp and the SOC χ, calculated through Coulomb
counting. The corresponding state space representation gives

A =

[ −1
fR1 (χ) fC1

(χ)
0

0 0

]
B =

[ 1
fC1

(χ)
−1

3600Qcap

]
C =

[
− 1 fVOC(χ)

]
D =

[
fR0(χ)

]
.

(12)

Alternatively, the core Thevenin battery model equations are written as:

VL = VOC(χ)− R0(χ)IL −Vp, (13)

dVp

dt
= − 1

R1(χ)C1(χ)
Vp +

1
C1(χ)

IL. (14)

The behavioural battery model representations, described in [20], introduces parameters
representing the dynamic bandwidth (Ω), the total steady-state resistance (Rint) and the dynamic
fraction of the response (ρ), instead of R0, R1 and C1. The parameters inter-relations are defined as:

Ω(χ) =
1

R1(χ)C1(χ)
, (15)
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Rint(χ) = R0(χ) + R1(χ), (16)

ρ(χ) =
R1(χ)

Rint(χ)
. (17)

By substituting Equations (15), (16) and (17) into Equations (13) and (14), the following behavioural
model equations are obtained:

VL = VOC(χ)− (1− ρ(χ))Rint(χ)IL −Vp, (18)

dVp

dt
= −Ω(χ)Vp + ρ(χ)Rint(χ)Ω(χ)IL. (19)

2.3. Standard Extended Kalman Filter Implementation

The EKF implementation described in detail can be found for example in [33,34]. The EKF consists
of two steps: time update and measurement update. During the time update, the state is estimated
ahead in time (predicted) and, during the measurement update, the state is adjusted (corrected)
according an actual measurement at that time. The representation of the EKF update equations with
approximation of the state and measurement vector without noise values can be written as:

Time update (prediction):
x−k = f (xk−1, uk−1, 0), (20)

P−k = AkPk−1 AT
k + Qk−1, (21)

y−k = h(x−k , 0), (22)

Measurement update (correction):

Kk = P−k CT
k−1(CkP−k CT

k + Rk−1)
−1, (23)

xk = x−k + Kk(yk − y−k ), (24)

Pk = (I − KkCk)P−k . (25)

The process and noise measurement covariance matrices are formed as

Qk = E[wkwT
k ], Rk = E[vkvT

k ]. (26)

2.4. Online Parameter Identification

In contrast to the standard state estimation, where a model identified offline is used to predict
the system’s output and the error between the prediction and measurements is used to correct the
states of interest, an online parameter identification method can be used to identify the parameters
directly. However, this means that the identification has to be fast enough to run on common BMS
hardware and that the identification results have to be reliable with different current profiles. While
the main concept of online identification was proposed in [35–37] for common Li-ion batteries, Propp
et al. [22] adapted the identification for Li-S batteries. Since the principles of this work are used here as
well, they are also introduced here briefly. The online parametrization fits the parameters with the
derivative of the terminal battery voltage VL of the Thevenin model

V̇L = V̇OC − V̇p − İLR0 − ILṘ0. (27)
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Generally, the OCV of the battery is dependent on the SOC, the operating temperature (T) and
usage history (h). Therefore, the corresponding definition of VOC can be described as a function of
SOC, T, h, whose derivation leads to

V̇OC =
δVOC

δSOC
δSOC

δt
+

δVOC

δT
δT
δt

+
δVOC

δh
δh
δt

. (28)

For the representation of the battery in a discrete manner, usually time steps of less than one second
are used. Slow changing parameters therefore can be eliminated from the equation for simplification.

Thus, the SOC
(

δSOC
δt ≈ 0

)
, the change of the OCV over time

(
δVOC

δt ≈ 0
)

, the temperature changes(
δT
δt ≈ 0

)
and the long-term history

(
δh
δt ≈ 0

)
can be approximated as 0. It is furthermore assumed

that the internal resistance variation are negligible (Ṙ0 ≈ 0) for small periods. The resulting simplified
relationship for the terminal voltage over time

V̇L = −V̇p − R0 İL (29)

was then changed to a behavioural interpretation to improve the identification process. For
the terminal voltage,

V̇L = −V̇p − (1− ρ)Rint İL, (30)

and for the voltage drop over the RC circuit,

V̇p = −Ω Vp + ρ Rint Ω IL. (31)

By re-writing the behavioural interpretation of the equation for the terminal battery voltage

VL = VOC −Vp − (1− ρ)Rint︸ ︷︷ ︸
formally R0

IL (32)

to bring Vp on one side, substituting it into Equation (31) and including the result for V̇p in
Equation (30), the behavioural state transition equation can be derived as

V̇L = Ω
(
VOC −VL − (1− ρ)Rint IL

)
− ρ Rint Ω IL − (1− ρ)Rint İL. (33)

For the online identification with a Kalman filter based algorithm, the system is now expressed by
its parameters as the state vector

x =
[
VOC VL Vp Ω ρ Rint

]T
. (34)

With the corresponding state transition functions from Equations (31) and (33), the input current
IL = u and the previous considerations the state transition functions can be populated as

f (x, u) =
[

f1 f2 f3 f4 f5 f6

]T
, (35)

where f1 to f6 are defined as:
f1 = 0, f4 = 0, f5 = 0, f6 = 0, (36)

f2 = x1x4 − x2x4 − x4(1− x5)x6u− x6 − x5x6x4u− (1− x5)x6u̇, (37)

f3 = −x4x3 + x5x6x4u. (38)
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Since the measured terminal voltage of the battery is represented by the second state, the
measurement equation is

h = x2. (39)

The Jacobians for the presented functions f1 to f6, linearising the system around the current mean
for the extended Kalman filter, are therefore:

A =



0 0 0 0 0 0
x4 −x4 0 x1 − x2 − x6u x6u̇ a2,6

0 0 −x4 −x3 + x5x6u x6x4u x5x4u
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

a2,6 = −x4u− u̇ + x5u̇.

(40)

C can be obtained as
C =

[
0 1 0 0 0 0

]
. (41)

This method has been proven to show robust identification results as long as there are some
dynamics in the current profile. To apply the introduced online parametrization, the system has to be
implemented in an extended Kalman filter algorithm, which is introduced in the following section.

2.5. Structure of the Maximum Available Power Estimation

The implemented maximum available power estimation is based on the dynamic battery model
approach, when the battery parameters are identified online. The estimation is derived accordingly:

The Laplace transform of equation (19) is

sV̄p −Vp0 = −sΩV̄p + ρRintΩı̄L, (42)

which can be rearranged as
(s + Ω)V̄p = ρRintΩı̄L + Vp0 (43)

and again to

V̄p = ρRint ·
Ω

s + Ω︸ ︷︷ ︸
transfer function

·ı̄L +

(
Vp0

Ω

)
Ω

s + Ω︸ ︷︷ ︸
initial condition

. (44)

Let us assume that the future current has a constant value, IL. Note that

L {IL} =
IL

s
. (45)

Substituting this in equations (18) and (44) gives

VL = VOC − (1− ρ)Rint IL −Vp, (46)

V̄p = ρRint IL ·
Ω

s(s + Ω)
+ Vp0 ·

1
s + Ω

. (47)

Now,
Ω

s(s + Ω)
=

1
s
− 1

s + Ω
(48)

so
V̄p = ρRint IL ·

1
s
+
(
Vp0 − ρRint IL

) 1
s + Ω

. (49)
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We can take the inverse Laplace transform:

Vp(t) = ρRint IL + (Vp0 − ρRint IL)e−Ωt (50)

so we end up with
VL(t) = VOC − Rint IL + (ρRint IL −Vp0)e−Ωt (51)

or, equivalently,
VL(t) = (VOC −Vp0e−Ωt)− Rint(1− ρ · e−Ωt)IL. (52)

Let us assume that at some point T ≥ 0 seconds in the future, we want to know the minimum
and maximum currents such that VL(T) ∈ [Vmin, Vmax]. For convenience, we can write

V′ = VOC −Vp0e−ΩT (53)

and
R′ = Rint(1− ρe−ΩT). (54)

In practical applications, V′, R′ > 0 since VOC > Vp0 and ρ < 1. We can then write

VL(T) = V′ − R′ IL. (55)

To keep VL(T) ∈ [Vmin, Vmax], we need to satisfy

Vmin ≤ V′ − R′ IL, (56)

which becomes

IL ≤ IVmin , (57)

where IVmin = (V′ −Vmin)/R′; similarly, we need

Vmax ≥ V′ − R′ IL, (58)

which becomes

IL ≥ IVmax , (59)

where
IVmax = −(Vmax −V′)/R′. (60)

In practice, we are likely to also want to ensure that the current is constrained to a specified
window, IL ∈ [Imin, Imax]. The most conservative of these will be the most important. Effectively, the
current that gives the maximum discharge power is given by

IPdis.max = min
(

IVmin , Imax
)
, (61)

with the corresponding power given by

Pdis.max =
(
V′ − R′ IPdis.max

)
IPdis.max . (62)

Similarly, the current that gives the maximum charge power is

IPch.max = max (IVmax , Imin), (63)
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with the corresponding power given by

Pch.max =
(
V′ − R′ IPch.max

)
IPch.max . (64)

2.6. Estimation Evaluation

The estimation algorithms are evaluated according their absolute maximum error:

x_MaxErr =

 max(|χ_Ref − χ_Est|)
max(

∣∣ηQ_Ref − ηQ_Est
∣∣)

max(|ηR_Ref − ηR_Est|)

 (65)

and their absolute mean error:

x_AvgErr =

 1
n ∑n

t=1(|χ_Ref − χ_Est|)
1
n ∑n

t=1(
∣∣ηQ_Ref − ηQ_Est

∣∣)
1
n ∑n

t=1(|ηR_Ref − ηR_Est|)

 . (66)

The subscript “Est” stands for estimated states and the subscript “Ref” represents reference values
of the states. The reference states are obtained from an offline analysis of the measurements. Coulomb
counting provides reference for χ. Moreover, obtained data from the parametrization (Section 2.2) are
used as a reference for capacity fade ηQ and the resistance change ηR.

2.7. Test Procedure and Model Structure

The laboratory tests were performed as the base for tunning and evaluation of the estimators.
The current profiles (in this work, specifically considered mixed pulse discharge, NEDC and Urban
Dynamometer Driving Schedule (UDDS)) were applied to the battery, which was placed at the thermal
chamber with the controlled temperature environment and it was connected to the battery test station.
The tests on the fresh cell were done in a MACCOR battery test system (supplied by MACCOR
inc.,Tulsa, OK, USA) and the tests on the aged cell were performed in a Digatron battery test system
(supplied by Digatron Power Electronics, Aachen, Germany). The measured quantities of the battery,
such as current and voltage, were recorded and they were used as an input to the model with the
estimators. The temperature for the simulations was considered constant of 20 ◦C. The layout of the
test procedure is in Figure 2.

Figure 2. Test procedure layout.

The model layout with the estimators is shown in Figure 3. Current, voltage and temperature are
the inputs. The first extended Kalman filter estimates online the circuit model parameters in terms of
behaviour model, which are also translated to Thevenin model parameters. The estimated parameters
VOC and R0 are fed, together with current and temperature, into the SOC and SOH estimator, which
returns the outputs of χ, ηQ and ηR. Furthermore, all the behaviour circuit model parameters are used
as the input for the maximum available power estimator, which estimates the maximum available
power in the specific time period ∆t for charging and discharging, together with maximum available
current and voltage.
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Figure 3. Model layout with the topology of the estimators.

3. Implementation

3.1. Modelling and Structure of the Filters

The states of the interest are SOC (χ) and SOH (ηQ, ηR). Therefore, the state vector is
constructed as:

x =

 χ

ηQ
ηR

 . (67)

The SOC change is based on Coulomb counting. However, no process models for SOH are used,
as the change of SOH is assumed to be very slow in comparison to SOC. ηQ and ηR are assumed to
be observed from the increasing mean value of the error. The change of state then takes form with
consideration of no noise as:

ẋ =

−
IL

Q̄cap∗ηQ

0
0

 . (68)

The considered measurement vector has form:

y =

[
VOC
R0

]
, (69)

where VOC is open-circuit voltage and R0 is internal resistance. They are obtained through online
parameter identification.

The function h(x−k , 0), relating the estimated measurements (estimated parameters VOC and R0)
to the estimated states, is based on the model and the fitted polynomials described in Section 2.2.

The full C matrix for EKF is:

C =

[ ∂VOC
∂χ

∂VOC
∂ηQ

∂VOC
∂ηR

∂R0
∂χ

∂R0
∂ηQ

∂R0
∂ηR

]
. (70)

With the assumptions that the capacity fade does not have influence on VOC and R0, together
with that resistance change does not influence VOC, the C matrix can be rewritten as:

C =

[
∂VOC

∂χ 0 0
∂R0
∂χ 0 ∂R0

∂ηR

]
=

[
c11 0 0
c21 0 c23

]
. (71)

c11 and c21 are obtained by the derivative of h(x−k , 0) with respect to χ. c23 takes the form:

c23 =
∂R0

∂ηR
=

∂ R̄0
ηR

∂ηR
= − R̄0

ηR
2 . (72)
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The full A matrix for EKF has the form:

A =


∂ fχ

∂χ
∂ fχ

∂ηQ

∂ fχ

∂ηR
∂ fηQ

∂χ

∂ fηQ
∂ηQ

∂ fηQ
∂ηR

∂ fηR
∂χ

∂ fηR
∂ηQ

∂ fηR
∂ηR

 , (73)

which, without use of any process model for ηQ and ηR, results in:

A =

0 ∂ fχ

∂ηQ
0

0 0 0
0 0 0

 =

0 a12 0
0 0 0
0 0 0

 , (74)

a12 =
∂ fχ

∂ηQ
=

∂− IL
Q̄cap∗ηQ

∂ηQ
=

IL

ηQ
2 ∗ Q̄cap

. (75)

The observability of such system can be determined from the ’observability grammian’ having a
full column rank. The grammian takes form as follows in (76), where c11 and c23 have to be non zero:

W0 =

 C
CA
CA2

 =



c11 0 0
c21 0 c23

0 a12 ∗ c11 0
0 a12 ∗ c21 0
0 0 0
0 0 0


. (76)

The linearization of the state change is considered as:

∆xk = xk−1 + ∆x ∗ Ts, (77)

where Ts is a simulation step size.

3.2. Numerical Values

The initial value for a posteriori error covariance is set as:

P =

0.1 0 0
0 0.1 0
0 0 0.1

 . (78)

The measurement noise covariance R represents a measurement noise of VOC and R0 and is
set to be

R =

[
0.22 0

0 0.62

]
, (79)

emphasizing higher trusts in the more consistent open circuit voltage identification than the fluctuating
internal resistance (Figure 4a). The process noise covariance Q, related to the uncertainty of the process
models, is set as:

Q =

0.00012 0 0
0 0.00012 0
0 0 0.12

 . (80)

Here, the arbitrary parameter tuning is based on slow changes, smaller variance values, for
the χ and ηQ states and faster parameter changes, or higher variances, for ηR, that need to follow
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relatively quick changes at high states of charges (Figure 4c). Furthermore, the states are assumed to
be uncorrelated as the diagonal Q matrix indicates.

Figure 4. (a) comparison of the battery model and online identified parameters for the fresh and aged
cell. It shows that, when the cell ages, the inflection point between the high and low voltage plateaus is
moving to the right (to lower SOC); (b) the mixed pulse discharge test profile and the estimated results
for the fresh cell, when the discharge starts already at the low voltage plateau. If the SOCini is also at
the low voltage plateau, the state converges, otherwise they do not; (c) the mixed pulse discharge test
profile and the estimated results for the aged cell. The estimates converge for all states. The accuracy is
higher with the initial estimate closer to the reference state; (d) battery model identified parameters for
the aged cell at various mission profiles. The absolute available capacity obtained during the discharge
causes the shifting of the inflection point at the VOC and R0 curves due to the SOC relativity to the
available capacity. At the end of the discharge, there is a rapid increase of the resistance, dependent on
the current rate and the dynamic of the mission profiles.

4. Results

4.1. Fresh Cell—SOC and SOH Estimation

The mixed pulse discharge profile was applied to the fresh cell and the measurement data was
fed to the estimator, as illustrated in Figure 2. The reference and estimated states are shown in Figure 5
and their error values are summarized in Table 1. When all the states were initialized with one (= fully
charged, fresh cell), the average errors were 0.0080, 0.0125 and 0.0140; and the maximum errors were
0.0306, 0.0559 and 0.7714 for χ, ηQ and ηR, respectively. However, the maximum error value of ηR is
caused by the initialization of the parameter estimator and it is reached only at the very beginning.
When the current is firstly applied, the resistance quickly converges close to the reference value already
after one second. Therefore, the ’real’ maximum error of the estimator performance is 0.2606 and the
same metric is going to be used further on to evaluate the ’real’ performance of the estimator and not
the error caused by the parameter estimator initialization. In this ideal case, one can see that the state
estimator provides relatively high accurate results with the average error below two percent and the
maximum error below six percent. The least reliable state is the ηQ. Moreover, the ηR does not always
match the reference, which is probably due to the settling times to reach convergence and also due
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to the parameter’s dependence on the current. In Figure 4a, one can see that the parameters of VOC
and R0 used for the state estimation are identified very closely to the reference, while the remaining
parameters of R1 and C1 vary a bit. The R1 is identified to be slightly higher in the low voltage plateau
and the C1 is identified slightly lower in the high voltage plateau in comparison to the model.

Table 1. The errors of the state estimation for the fresh cell with various initial conditions.

Initial Conditions Average Errors Maximum Errors

[χ = 1 ηQ = 1 ηR = 1] [0.0080 0.0125 0.0140] [0.0306 0.0559 0.2606]
[χ = 0.7 ηQ = 0.7 ηR = 0.7] [0.0112 0.0370 0.0174] [0.1264 0.3000 0.1301]

[χ = 0.6 ηQ = 1 ηR = 1] [0.3963 0.3796 0.2440] [0.7688 1.3897 1.2931]

Figure 5. The mixed pulse discharge test profile and the estimated results for the various SOCini values
at the fresh Li-S cell. It shows the capability of the estimator to converge to the states in the cases when
the SOCini is set to match the reference SOC value or to be mismatched, but still on the high voltage
plateau as the SOC reference was. If the SOCini was instead on the low voltage plateau, the estimator
was not able to converge.

The next step was to see the convergence capability of the applied Kalman filter when the initial
state values are wrongly set. In the first case, all the states are set to be 0.7 in the beginning. From
Figure 5, it is apparent that the χ and the ηR converged almost instantly. The χ estimation error was
reduced already in the first step of the simulation, after one second, from 0.3 to 0.1264. The error of ηR

in the beginning of the simulation was 0.4714, which in 10 seconds of relaxation reduced to 0.4307 and,
after the first second of the current being applied, it dropped to 0.1301. The ηQ took a longer amount
of time and it continuously settled in the middle of the high voltage plateau, after around 0.15 of SOC
is discharged.

So far, the initial SOC (SOCini) was always set to be on the high voltage plateau. When the SOCini

was set to 0.6, which is on the low voltage plateau, the filter was not able to converge the SOC over
the whole discharging period. Moreover, the originally well set ηQ diverged in the second half of the
discharge and the ηR was highly off in the first half of the discharge.
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To see what happens when the situation is the opposite, the reference SOC is on the low voltage
plateau, while the SOCini is at the high voltage plateau, the simulation was run for only a part of
the mixed pulse discharge profile with the initial reference SOC to be 0.6764, which means that the
discharge starts already at the low voltage plateau. The obtained results are shown in Figure 4b. When
the SOCini was one, all the states diverged. However, when the SOCini was 0.6, the states were again
estimated very well. Therefore, it is very important that the SOCini is present at the same voltage
plateau as is the reference or real SOC. In the case when the SOCini was incorrectly set at the high
voltage plateau, the ηQ increased rapidly and steadily over the value of 2. Such a ’nonsense’ value can
be used as an indicator for the incorrect estimation and re-set the estimated SOC value.

This stability issue of the estimator based on the initial conditions of the SOC, whereas the cell
is at a high or low voltage plateau can be solved in the following way. The initial conditions for the
parameter identification, with a meaning of [VOC VL Vp Ω ρ Rint], are adjusted to be:

x0 =
[
Vmeas Vmeas 0 0.025 0.1 0.172

]T
, (81)

where Vmeas is the actually measured voltage at the cell. Subsequently, the initialization of the
SOC/SOH Kalman filter contains the following condition:

SOCini :=

{
c + 0.01, if VOC ≥ VOC,max_lp,
c− 0.01, if VOC < VOC,max_lp,

(82)

where the c stands for the SOC transition point between the high and low voltage plateau. Moreover,
the VOC,max_lp is the maximum VOC value obtained from the Li-S battery model. In such a way, the
estimator starts with the SOCini value, which will lead to the convergence. Of course, if the more
accurate guess of the initial condition exists, it shall be inputted.

4.2. Aged Cell—SOC and SOH Estimation

The goal of the SOH estimation is to estimate and track the health of the cell. The cell under
investigation was aged by 40 cycles of continuous charge (0.34 A) and discharge (0.68 A) at the elevated
temperature of 50 ◦C; and stored at the shelf for approximately six months at room temperature.
Afterwards, the continuous discharge, mixed pulse discharge and driving cycles of NEDC and UDDS
were applied to it at 20 ◦C. The obtained capacity from the mixed pulse discharge test at 20 ◦C was
1.86 Ah, which results in ηQ being 0.69.

The estimation for the mixed pulse discharge profile, shown in Figure 4c, works well, similarly as
for the fresh cell, only with a lower accuracy. The error values are summarized in Table 2. The χ was
slightly over estimated at the low voltage plateau with the highest misfit being 0.0550 for ηQini = 1
and 0.0461 for ηQini = 0.69. This χ over estimation is probably caused in the ’offset’ present in the
estimated value of the ηQ at the low voltage plateau. In this region, the estimated value in an average
was 0.74 for ηQini = 1 and 0.71 for ηQini = 0.69, while the reference was 0.69. It is also seen that, when
the initial value of the ηQ was closer to the reference, the accuracy was again improved.

Table 2. The errors of the state estimation for the aged cell.

Initial Conditions Average Errors Maximum Errors

[χ = 1 ηQ = 1 ηR = 1] [0.0303 0.0633 0.0777] [0.0550 0.3162 1.4156]
[χ = 1 ηQ = 0.69 ηR = 1] [0.0274 0.0406 0.0756] [0.0461 0.1150 1.4155]

NEDC12 [0.0576 0.0974 0.0828] [0.1123 0.1565 0.5136]
NEDC29 [0.0827 0.1575 0.1796] [0.1552 0.2412 0.6127]
UDDS12 [0.0797 0.1900 0.1163] [0.1592 0.3258 0.6686]
UDDS29 [0.0461 0.0696 0.1301] [0.0890 0.1632 0.6686]
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It is important to note that only the model of the fresh cell is implemented in the estimator and it
has no knowledge, only assumptions, introduced in Section 3.1, of how the parameters will change
with the change of states. In Figure 4a, the actual identified parameters are shown. The low voltage
plateau has shrunk more than the high voltage plateau; and therefore the inflection point is moved to
the right. Otherwise, the VOC is not changed. However, the R0 seems to be lower than at the fresh cell,
except the very low SOC, where it has increasing tendency.

Besides the mixed pulse discharge profile, four mission driving profiles were also applied to the
cell and proceeded to the state estimation. The profiles were: NEDC with the maximum current of
1.2 A (=NEDC12) and of 2.9 A (=NEDC29), and the UDDS also with the maximum currents of 1.2 A
(=UDDS12) and of 2.9 A (=UDDS29). The profiles with the estimation results are presented in Figure 6.
The χ more or less follows the reference. However, the confidence is reduced and the error can be again
related to the estimated ηQ. From the reference ηQ, one can see that it varies from 0.8110 to 1.1965,
while the value obtained from the mixed pulse discharge profile was 0.69. The different numbers
come from the obtained capacity from the specific tests, which was 1.8592, 2.8221, 2.2029, 3.2499 and
2.4172 Ah for the mixed pulse discharge, NEDC12, NEDC29, UDDS12 and UDDS29, consequently.
The actual capacity varies due to its high dependence on the applied current and the dynamics of
the profile, which was reported for the Li-S batteries in [38] and investigated and modelled in [39,40].
How it results into the identified parameters is shown in Figure 4d, where the inflection point at VOC
and R0 curves is moving according to the available capacity over the discharge because the SOC is
relative to the actual capacity according to (1). Moreover, the dynamics related to the applied current
rates and the relaxation periods are visible at the rapidly increasing resistance at the end of discharge.
Therefore, the estimated ηQ in our work is related only to the actual profile. If the applied profile
remains similar, then the ηQ will straightforwardly indicate the capacity fade ongoing in the cell. In
order to have a referent, or so-called independent, actual capacity, which would be related to the
capacity fade independent of the mission profile, the dynamics such as transport limitations have to be
included in the model.

The estimated ηR seems to have a similar character for all the driving cycles and also the mixed
pulse discharge at the aged cell. It is shown in detail in Figure 7. Additionally, the average of the aged
cell curves is plotted to highlight the observable trend. At the high voltage plateau, high SOC, the ηR

increases sharply and creates a peak around the value of 2. During the flat low voltage plateau in the
middle SOC region, there is a smaller increase to around 1.2 and, at the end of discharge (SOC close to
0), there is a decrease down to around 0.6. If this behaviour would be observable over the other cells
and mission profiles during aging, it could be also used to couple the resistance change to the capacity
fade as it is often done at other battery chemistries.
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Figure 6. The driving cycle mission profiles and the estimated results for the aged cell. The χ roughly
follows the reference. The accuracy of the χ is dependent on the estimated ηQ, which varies with the
total discharged capacity of the cell under different mission profiles, due to their different current rates
and dynamics. The ηR is in general followed well and is similar between the different driving cycles.

Figure 7. The estimated ηR at the aged cell compared to the fresh cell. The changes in the ηR due to
aging are very similar at any mission profile. In the high SOC region, the ηR is rapidly growing. Over
the middle SOC region, the ηR slightly grows. Finally, in the low SOC region, the ηR increases.

4.3. Maximum Available Power Estimation Validation

In order to validate the maximum available power estimation, the modified mixed pulse discharge
profile was applied to the Li-S cell with considered maximum current pulses and it is shown in Figure 8.
After the first set of the discharging pulses with currents of 0.29, 1.45 and 2.90 A, consequently, the
discharging pulse with 6.8 A was applied and, after the second set of the discharging pulse, the
charging pulse with 1.7 A was applied. When the voltage limits of 1.5 V for discharging and 2.45 V
for charging were reached during these maximum current pulses, the operation mode switched from
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the constant current mode to constant voltage mode in order to obtain the maximum power in those
conditions.

Figure 8. The mixed pulse profile for maximum available power estimation and the instantaneous
maximum available power at one second.

We have considered two cases for the power estimation: first, the instantaneous power at T = 1
second, shown in Figure 8 and then for the ’accelerating’ pulse for T = 10 seconds. The accuracy of the
estimation is evaluated from the whole 30 second maximum current pulse for the instantaneous power.
For the ’accelerating’ pulse, only the last 20 seconds of the pulse are considered, as the estimated power
is for 10 second application of the maximum current, so the estimated power can be compared just
after the first 10 seconds of the applied pulse.

The absolute maximum and average error are computed similarly to equations (65) and (66),
consequently, and they are presented in Table 3. Under the selected boundaries of maximum allowed
voltage and current limits, the cell was able to provide 14.78 W for discharge and 4.14 W for charge
during the applied pulses. The absolute maximum errors seem to reach high significant values related
to the maximum cell performance. However, the absolute average errors are fairly acceptable. It is
also important to keep in mind that the model was derived and accounted for maximum discharging
current 2.9 A and no charging model or parameters are implemented. Therefore, the performance of
the maximum available power estimator, while applying current of 6.8 A for discharge, which is more
than two times that for the model that was parametrized, and 1.7 A charging current, is considered as
more than acceptable.

Table 3. The errors of maximum available power estimation.

T Quantity Average Errors Maximum Errors

1 s
[Vmin Vmax] (V) [0.0080 0.0460] [0.1840 0.1556 ]

[IPdis.max IPch.max ] (A) [0.3022 0.0249] [1.7750 0.7759]
[Pdis.max Pch.max] (W) [0.5049 0.1381] [3.0365 1.9128]

10 s
[Vmin Vmax] (V) [0.0110 0.0525] [0.2148 0.1548]

[IPdis.max IPch.max ] (A) [0.6119 0.0284] [3.6860 0.3566]
[Pdis.max Pch.max] (W) [0.9924 0.1586] [6.1106 0.8736]
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5. Conclusions

In this work, a novel SOC and SOH estimation method for Li-S batteries has been introduced,
together with a specifically tailored model for maximum available power estimation. The proposed
estimation algorithm is based on two extended Kalman filters, where the first filter is used for online
parameter identification of the battery electrical circuit model using voltage and current measurements.
Subsequently, the estimated battery parameters are used in the second extended Kalman filter to
estimate the SOC, the SOH, (in terms of both capacity fade and the resistance change) and the
maximum available power for both charging and discharging pulses.

The robustness and the accuracy of the proposed SOC and SOH estimator has been analyzed
using a mixed pulse discharge profile firstly for a fresh cell and then for an aged cell. The estimator
does not include any process model of the Li-S battery degradation and it is solely based on the
error correction. The estimator has shown the capability to track the SOC, the capacity fade and the
resistance change for an aged cell with the worst case average errors being 0.0827, 0.1900 and 0.1796,
respectively. However, the accuracy of the SOC is dependent on the estimated capacity fade, which
varies depending on the current rates and dynamics of the considered mission profiles. Therefore,
there is a need for the concept clarification of the actual capacity at the Li-S batteries according to
their dynamics and history. Moreover, the model for the available capacity change would be helpful
in order to provide information about the absolute capacity fade. In terms of the absolute capacity
fade, the resistance change could be used as a supportive indicator, as it has shown a more consistent
trend between the fresh and the aged cell. However, the question of how it evolves under different
degradation conditions has to be still answered.

The implemented maximum available power estimator was presented and validated by
comparing the obtained estimation results with the experimental tests. The proposed model proofed
to be robust also when currents of 6.8 A were applied, which is more than two times the value of
the current, which had been used for the model parametrization. Furthermore, the available power
estimation algorithm provides relatively accurate results for the case when the available power should
be predicted during battery charging, a case that was not considered either during the parametrization
stage.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

ANFIS Adaptive Neuro-Fuzzy Inference System
BMS Battery Management System
EKF Extended Kalman filter
Li-ion Lithium-Ion
Li-S Lithium-Sulfur
NEDC New European Driving Cycle
NiMH Nickel-Metal hydride
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OCV Open-Circuit Voltage
OEMs Original Equipment Manufacturers
RSME Root Square Mean Error
SOC State of Charge
SOH State of Health
UDDS Urban Dynamometer Driving Schedule

Battery States and Model’s Parameters and Variables:
χ SOC
Qpresent a present amount of charge in the battery, which is possible to extract
Q̄cap the initial capacity; the maximum extractable charge from the fully charged battery at the beginning of life
Qcap the actual capacity; the maximum extractable charge from the fully charged battery at the actual battery age
ηQ the capacity fade
ηR the internal resistance change
R̄0 the initial internal resistance at the beginning of life
R0 the actual internal resistance at the beginning of life
Pdis.max the maximum available discharging power
Pch.max the maximum available charging power
Pmax the maximum available power (a generalized term)
VOC the open-circuit voltage
R1 the resistor in the RC element
C1 the capacitor in the RC element
Vp the voltage over the RC element
IL the load current
VL the battery terminal voltage
γm,c the term for the transition point between the high and the low voltage plateaus
m a scaling factor for the maximal gradient of the sinusoidal function
c the transition point, both functions are equally represented there
Ω the dynamic bandwidth
Rint the total steady-state resistance
ρ the dynamic fraction of the response

Extended Kalman Filter:
A state matrix
B input matrix
C output matrix
D feedthrough matrix
x model’s states
y model’s outputs
u model’s inputs
k the discrete time index
h the nonlinear measurement function
P the error covariance matrix
Q the process noise covariance matrix
R the noise measurement covariance matrix
K the Kalman gain matrix
v the measurement noise vector
w the process noise vector
W0 the ’observability grammian’
x_MaxErr the absolute maximum error
x_AvgErr the absolute mean error
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