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Abstract: This paper looks at the ability to cope with the uncertainty of wind power and reduce
the impact of wind power forecast error (WPFE) on the operation and dispatch of power system.
Therefore, several factors which are related to WPFE will be studied. By statistical analysis of
the historical data, an indicator of real-time error based on these factors is obtained to estimate
WPFE. Based on the real-time estimation of WPFE, a multi-time scale rolling dispatch model for
wind/storage power system is established. In the real-time error compensation section of this model,
the previous dispatch plan of thermal power unit is revised according to the estimation of WPFE.
As the regulating capacity of thermal power unit within a short time period is limited, the estimation
of WPFE is further compensated by using battery energy storage system. This can not only decrease
the risk caused by the wind power uncertainty and lessen wind spillage, but also reduce the total cost.
Thereby providing a new method to describe and model wind power uncertainty, and providing
economic, safe and energy-saving dispatch plan for power system. The analysis in case study verifies
the effectiveness of the proposed model.

Keywords: wind power forecast error; factor feature extraction; wind power accommodation; battery
energy storage system; real-time error compensation; multi-time scale rolling dispatch

1. Introduction

In recent years, with the increasing prominence of energy consumption and environmental
pollution, renewable energy generation, represented by wind power generation, has been paid more
and more attention [1,2]. However, due to the strong uncertain and volatile characteristics of wind
power, it is difficult to forecast and model accurately [3–5]. Overestimation or underestimation of wind
power would lead to reserves under-committed, causing wind curtailment and load shedding [6].
Therefore, how to handle the wind power forecast error (WPFE) becomes a research hotspot [7–9].

To cope with the uncertainty of wind power, the dispatch model is mainly divided into
two types. The first type is the certain model [10–13]. For example, in the literature [10], the
requirement of spinning reserve and the additional cost caused by the valve point effect are considered.
Furthermore, the upward and downward spinning reserve constraints are added to the dispatch
model. In Reference [11], the network loss and the spinning reserve requirements for wind power
uncertainty are considered, then a multi-objective dispatch model considering both emission and cost
is established. This type of model needs to set a large capacity of spinning reserve to ensure the safety
of the system operation, which is too conservative and not economical. The second type is the uncertain
model, such as probabilistic model [14–17], fuzzy set theory [18,19], scenario analysis [6,20], stochastic
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programming theory [21–24], etc. For example, the authors in Reference [14] regard the forecast
error of load demand and wind power as normal distribution, and propose a probabilistic model to
estimate the reserve capacity demand. In Reference [19], the authors regard the wind power output
as a fuzzy variable and establish a multi-time scale dispatch model considering chance constraints
of spinning reserve. In Reference [20], a Monte Carlo sampling method based on polynomial chaotic
expansion is proposed and used to generate wind power scenarios. In Reference [23], a risk adjustable
unit commitment (UC) optimization model is proposed, which combines the chance constrained
programming and the goal programming. Although these sorts of models can describe the uncertainty
of wind power in different degrees, they have their own limitations. The choice of the distribution
function of the probabilistic model is subjective, and the model is usually complex and time-consuming
to solve. The selection of membership function and the fuzzy parameters needs an experience. For the
scenario analysis method, a large amount of work is required for scenario generation and reduction.
Stochastic programming is often combined with probabilistic model or fuzzy theory, which is also
solved subjectively. Additionally, some scholars also handle the uncertainty of wind power using
battery energy storage system (BESS) [25,26], electric vehicle (EV) [27,28], or demand side management
(DSM) [29–31]. For example, in Reference [26], the charge/discharge loss costs of BESS are taken into
account, and an optimization dispatch model based on fuzzy set theory is established. In Reference [27],
the authors use point estimation method based on Nataf transform to express uncertainties in wind
power, and an economic emission dispatch model for power system containing wind farms and EVs
is established. As for BESS and DSM, the authors in Reference [29] establish a dynamic economic
dispatch model considering the intermittency and uncertainty of power system with high wind
penetration. Although the volatility of wind power can be stabilized using these uncertain models, the
investment and maintenance cost of BESS is high. Moreover, the uncontrollable EVs and the improper
coordination strategy cause more uncertain to power system. In addition, researchers also propose
some new methods to describe the uncertainty of wind power. The authors in Reference [32] propose
a nonparametric conditional probabilistic forecasting method and present a day-ahead UC model with
different wind power forecasting confidence intervals, which can characterize the uncertainty and
volatility of wind power. However, the model is also complex, and the selection of leading factors and
the partition of space subset are subjective. In Reference [33], the authors propose four kinds of factors,
which have positive correlations with WPFE. Based on this, an error estimation model is established by
using multiple linear regression method. This model has a certain guiding significance for the estimate
of WPFE. However, the actual results fluctuate beyond the estimated range occasionally. Therefore, it
is necessary to set up a larger spinning reserve to handle the inaccurate estimate of WPFE.

In this paper, several factors which related to WPFE are analyzed to study how to extract their
optimal features through correlation statistics of historical data. Then, according to the optimal
factors and correlation coefficients, an estimation indicator for WPFE is calculated. By taking the
estimation of WPFE into consideration, a multi-time scale rolling dispatch model based on real-time
error compensation is established. The output of thermal power unit (referred to as ‘unit’) is revised
based on the estimation of WPFE in real-time error compensation section, and the BESS is utilized to
compensate furtherly. The dispatch results and the comparison analysis with alternative models from
case study represent the comprehensive performance of proposed method in flexibility, improving
wind power accommodation, reducing load shedding, saving computational time and decrease the
total cost.

2. WPFE Estimation Based on Optimal Factor Features Extraction

2.1. Analysis on the Method to Extract Probabilistic Optimal Factor Features

In this section, the relationship between several factors and WPFF are analyzed to find the optimal
representation of WPFF. WPFF is defined as eW in Equation (1). The factors, including wind power
forecast output fluctuation (λ1), short-term wind power output stability (λ2), wind power output
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amplitude (λ3) and short-term wind power forecast output accuracy (λ4) are listed in Equations (2)–(5).
The degree of relationship between these factors and eW is calculated by correlation coefficients, which
is defined in Equation (6).
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where, subscripts j = {1, 2, 3, 4} represent the four factors respectively. Nj = {N1, N2, N3, N4} are the
numbers of sample data used when calculating λj = {λ1, λ2, λ3, λ4}. Rj = {R1, R2, R3, R4} are the
correlation coefficients between λj and eW. t is the time label of forecast/dispatch point. wa and wf are
the actual and 15 min ahead forecast of wind power. Vcap is the rated capacity of the wind farm.

By using the wind power data gathered from the public database of Elia [34], Rj = {R1, R2, R3,
R4} can be calculated. The calculated results indicate that the correlation coefficients Rj are influenced
by the numbers of sample data. Too large number of used sample data even leads to a negative Rj.
To obtain the optimal factors defined in Equations (2)–(5), the historical wind power data are analyzed
to find the optimal number of sample data.

A whole year historical data of wind power is gathered from 1 June 2014 to 31 May 2015 of
Elia. The number of used wind data is 365 × 24 × 4 = 35,040. For each time point, λj,t and et

W are
calculated by using Equations (1)–(5) when Nj = 2~96. After normalization of λj,t and et

W, correlation
coefficients Rj are calculated through Equation (6). After each step, 95 groups of correlation coefficients
are calculated. The largest correlation coefficient Rj and the corresponding number of sample data
Nj are obtained. For a whole year data, the previous calculations are implemented for 35,040 times.
Then, we can achieve 35,040 groups of largest Rj (Rj

opt) and the corresponding optimal Nj (Nj
opt).

The frequency distribution of Nj
opt is shown in Figure 1.
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Figure 1. The frequency distribution of the optimal number of sample number for factor j (Nj
opt).
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In Figure 1, N1
opt = 2, the frequency is 3454 accordingly, which is larger than any other values of

N1
opt. It means that R1 has the largest probability to be optimal when N1

opt is 2, namely, λ1 has the
strongest relationship to WPFE when N1

opt is 2 in Equation (2). For λ2, λ3, λ4, N2
opt = 3, N3

opt = 2 and
N4

opt = 2 respectively.
The frequency distribution of Rj

opt are also shown in Figure 2.
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Table 1. Nj
opt and the mean of Rj

opt of each season and a whole year.

Wind Power Data N1
opt N2

opt N3
opt N4

opt R1
mean R2

mean R3
mean R4

mean

Spring 2 3 2 2 0.4049 0.5122 0.3684 0.8688
Summer 2 2 2 2 0.4067 0.4973 0.4188 0.8843
Autumn 2 5 2 2 0.4559 0.5064 0.3708 0.8677
Winter 2 3 2 2 0.3913 0.4513 0.3500 0.8643
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In WPFE estimation, the optimal values of different seasons in Table 1 are taken according to
different dispatch dates. Among them, Nj

opt is used to calculate each factor λj to obtain its optimal
value λj

opt. This process is called optimal factor features extraction, and the normalized λj
opt is used to

estimate WPFE. Rj
mean is used as the weight of each optimal factor λj

opt in the estimation process.
The optimal values in this paper are obtained from the statistical analysis results by using the

operation data from Elia. When data sets are different, the results may vary. According to the method in
this paper, other operation data of wind farms can be statistically calculated to obtain the corresponding
optimal values.
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2.2. WPFE Estimation Based on Optimal Correlation Weights

From the previous discussion, it can be concluded that λ1, λ2, λ3, λ4 have relationships to WPFE.
To estimate the WPFE, an error indicator λe is defined in Equation (7):

λe
t =

ΣjRmean
j λ

opt
j,t

ΣjRmean
j

, (7)

where, λe is the weighted average of λ1, λ2, λ3, λ4. By using the mean of correlation coefficient Rj
opt as

the weights of λ1, λ2, λ3, λ4, different factor influences λe in different degree. λe is more dependent on
λ4 because R4

mean is larger and λ4 has stronger relationship to forecast error than other three factors
λ1, λ2, λ3.

In real time dispatch operation, λj
opt and λe can be calculated for each time point based on the

most recent data of wind power. By utilizing the historical normalize eW, λe is anti-normalized to
obtain the estimation of WPFE (eW). In the dispatch model in next section, λe and eW are used to take
the real-time WPFE into consideration.

3. Power System Multi-Time Scale Rolling Dispatch Model Based on Real-time
Error Compensation

3.1. The Overall Idea of the Dispatch Model

The dispatch model consists of three time-scale parts: (1) Day-ahead dispatch model ([t, t + 96]);
(2) intra-day rolling revision model ([t, t + 16]); and (3) real-time error compensation model ([t, t + 1]).
UC plan is formulated and adjusted according to the solution of the first two time-scale models.
The unit output adjustment plan and charge/discharge plan of BESS are formulated based on the
solution of the third time-scale model. Due to the WPFE estimation indicator involved in the third
time-scale model, the dispatch schedule can be adjusted following the estimation of WPFE and
compensate it on time. In this way, the dispatch schedule can be obtained following the actual wind
power as closely as possible, which can keep the balance of power supply and load demand and
decrease the wind power curtailment. With the overall ideas above, the time axis flowchart is shown
in Figure 3.
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the optimal value Nj
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mean. Then the recent data ([t− Nj

opt, t− 1]) is used to extract the optimal
factor features λj

opt. By the weight of Rj
mean, the estimation indictor and the estimation of WPFE are

achieved and to be taken into consideration in real-time compensation section of multi-time scale
rolling dispatch model.
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3.2. Day-Ahead Dispatch Model

The day-ahead dispatch model is established to provide a 24 h plan, ahead of time. It mainly
draws up the UC plan, upward and downward spinning reserve for the next day. The goal of this
model is to minimize the total cost. Since there are large errors in the day-ahead forecast wind power,
some constraints in this model are appropriately relaxed. A larger capacity of spinning reserve would
be set up in this step to provide an enough adjustable margin for intra-day rolling revision step.

3.2.1. Objective Functions

Considering the cost of unit coal consumption, start-up, upward and downward spinning reserve,
the objective function of the day-ahead dispatch model is presented as follows:

minFD−A = minΣT
t=1ΣN

n=1

(
CP,D−A

n,t + CS,D−A
n,t + CD,D−A

n,t + CU,D−A
n,t

)
, (8)


CP,D−A

n,t = anP2
n,t + bnPn,t + uG,D−A

n,t cn

CS,D−A
n,t = uG,D−A

n,t

(
1− uG,D−A

n,t−1

)
sn,t

CD,D−A
n,t = uG,D−A

n,t kdrG,d
n,t

CU,D−A
n,t = uG,D−A

n,t kurG,u
n,t

, (9)

where, the subscripts n and t are unit label and time label. The superscript D-A indicates the parameters
in day-ahead model. CP, CS, CU and CD are the cost of unit coal consumption, start-up, upward and
downward spinning reserve respectively. N and T are total unit number and total time number. P, rG,u,
rG,d are active power output, upward and downward spinning reserve of units respectively. a, b, c
are coal consumption cost coefficients of units. s, ku, kd are cost coefficients of unit start-up, upward
and downward spinning reserve. uG is start-stop state variable of unit. 1 represents ‘start-up’, while 0
means ‘stop-out’.

3.2.2. Constraints of the Model

1 System Active Power Balance Constraints

ΣN
n=1Pn,t + w f ,D−A

t = L f ,D−A
t , (10)

where, wf,D−A is the day-ahead forecast of wind power. Lf,D−A is day-ahead forecast of load demand.

2 Unit Output Constraints

uG,D−A
n,t Pmin

n ≤ Pn,t ≤ uG,D−A
n,t Pmax

n , (11)

where, Pmax and Pmin are the upper limit and lower limit of unit output.

3 Unit Upward and Downward Spinning Reserve Constraints

The spinning reserve upper limits are set considering the maximum available power and the
maximum ramping constraint that the unit can provide during dispatch time interval ∆T (15 min).
The lower limits of the spinning reserve are set depending on the forecast values, which are
expressed as:  rG,d

n,t ≤ uG,D−A
n,t

[
Pn,t −max

(
Pmax

n , Pn,t−1 − rd
n∆T

)]
rG,u

n,t ≤ uG,D−A
n,t

[
min(Pmax

n , Pn,t−1 + ru
n∆T)− Pn,t

] , (12)

 uG,D−A
n,t

(
kww f ,D−A

t + kl L f ,D−A
t

)
≤ rG,d

n,t

uG,D−A
n,t

(
kww f ,D−A

t + kl L f ,D−A
t

)
≤ rG,u

n,t

, (13)
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where, ru and rd are upper and lower ramping rate of units. kw and kl are reserve capacity demand
coefficients of wind farm and load.

Other constraints are similar to the conventional dispatch model [10–13].

3.3. Intra-Day Rolling Revision Model

The intra-day rolling revision model provides a plan which is 15 min to 4 h ahead. This plan
is executed based on the results of the day-ahead dispatch decision and the recent ultra-short-term
forecast of wind power and load demand. According to the intra-day plan, unit outputs are gradually
revised to track the latest forecast values. The UC plans are also tested that whether it is necessary to
change the start-stop plan of the unit during the subsequent period.

3.3.1. Objective Functions

Similar to the day-ahead dispatch model, the goal of intra-day rolling revision model is to achieve
the minimum total cost. The model is established as follows:

minFI−D = minΣT
t=1ΣN

n=1

(
CP,I−D

n,t + CS,I−D
n,t + CD,I−D

n,t + CU,I−D
n,t

)
, (14)



CP,I−D
n,t = an(Pn,t + ∆Pn,t)

2 + bn(Pn,t + ∆Pn,t) + uG,I−D
n,t cn

CS,I−D
n,t = uG,I−D

n,t

(
1− uG,I−D

n,t−1

)
sn,t

CD,I−D
n,t = uG,I−D

n,t kd
(

rG,d
n,t + ∆rG,d

n,t

)
CU,I−D

n,t = uG,I−D
n,t ku

(
rG,u

n,t + ∆rG,u
n,t

) , (15)

where, the superscript I-D indicates the parameters in intra-day model. ∆P, ∆rG,u and ∆rG,d are revision
power of unit output, upward and downward spinning reserve.

3.3.2. Constraints of the Model

1 System Active Power Balance Constraints

ΣN
n=1(Pn,t + ∆Pn,t) + w f ,I−D

t = L f ,I−D
t , (16)

where, wf,I−D and Lf,I−D are recent ultra-short-term forecast of wind power and load demand.

2 Unit Output Revision Constraints

Considering the maximum ramp rate and output limits of the unit within the dispatch time
interval ∆T, the constraints are listed as follows: uG,I−D

n,t

[
max

(
Pmin

n , Pn,t−1 − rd
n∆T

)
− Pn,t

]
≤ ∆Pn,t

∆Pn,t ≤ uG,I−D
n,t

[
min(Pmax

n , Pn,t−1 + ru
n∆T)− Pn,t

] , (17)

3 Upward and Downward Spinning Reserve Revision Constraint

The spinning reserve upper limits are similar to that in the day-ahead model, which are
expressed as: rG,d

n,t + ∆rG,d
n,t ≤ uG,I−D

n,t

[
Pn,t + ∆Pn,t −max

(
Pmin

n , Pn,t−1 + ∆Pn,t−1 − rd
n∆T

)]
rG,u

n,t + rG,u
n,t ≤ uG,I−D

n,t

[
min(Pmax

n , Pn,t−1 + ∆Pn,t−1 + ru
n∆T)− (Pn,t + ∆Pn,t)

] . (18)
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The spinning reserve lower limits are expressed by chance constraints based on the probabilistic model. P
{

ΣN
n=1

(
rG,d

n,t + ∆rG,d
n,t

)
≥ eW,p

t − eL,p
t

}
≥ αd

P
{

ΣN
n=1

(
rG,u

n,t + ∆rG,u
n,t

)
≥ eL,p

t − eW,p
t

}
≥ αu

, (19)

where, eW,p and eL,p are forecast errors of wind power and load demand obtained from the probabilistic
models. In the intra-day rolling revision model. it is assumed that eW,p and eL,p all subject to normal
distribution, and the parameters can be found in literature [14]. P{·} ≥ α means that the probability of
an event is larger than the confidence level α.

Other constraints are similar to the conventional dispatch model.

3.4. Real-Time Error Compensation Model

Real-time error compensation model provides a plan 15 min ahead of time, according to the
real-time estimation of WPFE based on the recent data of wind power. Due to the limited capacity and
output power of BESS within a short time period, as well as the high operation and maintenance cost
of BESS, units are used to prioritize compensation the WPFE within the adjustable range. Then, BESS
is used for further compensation. Therefore, the method of block modeling and stratified solution is
adopted here. Firstly, the compensation sub-model of unit is established. The total output of units
is revised within its adjustable range to compensate the real-time estimation of WPFE. Then, the
compensation sub-model of BESS is established. The charge/discharge strategies are formulated to
furtherly compensate the estimation of WPFE. Finally, the main model of real-time error compensation
is established. By substituting the solutions of the two sub-models into the main model, the total
revised output of units is optimized and assigned to each unit with the object of minimizing the
total cost.

3.4.1. The Compensation Sub-Model of the Units

In real-time error compensation model, a slack variable et
′ is set to ensure that the model has

a feasible optimal solution because the estimation of WPFE may not be compensated completely.
The slack variable is minimized in the objective function so that the estimation of WPFE can be
maximally compensated by the units. The estimation of WPFE et

W obtained by the previous method is
introduced and the compensation sub-model of the units is established as follows:{

f G = min
∣∣e′t∣∣

s.t. PG
t + w f

t + eW,e
t + e′t = L f

t

, (20)

where
PG

t = PR−T
t + ∆PR−T

t = ΣN
n=1(Pn,t + ∆Pn,t) + ΣN

n=1∆P′n,t, (21)

where the R−T indicates the parameters in real-time model. PR−T is the total output of units after
intra-day rolling revision. The decision variable ∆PR−T is the total output of units needs to be revised
in this model. PG is the total output of units after revision. ∆Pn

′ are revised outputs need to assign
to each unit, which are decision variables of the main model. wf and Lf are 15 min ahead forecast of
wind power and load demand. The slack variable et

′ represents the estimation of WPFE after being
compensated by units and is used in the BESS sub-model.

Other constraints are similar to the intra-day model.

3.4.2. The Compensation Sub-Model of BESS

BESS is used to further compensate the estimation of WPFE after being compensated by units.
The goal is to maximize the compensated power, meaning that maximize the charge/discharge output
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of BESS. As a result, the WPFE can be compensated as much as possible. The objective function is
established as follows:

min f B = min
[
e′t
(

PB,dc
t + PB,ch

t

)]
, (22)

where, uB,ch and uB,dc are charge/discharge status variables of BESS (1 for charge/discharge, 0 for
pause). PB,ch and PB,dc are the charge/discharge output power of BESS. et

′ is used as a compensation
demand coefficient to maximize the charge/discharge of BESS.

The BESS sub-model should be satisfied with the following constraints:

1 Charge/Discharge Constraints of BESS

The charge/discharge power of BESS in each dispatch point must be within the maximum and
minimum charge/discharge power (PB,max and PB,min) that BESS can provide during the dispatch time
interval ∆T: {

uB,ch
t PB,min ≤ PB,ch

t ≤ uB,ch
t PB,max

uB,dc
t PB,min ≤ PB,dc

t ≤ uB,dc
t PB,max . (23)

2 Charge/Discharge Status Constraints of BESS

The charge/discharge consumptions of BESS are taken into consideration. In order to avoid
charging and discharging frequently, charge/discharge performs when the magnitude of e′ exceeds a
certain threshold. 

uB,ch
t = 1, e′t ≥ kchRG,d

t ≥ 0
uB,dc

t = 1, e′t ≤ −kdcRG,u
t ≤ 0

uB,ch
t = uB,dc

t = 0, others
, (24)

where 
0 ≤ kch ≤ 1, 0 ≤ kdc ≤ 1

RG,u
t = ΣN

n=1

(
rG,u

n,t + ∆rG,u
n,t

)
RG,d

t = ΣN
n=1

(
rG,d

n,t + ∆rG,d
n,t

) , (25)

where, Rt
G,u and Rt

G,d are the total upward and downward spinning reserve (SR) of units obtained
from the chance constraints based on normal distribution model. If the SR is not set properly, it will
result in wind curtailment or load shedding. kch and kdc are the charge/discharge threshold coefficient.
When kch and kdc are higher (close to 1), the threshold is higher, and the times of charge/discharge
is less. As a result, the effect of compensation is likely to reduce due to insufficient ramp rate and
output power of BESS during a short time. On the contrary, the smaller kch and kdc are (closer to 0), the
more the charge/discharge times and the compensated power are. However, it would increase the
frequency of charging and discharging of BESS and the costs. In actual dispatch process, these two
parameters can be set according to the compensation requirement.

3 BESS Compensation Range Constraints

The forecast error et
′ after being compensated by BESS needs to be within the threshold of units SR:{

e′t − uB,ch
t PB,ch

t ≥ kchRG,d
t

e′t + uB,dc
t PB,dc

t ≤ −kdcRG,u
t

. (26)

4 BESS Capacity Constraints

The capacity of BESS after providing charge/discharge power at each time period must be within
the BESS available capacity limits.
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{
EB,min ≤ EB

t ≤ EB,max

EB
t+1 = EB

t + ηB,chuB,ch
t PB,ch

t − ηB,dcuB,dc
t PB,dc

t
, (27)

where, ηB,ch and ηB,dc are charge/discharge efficiency coefficients of BESS. EB, EB,max and EB,min are
current available capacity, maximum and minimum available capacity of BESS.

3.4.3. Real-Time Compensation Main Model

The total revision output is assigned to each unit with the object of minimizing the cost. By taking
the cost of charge/discharge loss of BESS (CB) into consideration, the main model is established
as follows: 

minFR−T = min
(

FI−D + CB)
CB = CI

ntotal ΣT
t=1

uB,ch
t +uB,dc

t
2

s.t. ΣN
n=1

(
PR−T

n,t + ∆P′n,t

)
= PG

t

, (28)

where FI−D is the objective function in intra-day model. CI and ntotal are investment cost and life
cycles of BESS. Pn,t

R−T is the output of unit n in dispatching time t after intra-day rolling revision.
The decision variable ∆Pn,t

′ is the revision output needs to distribute to unit n in dispatching time t.
Pt

G is the total output of units in dispatching time t after revision by unit compensation sub-model.
Other constraints are similar to the intra-day model.

3.5. The Transformation and Solving Method for the Model

The multi-time scale rolling dispatch model established in this paper is a mixed integer nonlinear
programming (MINLP) problem with chance constraints including uncertainty variables. Because of
the large number of decision variables, the linear programming commercial solving software CPLEX is
used in this paper. The first is to transformer the dispatch model to a linear and deterministic one.

3.5.1. Piecewise Linearization of Coal Consumption Cost

In this paper, the coal consumption cost CP in objective functions Equations (9) and (15) are
nonlinear. The method in literature [26] is used to divide the cost curve of coal consumption into three
equal parts to convert the nonlinear quadratic function to a linear piecewise function.

3.5.2. Simplification of Chance Constraints

In this paper, the chance constraint Equation (19) is nonlinear and containing uncertain variables.
We use the method in literature [24] to make a deterministic and linear transformation for chance
constraints. The forecast errors eW,p and eL,p are treated as normal distribution. Then the Fast Fourier
Transform (FFT) is used to quickly calculate the convolution of them to obtain the probability density
function of joint variable Zt. Next, according to the correspondence table in Reference [24], the
cumulative distribution function of joint variables (FZt) is obtained. Finally, the dichotomy method
is used to obtain the inverse function of Cumulative Distribution Function (CDF, FZt

−1). Under the
confidence levels αu and αd, the deterministic constraints are obtained as follows. ΣN

n=1

(
rG,d

n,t + ∆rG,d
n,t

)
≥ F−1

Zt

(
αd
)

ΣN
n=1

(
rG,u

n,t + ∆rG,u
n,t

)
≥ F−1

Zt
(1− αu)

. (29)

After the above deterministic and linearization processing, the model transforms to a MILP
problem. Then CPLEX is used to solve the model, which can save a lot of calculation time.
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3.5.3. The Overall Flowchart of the Proposed Method and Model

Integrating the estimation method, dispatch model and solution method proposed above, the
flowchart is shown in Figure 4.
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As shown in the middle part of Figure 4, the day-ahead dispatch model and the intra-day rolling
revision model of multi-time scale rolling dispatch model is solved successively according to the
forecast wind power at the corresponding time scale. Then, in the left part of Figure 4, WPFE is
estimated by historical data analysis, optimal factor features extraction and weighted average of factor
features. Finally, the real-time compensation model is solved to adjust units and BESS in real time
based on the result of the intra-day rolling revision model and the estimate WPFE. In the whole
solution process, the piecewise of coal consumption cost and the joint distribution calculation of wind
power and load demand is adopted to linearize the model for optimal solution by using CPLEX.

4. Case Study

4.1. Case Analysis

The IEEE 39-bus test system and IEEE 118-bus test system are used respectively to illustrate the
effectiveness of the dispatch model in WPFE compensation, four cases are set as follows:

1. Case 1: The dispatch model consists of day-ahead dispatch model and intra-day rolling revision
model. According to the chance constraint based on probability distribution of intra-day model,
the spinning reserve (SR) are set to provide compensation. Real-time compensation section is not
taken into consideration.

2. Case 2: The dispatch model consists of day-ahead dispatch model, intra-day rolling revision
model, real-time compensation sub-model of units and real-time compensation main model.
Real-time estimation of WPFE is compensated only by the units.

3. Case 3: The dispatch model consists of day-ahead dispatch model, intra-day rolling revision
model, real-time compensation sub-model of BESS and real-time compensation main model.
Real-time estimation of WPFE is compensated only by the BESS.

4. Case 4: The dispatch model consists of day-ahead dispatch model, intra-day rolling revision
model, real-time compensation sub-model of unit, real-time compensation sub-model of BESS
and real-time compensation main model. Real-time estimation of WPFE is compensated by the
units and the BESS.

All experiments are solved using the commercial software CPLEX12.8 MILP solver with MATLAB
2016a and are run on a computer with Intel Core 2.6 GHz CPU and 4G RAM.
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4.2. Simulation and Analysis in IEEE 39-Bus System

The data in March 2017 from the Elia company is used to test. The wind power data are
normalized with rated capacity of 350 MW. The wind/storage system is connected to the 10-unit
system. The parameters of the units can be found in literature [35]. The actual and forecast load demand
is shown in Appendix A, Figure A1. The values of parameters in the model are shown in Table 2.

Table 2. The values of various parameters in the model.

EB,min EB,max PB,min PB,max ηB,ch ηB,dc CI ntotal

20 MW·h 200 MW·h 0 MW 50 MW 0.9 0.9 7.7 × 105 $ 2 × 104

kch kch ku kd kw kl αu αd

0.8 0.8 20 $/MW 15 $/MW 0.4 0.02 0.9 0.9

4.2.1. Estimation of Wind Power Forecast Error

According to the spring optimal Nj
opt in Table 1, the factors are calculated using Equations (2)–(5)

and normalized to obtain λ1,t
opt,n~λ4,t

opt,n. Then, according to the spring optimal Rj
opt in Table 1,

the WPFE estimation indicator λt
e is calculated by using Equation (7). The indicator λt

e is then
anti-normalized to obtain the estimation of WPFE. The actual WPFE and the estimation of WPFE are
shown in Figure 5. The wind power data used in Figure 5 is on 29 March gathered from Elia.
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It can be seen that the actual WPFE can be estimated to different degrees in each sample time.
When t = 85, the estimation of WPFE obtained by using this method is −34.04MW, and the actual
WPFE is −34.48MW. The actual WPFE at the 85th sample time has been estimated accurately. When t
= 50, the estimation of WPFE is 42.23 MW, and the actual WPFE is 69.22 MW. Although there is a large
gap between the estimation of WPFE and the actual one, the WPFE is evaluated to be a large one and
will be compensated in the proposed real-time error compensation model. Otherwise, without the
estimation of WPFE (even is not precise enough), the system would face an unbalance of 69.22 MW
instead of 26.99 MW (69.22 − 42.23 = 26.99).

In this paper, the real-time compensation model considering the WPFE estimation indicator is
established on the basis of the units’ SR based on the chance constraint of probabilistic model in the
intra-day dispatch model. By adjustment by units or BESS in advance, the actual invested SR of units
can be reduced, so that more adjustable space of SR can be remained to cope with the sudden forecast
error peak. The system operating risk including wind power curtailment and load shedding can
be reduced.

In addition, the correlation coefficients between λ1
opt~λ4

opt and WPFE are expressed as R1~R4,
and the correlation coefficient between λe and WPFE is represented as Re. They are calculated and
shown in Table 3.
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Table 3. The correlation coefficients obtained by single factor and comprehensive indicator

R1 R2 R3 R4 Re

0.0831 0.3094 0.2060 0.5336 0.8775

From Table 3, it can be seen that the correlation between a single factor and WPFE is relatively low.
The largest correlation coefficient among the four factors is 0.5336 and the minimum is only 0.0831.
However, the correlation coefficient of the indicator λe obtained by the comprehensive factor features
reaches to 0.8775. Therefore, the WPFE can be estimated more accurately by λe.

4.2.2. Analysis of Case 1

This case is a traditional multi-time scale rolling economic dispatch model based on chance
constraint for power system containing a wind farm. After intra-day rolling revision, the grid dispatch
schedule tracks to the 15 min ahead forecast of wind power. With the confidence levels αu = αd = 0.9
are set, the chance constraint model, based on normal distribution, are solved to get the possible range
of WPFE. The upward and downward SR of units are set accordingly, which are the dotted line in
Figure 6a. The Synthetic Forecast Error (SFE) is the sum of the actual forecast error of wind power and
load demand, as shown by the blue line in Figure 6a. When the SFE is within the two dotted lines, it
can be compensated completely by the SR. Otherwise, incomplete compensation of the SFE results in
wind power curtailment (WC, represented as the positive area) and load shedding (LS, represented as
the negative area), as shown in the purple area in Figure 6b.Energies 2018, 11 
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For t = 50 in Figure 6a, the actual WPFE is 69.22 MW and the load forecast error is −17.14 MW.
It is an extreme situation while wind power is underestimated, and the load demand is overestimated
at the same time. The SFE reaches to 86.36 MW and exceeds the SR = −38.43 MW. In Figure 6b,
the wind power curtailment is 47.93 MW at t = 50, and the ratio of the wind power curtailment is
16.7%. For t = 85 in Figure 6a, the actual WPFE is −34.48 MW, and the load forecast error is 26.69 MW.
The extreme situation of wind power overestimation and load demand underestimation is occurred.
The SFE reaches to −61.17 MW, which greatly exceeds SR = 44.09 MW. At this time, the load demand
of −17.08 MW had to be removed and the load shedding ratio was 1.2% as shown in in Figure 6b.
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In 96 sample times, the times that SFE exceeds the SR range reach to 34. The total invested SR is
623.1 MW, the total wind power curtailment is 324 MW and the total load shedding is 155.6 MW. It is
difficult to compensate the sudden peaks of forecast error by the SR according to the chance constraint
based on probabilistic model, thus resulting in larger wind power curtailment and load shedding.

4.2.3. Analysis of Case 2

According to the estimation of WPFE, the real-time compensation section is taken into
consideration. In Case 2, only the units are responsible for real-time compensation task. The SFE
before and after compensation of units are shown in Figure 7a. The wind power curtailment (WC,
represented as the positive area) and load shedding (LS, represented as the negative area) before and
after compensation of units are shown in Figure 7b.Energies 2018, 11 
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It can be seen from Figure 7a that depending on the real-time compensation sub-model of units,
the SFE is compensated to a great extent. For t = 50, compared with Case 1, the SFE is decreased
from 86.36 MW to 65.21 MW, with a reduction rate of 24.5%. As shown in Figure 7b, the wind power
curtailment at this time is reduced from 47.93 MW to 26.78 MW, with a reduction rate of 44.1%.
For t = 85 in Figure 7a, the SFE is decreased from −61.17MW to −44.09MW after being compensated
by units, with a reduction rate of 27.9%. At this time, the load shedding in Figure 7b is decreased from
−17.08 MW to 0 MW.

Among the 96 sample times, compared with Case 1, the times that SFE exceed the SR range
decreases from 34 to 14. The invested SR of units decreases from 623.1 MW to 466.3 MW, with a
reduction rate of 25.2%. The total wind power curtailment decreases from 324 MW to 107.6 MW,
with a reduction rate of 66.8%. The total load shedding decreases from 155.6 MW to 27.2 MW, with a
reduction rate of 82.5%.

Thus, due to the advanced compensation, the invested SR of units can be reduced. So that
the SR has more adjustable space to cope with the sudden peak of forecast error and reduce the
wind curtailment and load shedding. However, due to the constraints such as unit ramp rate, the
compensation capacity that the units can provide in a short time period is limited. Therefore, the wind
curtailment and load shedding is not compensated completely only by units.



Energies 2018, 11, 2124 15 of 27

4.2.4. Analysis of Case 3

In this case, only the BESS is used to compensate the SFE. The SFE before and after compensation
by BESS are shown in Figure 8a. The wind power curtailment (WC, represented as the positive area)
and load shedding (LS, represented as the negative area) before and after compensation by BESS are
shown in Figure 8b.Energies 2018, 11 
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Figure 8. Comparison of SFE, WC and LS before and after battery energy storage system
(BESS) compensation.

The compensation effect on the SFE is also acceptable by using charge/discharge of BESS based
on the estimation of WPFE. For t = 50 in Figure 8a, after being compensated by BESS, the SFE decreases
from 86.36 MW (in Case 1) to 59.64 MW, with a reduction rate of 30.9%. At this time, the wind
power curtailment in Figure 8b decreases from 47.93 MW to 21.21 MW, with a reduction rate of 55.7%.
For t = 85 in Figure 8a, after being compensated by BESS, the SFE decreases from −61.17 MW to
−44.09 MW, with a reduction rate of 27.9%. At this time, the load shedding in Figure 8b is decreased
from −17.08 MW to 0 MW.

Among the 96 sample times, compared with Case 1, the times that SFE exceed the SR range
decreases from 34 to 10. The invested SR of units decreases from 623.1 MW to 518.6 MW, with a
reduction rate of 16.8%. The total wind power curtailment decreases from 324 MW to 112.8 MW, with a
reduction rate of 65.2%. The total load shedding decreases from 155.6 MW to 1.6 MW, with a reduction
rate of 99.0%.

The charge/discharge power and the states of charge (SOC) of the BESS in each sample time are
shown in Figure 9.
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In the model proposed in this paper, compensation is only performed when the estimation of
WPFE is greater than a certain threshold (kch/kdc × SR). Refer to Equation (23) for details. In this paper,
kch = kdc = 0.8. As can be seen from Figure 9, the BESS schedule has 43 charge and discharge times at
96 sample times. The charge/discharge times are relatively concentrated. Too frequent charge and
discharge do not occur. The upper and lower limits of the available capacity of the BESS are indicated
by the dotted lines in Figure 9. It can be seen that the BESS schedule satisfies the available capacity
constraints at each sample time. As the BESS has a limited charge/discharge power and ramp rate in a
short time period, the SFE cannot be completely compensated only by the BESS.

4.2.5. Analysis of Case 4

From the results of Case 2 and Case 3, it can be seen that due to the ramp rate of units and
the charge/discharge capacity constraints of BESS, only the unit or only the BESS has a deviation
in compensating the SFE. Therefore, the multi-time-scale rolling dispatch model of power system
based on real-time error compensation established in this paper integrates these two methods into the
real-time compensation section. The effects on power system dispatch after compensation by units
and BESS are analyzed in this case. According to the real-time error compensation model in 2.3, the
units are adjusted firstly to compensate the estimation of WPFE, and then the charge/discharge of
BESS are used to compensate further. The SFE before and after compensation by units and BESS are
shown in Figure 10a. The wind power curtailment (WC, represented as the positive area) and load
shedding (LS, represented as the negative area) before and after compensation by units and BESS are
shown in Figure 10b.
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Figure 10. Comparison of SFE, wind power curtailment (WC, represented as the positive area) and LS
before and after unit/unit and BESS compensation.

From Figure 10, it can be seen that the compensation method in this case has the best compensation
effect on SFE among the four cases. For t = 50 in Figure 10a, after being compensated by units and
BESS, the SFE decreases from 86.36 MW to 42.28 MW, with a reduction rate of 51.0%. At the same time,
the wind power curtailment in Figure 10b decreases from 47.93 MW to 3.85 MW, with a reduction rate
of 92.0%. For t = 85 in Figure 10a, after compensation in this case, the SFE decreases from −61.17 MW
to −17.32 MW, with a reduction rate of 71.7%. At this time, the load shedding in Figure 10b decreases
from −17.08 MW to 0 MW, and it can be completely avoided.

In the 96 sample times, the times that the SFE exceed the SR decreases from 34 to 4. The invested
SR decreases from 623.1 MW to 353.5 MW, with a reduction rate of 43.3%. The total wind power
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curtailment decreases from 324.0 MW to 32.4 MW, with a reduction rate of 90.0%. The total load
shedding decreases from 155.6 MW to 0, with a reduction rate of 100.0%.

The charge/discharge power and the SOC of the BESS in each sample time are shown in Figure 11.Energies 2018, 11 
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As can be seen from Figure 11, in the 96 sample times of Case 4, the charge and discharge times
of BESS decreases from 43 to 32 compared with being compensated only by BESS in Case 3, which
reduces the charge and discharge loss of BESS. The charge/discharge times are very concentrated, and
the frequent charge and discharge implements do not occur. From the SOC curve in Figure 11, the
BESS schedule satisfies the available capacity constraints in each sample time.

The total output of units (PG), the total invested upward and downward SR of units (Ra, which
includes Ru,a and Rd,a), the actual wind power (wa), the charge/discharge power of BESS (PB, which
includes PB,ch and PB,dc), wind curtailment and load shedding (PWC and PLS), the total power supply
and the load demand (Ptotal and La) in each sample time of this case are shown in Appendix A, Table A1.
The power balances in each sample time are verified by area stack diagram, as shown in Figure 12.
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The results in Appendix A, Table A1 and Figure 12 indicate that for the 96 sample times in one
day, except for the SFE at t = 47~50, which is too large to be fully compensated, the SFE at other sample
times can be compensated completely. Therefore, the wind power curtailment and load shedding
in most sample times can be eliminated. This shows that the method is effective, and the model
is reasonable.

4.2.6. Comprehensive Comparison of Cases

The operation costs in all sample times of Cases 1−4 are shown in Table 4.
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Table 4. The operation costs in the four cases.

Cases
Unit Power Generation Costs BESS Costs Operation Risk Penalty Costs Total

CP+CS/$ CU/$ CD/$ CU+CD/$ CB/$ CWC/$ CLS/$ CR/$ Ctotal/$

Case1 430,496.7 5033.5 5571.0 10,604.5 - 8100.0 2917.5 11,017.5 452,118.7
Case2 427,267.3 5123.0 3151.0 8274.0 - 2690.0 510.0 3200.0 438,741.3
Case3 430,496.7 3845.8 4894.5 8740.3 1655.5 2820.0 30.0 2850.0 443,742.5
Case4 427,267.3 3731.7 2502.8 6234.5 1232.0 810.0 0.0 810.0 435,543.8

In Table 4, CP and CS are costs of unit coal consumption and start-up. CU and CD are costs
of invested unit upward and downward SR. CB is charge/discharge loss costs of BESS. Ctotal is the
total cost. CR is operation risk penalty cost, which includes wind power curtailment penalty cost
(CWC) and load shedding penalty cost (CLS). The cost penalty coefficients are set as $25/MW and
$18.75/MW respectively.

From the comparison of power generation costs in Table 4, the costs of the invested SR decrease
to a large extent by advanced adjustments in Case 2 and Case 3. In Case 2, the cost of the invested
SR decreases from $10,604.50 to $8274.00, which has a reduction rate of 22.0% compared with Case 1.
In Case 3, the cost of the invested SR decreases from $10,604.50 to $8740.30, which has a reduction rate
of 17.6% compared with Case 1. Furtherly, the cost of invested SR in Case 4 decreases from $10,604.50
to $6234.50, which has a reduction rate of 41.2% compared with Case 1. At the same time, due to the
priority adjustment of the unit, the charge and discharge times of BESS in Case 4 are significantly
reduced compared with Case 3. Thereby, the charge/discharge loss cost of BESS is decreased from
$1655.50 to $1232.00, with a reduction rate of 25.6%.

From the comparison of system operation risk penalty cost in Table 4, it can be seen that the
unit SR set based on the probability distribution model (Case 1) can hardly cope with large forecast
errors during actual operation, the system operation risk penalty costs are high. Based on the WPFE
estimation method in this paper, with the advanced adjustment of Case 2, the operation risk penalty cost
decreases from $11,017.50 to $3200.00, with a reduction rate of 71.0% compared with Case 1. Similarly,
with the advanced adjustment of Case 3, the operation risk penalty cost decreases from $11,017.50
to $2850.00, with a reduction rate of 74.1% compared with Case 1. Furtherly, after compensation by
units and BESS in Case 4, the operation risk penalty cost decreases from $11,017.50 to $810.00, with
a reduction rate of 92.6% compared with Case 1. At the same time, the total costs in Case 4 can be
minimum, which has a reduction of $16,574.90 compared with Case 1.

The computational times to solve Case 1 to Case 4 are listed in Table 5.

Table 5. Computational times to solve Case 1 to Case 4.

Case 1 Case 2 Case 3 Case 4

4.67 s 10.92 s 9.07 s 14.03 s

It can be seen from Tables 4 and 5 that Case 1 has a shortest computational time but with the
largest wind curtailment, load shedding and total cost. Conversely, Case 4 can achieve the best dispatch
result than Case 2 and Case 3 without sacrificing a lot of computing times. Therefore, it is worthwhile
to spend more little time to get the best results.

4.2.7. Analysis for Different BESS Capacities

Further, in order to reflect the improvement to the dispatch results by the different BESS capacities,
the capacities of BESS are changed with the step of 10 MW. The wind curtailment and load shedding
power in different BESS capacities are shown in Figure 13.
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Figure 13. Wind curtailment and load shedding power with different BESS capacities.

It can be seen from Figure 13 that with the increase of BESS capacity, both the wind curtailment
and load shedding show a decreasing trend. By comparing the decreasing trend, it can be found that
when the BESS capacity is larger than 200 MW, the increase of the BESS capacity is not obvious for
the improvement of the wind curtailment and load shedding. The reason is not the insufficient of
BESS capacity, but that the BESS can charge or discharge a limited power in a short period of time.
Therefore, the improvement for wind curtailment and load shedding is not obvious but the cost of
BESS is increased when the BESS capacity is too large. Therefore, it is necessary to properly allocate
the BESS capacity and the discussion in this section may be helpful. Reasonable adjustment of the
charge/discharge threshold coefficient of BESS described in Equation (23) can extend the adjustment
time of BESS, so that it can be adjusted in advance to achieve the goal of no wind curtailment. This is
specifically analyzed in Section 4.3.3.

4.3. Simulation and Analysis in IEEE 118-Bus System

To further illustrate the effectiveness of the proposed method and model and its optimization effect
in large-scale power systems, the IEEE 118-bus system consists of 186 transmission lines, 54 thermal
power units, 91 load points and 3 connected wind farms are used to test. The data in March 2017 from
Elia company is used to test. The wind power data are normalized with rated capacity of 600 MW.
The parameters of the units can be found in literature [36]. The values of parameters in the model are
shown in Table 6.

Table 6. The values of various parameters in the model.

EB,min EB,max PB,min PB,max ηB,ch ηB,dc CI ntotal

50 MW·h 500 MW·h 0 MW 150 MW 0.9 0.9 1.3 × 106 $ 2 × 104

kch kch ku kd kw kl αu αd

0.8 0.8 16.5 $/MW 16.5 $/MW 0.4 0.02 0.9 0.9

4.3.1. The Estimation of WPFE

The wind power data in 2 to 4 March 2017 from Elia company are used respectively for the three
wind farms (WF1, WF2, WF3). The WPFE of them is estimated according to the previous method.
The comparison between the actual and the estimation of WPFE are shown in Figure 14.
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Figure 14. The comparison between the estimation of WPFE and the actual WPFE of three wind farms.

It can be seen from Figure 14 that the trend and magnitude of the estimation and the actual WPFE
of the three wind farms are approximately the same trend. The correlation coefficients between them
are 0.8587, 0.7942, and 0.8949 respectively. It shows that the WPFEs are well estimated.

4.3.2. Analysis of Dispatch Results of Case 4

According to the estimation of WPFE, the multi-time scale rolling dispatch model is optimized
with the settings of Case 4. The results before and after the compensation by units and BESS are
obtained, as shown in Figure 15.
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Figure 15. The compensation result for WPFE by units and BESS.

In Figure 15, SR is the upward and downward spinning reserve that all start-up units can provide
in a single time period (15 min). The WPFE (the blue curve) is compensated to the red curve by unit
and BESS. The blue histogram shows the charge and discharge power of BESS (positive values for
discharge and negative values for charge). It can be seen from the blue curve in Figure 15 that before
compensation by units and BESS, the WPFE exceeds the boundary of SR multiple times. In the whole
dispatch period, 941.5 MW of wind curtailment and 372.4 MW of load shedding power are caused.
The wind curtailment rate reaches to 3.7%, and the system operation risk is high. After compensation
by units and BESS, the WPFE is well stabilized to the adjustable range of SR for most of sample times.
In 96 sample times, except for a small amount of wind curtailment near t = 63 and t = 96, there is
no wind curtailment in other sample times. The wind curtailment is 67.9 MW, which is reduced by
873.6 MW than before compensation. The wind curtailment rate is reduced to 0.28%. No load shedding
occurs in all sample times.
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4.3.3. Analysis for Different Charge/Discharge Threshold of BESS

According to the Equation (23) and its description, the setting of different charge and discharge
thresholds of BESS (kch and kdc) have an effect on the dispatch results such as the number of charge and
discharge times, the cost of BESS, the amount of wind curtailment and load shedding. The relationship
between them are shown in Table 7.

Table 7. The results for different charge/discharge threshold of BESS.

kch

kdc ch/dc Times Cost of BESS/$ Wind Curtail/MW Wind Curtailment
Rate (%)

Load
Shedding/MW

1.00 16 1040.0 293.7 1.19% 177.5
0.95 20 1300.0 181.2 0.74% 119.9
0.90 29 1885.0 108.8 0.44% 96.3
0.85 32 2080.0 108.8 0.44% 29.8
0.80 42 2730.0 67.9 0.28% 0.0
0.75 44 2860.0 11.4 0.05% 0.0
0.70 46 2990.0 0.0 0.00% 0.0

It can be seen from Table 7 that with the decrease of charge/discharge thresholds, the times of
charge and discharge times of BESS increase accordingly. The WPFE can be well compensated, and
the amount of wind curtailment and load shedding are also reduced. At the same time, the cost of
BESS increases accordingly. When the thresholds decrease to 0.8, the load shedding reduces to 0 MW,
and a small amount of wind is curtailed. When the thresholds reduce to 0.7, the WPFE can be fully
compensated. At this time, the wind curtailment and load shedding reduce to 0 MW, but the charge
and discharge times of BESS also increase to 46 and the cost also reaches to the highest. Therefore, this
threshold can be adjusted for requirement in actual dispatch process.

4.3.4. Analysis and Comparison with Alternative Models

The various dispatch costs of Case 4 proposed in this paper for IEEE 118-bus test system are
shown in Table 8.

Table 8. The various costs of Case 4

CP + CS CSR CB CWC CLS Ctotal

661,442.8 100,671.5 2730.0 1697.5 0.0 766,541.8

Where, CP and CS are costs of unit coal consumption and start-up. CSR are costs of invested unit
upward and downward SR. CB is charge/discharge loss costs of BESS. CWC and CLS are penalty costs
of wind power curtailment and load shedding. Ctotal is the total cost.

The results of the proposed multi-time scale dispatch model (M-T SDM) in this paper and the
results of several models in the literature [36] for the IEEE 118-bus test system are compared in terms
of total cost, calculation time and wind curtailment rate, as shown in Table 9.
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Table 9. The comparison between alternative models.

Models Parameter
Settings

Total Cost
/k$

Computational
Times/s

Wind Curtail Rate
(%)

SO (stochastic) SC = 30 763.80 980.6 0.16
RO (robust) SC = 1 813.16 13.8 1.05

ROB (robust) SC = 1 816.78 184.4 1.11
SR (unified

robust–stochastic) SC = 20 764.47 289.6 0.14

SRB (unified
robust–stochastic) SC = 10 765.23 654.8 0.17

M-T SDM kch = kdc = 0.80 766.54 94.91 0.28
M-T SDM kch = kdc = 0.75 765.26 93.28 0.05
M-T SDM kch = kdc = 0.70 765.10 95.01 0.00

It can be seen from Table 9 that in the control of wind curtailment, the fully adaptive two-stage
robust UC model proposed in Reference [36] and the multi-time scale rolling dispatch model based
on real-time error adjustment proposed in this paper can achieve both satisfactory results. The wind
curtailment rates of these models are mostly controlled below 1%. By reasonably setting up the wind
power scenarios and the establish of unified robust-stochastic model, the method in Reference [36] can
achieve a lower wind curtailment rate than the stochastic model and the robust model. However, with
a large number of variables and constraints, especially the increase of scenarios, the computational
time of the unified robust-stochastic model is still too long, although the author is trying to shorten
it. Compared with this, there are fewer variables and constraints of the multi-time scale dispatch
model proposed in this paper, which can significantly save computational time with almost the same
amount of the wind power accommodation. Thus, it saves precious time for the system adjustment.
In addition, the expression of wind power by any method or model will inevitably cause errors, and it
is difficult to cope with large error fluctuations only by units. Therefore, the model in this paper can
reduce wind power curtailment to a greater extent by adjusting the charge and discharge threshold of
BESS, and in this case, the wind curtailment rate can be reduced to 0%. Of course, this is a trade-off
between the wind curtailment and the investment of BESS. It is worth noting that due to the differences
in the settings of the established models and parameters, the calculation results of the total cost are
different, but the overall gap is not large.

After the above analysis, we comprehensively evaluate the stochastic (SO),
robust (RO), unified robust-stochastic (SRB) and the multi-time scale

dispatch model (M-T SDM).

Figure 16 shows the strengths of the five abilities of these models from inside to outside. It is
divided into five levels, and the larger the number is, the stronger the abilities are. For flexibility, wind
curtailment control and load shedding control, by the adjustment of objective function weight, level of
conservation and wind curtailment penalty coefficient, the SRB model can balance the wind curtailment
rate and the total cost flexibility. However, it is constrained by the large wind power expression
errors and the adjustable range of the units and cannot completely eliminate the wind curtailment
or load shedding. On the contrary, the M-T SDM in this paper can achieve the trade-off between
wind curtailment, load shedding and the investment of BESS by the adjustment of charge/discharge
threshold and the cost coefficient of BESS. It can also completely compensate the WPFE and reduce
the wind curtailment and load shedding to 0. Therefore, the SRB and the M-T SDM have the same
level in flexibility, and the M-T SDM have the higher level in wind curtailment control and load
shedding control than SRB. For computational time and total cost, as described above, the M-T SDM
with fewer variables and constraints spend much less time to solve than SRB model. The total cost
of them are almost the same. Therefore, the SRB and the M-T SDM have the same level in total cost,
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and the M-T SDM have the higher level in computational time. Finally, as illustrated in Figure 16, the
comprehensive level among five abilities of M-T SDM is higher than SRB model.
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5. Conclusions and Discussion

This paper proposes a WPFE estimation method based on optimal factor features extraction.
A multi-time rolling dispatch model for wind/storage power system based on real-time WPFE
estimation is established. The results of case analysis illustrate:

1. According to wind power forecast output fluctuation, short-term wind power output stability,
wind power output amplitude and short-term wind power forecast output accuracy, a weighted
average indicator is obtained to estimate the WPFE. The estimation of WPFE can measure the
actual WPFE accurately.

2. The estimation of WPFE obtained by this method is introduced, and a multi-time scale rolling
dispatch model based on day-ahead dispatch model, intra-day rolling revision model and
real-time error compensation model is established. The model can arrange the compensation
plan of units and BESS in real-time, thereby increase the adjustable space of the SR set by
probability model.

3. The case study of 10-units power system with wind farms, and BESS, verifies that the WPFE
estimation method and dispatch model proposed in this paper are reasonable and effective.
The obtained dispatch plan can maximally track the actual wind power, minimize the wind
curtailment and load shedding. Therefore, the security and economic results can be obtained.

Although the work of this paper has achieved economic, security and energy-saving dispatch
method as much as possible, the indescribability of wind power brings inevitable errors to the dispatch
work. More accurate results may be obtained by finding and analyzing factors that are more correlated
with wind power forecast errors. In addition, the current model is slightly complicated and spent
long time to solve. How to build a more concise and effective model to save computing time while
maintaining performance is also a research point. Moreover, how to take more accurate and effective
methods to forecast and model wind power will be the focus of the author's next research.

Author Contributions: All of the authors have contributed to this research. L.H. and X.W. provide the research
ideas and guide the revision of the draft; R.Z. and Y.D. perform case studies, analysis, write and revised the paper.

Funding: This research was funded by [the Fundamental Research Funds for the Central Universities] grant
number [2017XKQY032].

Acknowledgments: This work is supported by the Fundamental Research Funds for the Central
Universities 2017XKQY032.



Energies 2018, 11, 2124 24 of 27

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Energies 2018, 11 

23 

5. Conclusions and Discussion 

This paper proposes a WPFE estimation method based on optimal factor features extraction. A 
multi-time rolling dispatch model for wind/storage power system based on real-time WPFE 
estimation is established. The results of case analysis illustrate: 

1. According to wind power forecast output fluctuation, short-term wind power output stability, 
wind power output amplitude and short-term wind power forecast output accuracy, a weighted 
average indicator is obtained to estimate the WPFE. The estimation of WPFE can measure the 
actual WPFE accurately. 

2. The estimation of WPFE obtained by this method is introduced, and a multi-time scale rolling 
dispatch model based on day-ahead dispatch model, intra-day rolling revision model and real-
time error compensation model is established. The model can arrange the compensation plan of 
units and BESS in real-time, thereby increase the adjustable space of the SR set by probability 
model.  

3. The case study of 10-units power system with wind farms, and BESS, verifies that the WPFE 
estimation method and dispatch model proposed in this paper are reasonable and effective. The 
obtained dispatch plan can maximally track the actual wind power, minimize the wind 
curtailment and load shedding. Therefore, the security and economic results can be obtained. 

Although the work of this paper has achieved economic, security and energy-saving dispatch 
method as much as possible, the indescribability of wind power brings inevitable errors to the 
dispatch work. More accurate results may be obtained by finding and analyzing factors that are more 
correlated with wind power forecast errors. In addition, the current model is slightly complicated 
and spent long time to solve. How to build a more concise and effective model to save computing 
time while maintaining performance is also a research point. Moreover, how to take more accurate 
and effective methods to forecast and model wind power will be the focus of the author's next 
research. 

Author Contributions: All of the authors have contributed to this research. L.H. and X.W. provide the research 
ideas and guide the revision of the draft; R.Z. and Y.D. perform case studies, analysis, write and revised the 
paper. 

Funding: This research was funded by [the Fundamental Research Funds for the Central Universities] grant 
number [2017XKQY032]. 

Acknowledgments: This work is supported by the Fundamental Research Funds for the Central Universities 
2017XKQY032. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. The actual and forecast load demand. 

  

Figure A1. The actual and forecast load demand.

Table A1. The operation of system dispatch plan in each time period.

Time PG/MW Ru,a/MW Rd,a/MW wa/MW PB,ch/MW PB,dc/MW PWC/MW PLS/MW Ptotal/MW La/MW

1 620.7 0.0 −3.9 302.6 0.0 0.0 0.0 0.0 919.4 919.4
2 595.3 0.0 −25.6 324.1 0.0 0.0 0.0 0.0 893.9 893.9
3 571.5 0.0 −26.5 324.6 0.0 0.0 0.0 0.0 869.6 869.6
4 549.5 0.0 −18.1 315.4 0.0 0.0 0.0 0.0 846.8 846.8
5 529.5 0.0 −9.4 305.4 0.0 0.0 0.0 0.0 825.5 825.5
6 510.5 0.0 −2.7 297.1 0.0 0.0 0.0 0.0 804.9 804.9
7 491.7 0.0 −7.5 300.4 0.0 0.0 0.0 0.0 784.5 784.5
8 475.2 0.0 −20.2 311.2 0.0 0.0 0.0 0.0 766.2 766.2
9 463.3 0.0 −23.9 312.5 0.0 0.0 0.0 0.0 751.8 751.8

10 457.2 0.0 −20.6 304.6 0.0 0.0 0.0 0.0 741.2 741.2
11 455.6 0.0 −14.1 289.8 0.0 0.0 0.0 0.0 731.3 731.3
12 457.4 0.0 −22.0 288.1 0.0 0.0 0.0 0.0 723.5 723.5
13 461.4 0.0 −26.6 296.9 −12.5 0.0 0.0 0.0 719.2 719.2
14 469.1 0.0 −11.5 282.2 −18.1 0.0 0.0 0.0 721.7 721.7
15 488.2 0.0 −13.8 281.2 −18.7 0.0 0.0 0.0 737.0 737.0
16 515.7 0.0 −12.5 274.6 −16.8 0.0 0.0 0.0 761.1 761.1
17 547.4 0.0 −1.9 265.0 −21.3 0.0 0.0 0.0 789.2 789.2
18 581.0 0.5 0.0 256.6 −19.6 0.0 0.0 0.0 818.5 818.5
19 625.2 2.6 0.0 247.5 −18.4 0.0 0.0 0.0 856.8 856.8
20 675.5 9.4 0.0 233.5 −17.2 0.0 0.0 0.0 901.2 901.2
21 724.9 0.0 −4.0 225.4 0.0 0.0 0.0 0.0 946.3 946.3
22 767.6 0.0 −1.1 221.3 0.0 0.0 0.0 0.0 987.8 987.8
23 811.6 0.0 −5.2 226.0 0.0 0.0 0.0 0.0 1032.4 1032.4
24 854.4 12.3 0.0 209.9 0.0 0.0 0.0 0.0 1076.5 1076.5
25 889.1 24.7 0.0 198.9 0.0 0.0 0.0 0.0 1112.7 1112.7
26 909.4 16.7 0.0 207.9 0.0 0.0 0.0 0.0 1134.0 1134.0
27 920.7 18.9 0.0 205.8 0.0 0.0 0.0 0.0 1145.3 1145.3
28 929.0 26.2 0.0 198.2 0.0 0.0 0.0 0.0 1153.3 1153.3
29 936.7 33.0 0.0 191.6 0.0 0.0 0.0 0.0 1161.3 1161.3
30 946.1 34.1 0.0 182.1 0.0 10.0 0.0 0.0 1172.4 1172.4
31 957.4 20.7 0.0 191.5 0.0 18.9 0.0 0.0 1188.4 1188.4
32 970.2 17.5 0.0 197.7 0.0 22.9 0.0 0.0 1208.3 1208.3
33 986.0 9.2 0.0 210.9 0.0 24.6 0.0 0.0 1230.7 1230.7
34 1006.3 7.9 0.0 214.8 0.0 25.3 0.0 0.0 1254.3 1254.3
35 1035.0 17.8 0.0 204.9 0.0 23.4 0.0 0.0 1281.1 1281.1
36 1071.5 22.5 0.0 196.9 0.0 20.9 0.0 0.0 1311.8 1311.8
37 1109.6 26.1 0.0 196.8 0.0 10.1 0.0 0.0 1342.5 1342.5
38 1142.8 26.4 0.0 199.9 0.0 0.0 0.0 0.0 1369.0 1369.0
39 1167.9 8.2 0.0 213.1 0.0 0.0 0.0 0.0 1389.3 1389.3
40 1189.4 0.0 −2.6 219.6 0.0 0.0 0.0 0.0 1406.4 1406.4
41 1209.5 6.2 0.0 206.6 0.0 0.0 0.0 0.0 1422.2 1422.2
42 1230.4 0.0 −0.3 208.6 0.0 0.0 0.0 0.0 1438.8 1438.8
43 1255.5 0.0 −1.4 205.0 0.0 0.0 0.0 0.0 1459.1 1459.1
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Table A1. Cont.

Time PG/MW Ru,a/MW Rd,a/MW wa/MW PB,ch/MW PB,dc/MW PWC/MW PLS/MW Ptotal/MW La/MW

44 1285.7 0.0 −6.6 205.4 0.0 0.0 0.0 0.0 1484.5 1484.5
45 1312.8 0.0 −14.3 209.7 0.0 0.0 0.0 0.0 1508.2 1508.2
46 1328.0 0.0 −32.9 227.8 0.0 0.0 0.0 0.0 1522.9 1522.9
47 1322.4 0.0 −37.7 248.0 0.0 0.0 −11.8 0.0 1520.8 1520.8
48 1294.6 0.0 −37.9 262.1 −12.5 0.0 −7.1 0.0 1499.3 1499.3
49 1254.1 0.0 −38.1 280.3 −19.8 0.0 −9.8 0.0 1466.7 1466.7
50 1210.5 0.0 −38.4 286.9 −22.9 0.0 −3.8 0.0 1432.2 1432.2
51 1171.8 0.0 −33.1 287.4 −22.3 0.0 0.0 0.0 1403.7 1403.7
52 1128.4 0.0 −30.8 292.5 −13.6 0.0 0.0 0.0 1376.5 1376.5
53 1082.5 0.0 −3.3 296.0 −26.1 0.0 0.0 0.0 1349.1 1349.1
54 1039.5 9.7 0.0 296.2 −23.0 0.0 0.0 0.0 1322.3 1322.3
55 1004.7 0.0 −5.6 297.7 0.0 0.0 0.0 0.0 1296.9 1296.9
56 975.8 0.0 −9.3 307.3 0.0 0.0 0.0 0.0 1273.8 1273.8
57 949.2 0.0 −9.1 311.4 0.0 0.0 0.0 0.0 1251.6 1251.6
58 923.0 0.0 −12.9 318.0 0.0 0.0 0.0 0.0 1228.0 1228.0
59 894.6 0.0 −16.7 322.8 0.0 0.0 0.0 0.0 1200.7 1200.7
60 857.9 0.0 −18.5 324.3 0.0 0.0 0.0 0.0 1163.7 1163.7
61 816.6 0.0 −6.4 311.2 0.0 0.0 0.0 0.0 1121.4 1121.4
62 779.2 0.0 −7.3 310.8 0.0 0.0 0.0 0.0 1082.7 1082.7
63 754.0 0.0 −5.8 308.1 0.0 0.0 0.0 0.0 1056.3 1056.3
64 738.6 0.8 0.0 299.2 0.0 0.0 0.0 0.0 1038.6 1038.6
65 727.1 9.4 0.0 286.6 0.0 0.0 0.0 0.0 1023.2 1023.2
66 720.6 5.2 0.0 286.2 0.0 0.0 0.0 0.0 1012.0 1012.0
67 720.2 3.2 0.0 283.9 0.0 0.0 0.0 0.0 1007.3 1007.3
68 731.8 0.0 −4.3 287.7 0.0 0.0 0.0 0.0 1015.2 1015.2
69 757.6 0.0 −3.0 282.7 0.0 0.0 0.0 0.0 1037.3 1037.3
70 788.9 0.0 −6.9 283.9 0.0 0.0 0.0 0.0 1065.9 1065.9
71 817.4 4.7 0.0 271.1 0.0 0.0 0.0 0.0 1093.2 1093.2
72 837.5 10.9 0.0 266.0 0.0 0.0 0.0 0.0 1114.3 1114.3
73 853.9 10.2 0.0 269.5 0.0 0.0 0.0 0.0 1133.6 1133.6
74 870.9 9.1 0.0 273.9 0.0 0.0 0.0 0.0 1153.9 1153.9
75 892.6 13.5 0.0 272.0 0.0 0.0 0.0 0.0 1178.1 1178.1
76 927.9 2.1 0.0 284.3 0.0 0.0 0.0 0.0 1214.3 1214.3
77 984.9 1.9 0.0 285.7 0.0 0.0 0.0 0.0 1272.6 1272.6
78 1044.1 10.5 0.0 278.2 0.0 0.0 0.0 0.0 1332.8 1332.8
79 1083.9 14.6 0.0 274.4 0.0 0.0 0.0 0.0 1372.9 1372.9
80 1087.7 26.9 0.0 261.0 0.0 0.0 0.0 0.0 1375.5 1375.5
81 1071.4 14.8 0.0 269.7 0.0 0.0 0.0 0.0 1356.0 1356.0
82 1043.5 19.5 0.0 261.2 0.0 0.0 0.0 0.0 1324.2 1324.2
83 1009.4 39.0 0.0 238.7 0.0 0.0 0.0 0.0 1287.1 1287.1
84 972.9 32.9 0.0 231.9 0.0 12.5 0.0 0.0 1250.2 1250.2
85 927.0 17.3 0.0 234.5 0.0 25.0 0.0 0.0 1203.9 1203.9
86 875.4 11.6 0.0 237.0 0.0 27.4 0.0 0.0 1151.5 1151.5
87 825.3 18.7 0.0 228.9 0.0 27.4 0.0 0.0 1100.4 1100.4
88 783.4 14.7 0.0 232.2 0.0 27.2 0.0 0.0 1057.5 1057.5
89 744.3 0.0 −3.6 251.2 0.0 26.2 0.0 0.0 1018.2 1018.2
90 707.4 0.0 −9.3 257.1 0.0 26.2 0.0 0.0 981.4 981.4
91 676.3 16.7 0.0 256.8 0.0 0.0 0.0 0.0 949.8 949.8
92 654.6 24.5 0.0 247.1 0.0 0.0 0.0 0.0 926.2 926.2
93 641.1 5.6 0.0 247.9 0.0 12.5 0.0 0.0 907.1 907.1
94 633.9 24.7 0.0 231.9 0.0 0.0 0.0 0.0 890.5 890.5
95 633.5 24.7 0.0 219.5 0.0 0.0 0.0 0.0 877.7 877.7
96 640.3 8.2 0.0 221.6 0.0 0.0 0.0 0.0 870.1 870.1

Total 20,593.1 186.6 −166.9 6216.1 −70.7 85.1 −8.1 0.0 26,835.1 26,835.1
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