
energies

Article

Temperature Estimation of Stator Winding in
Permanent Magnet Synchronous Motors Using
d-Axis Current Injection

Bum-Su Jun 1, Joon Sung Park 2 ID , Jun-Hyuk Choi 2, Ki-Doek Lee 2 and Chung-Yuen Won 1,*
1 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea;

cvcy@skku.edu
2 Intelligent Mechatronics Research Center, Korea Electronics Technology Institute (KETI),

Bucheon 14502, Korea; parkjs@keti.re.kr (J.S.P.); cjh@keti.re.kr (J.-H.C.); kdlee@keti.re.kr (K.-D.L.)
* Correspondence: woncy@skku.edu; Tel.: +82-31-290-4963

Received: 9 July 2018; Accepted: 30 July 2018; Published: 6 August 2018
����������
�������

Abstract: This paper presents a stator winding temperature detection method for permanent magnet
synchronous motors (PMSMs) using a motor parameter estimation method. PMSM performance is
highly dependent on the motor parameters. However, the motor parameters vary with temperature.
It is difficult to measure motor parameters using a voltage equation without additional sensors.
Herein, a stator winding temperature estimation method based on a d-axis current injection method
is proposed. The proposed estimation method can be used to obtain stator temperatures and to
achieve reliable operation. The validity of the proposed method is verified through simulations and
experimental results.

Keywords: permanent magnet synchronous motor (PMSM); motor parameter estimation;
stator winding temperature estimation; d-axis current injection; stator winding resistance

1. Introduction

Permanent magnet synchronous motors (PMSMs) are widely employed in industrial drives,
electric vehicles, renewable energy systems, etc., owing to their high torque density, high power
density, and high efficiency [1]. The motors, primarily applied in drones and fans, are of the outer
rotor type, in which the rotor is located outside and the stator is located inside. These motor types are
surface-mounted permanent magnet synchronous motors (SPMSMs) with the same d-axis inductance
and q-axis inductance. The torque is generated only by the q-axis current. In outer-rotor-type motors,
the stator is located inside and temperature rises may occur and, as such, turn faults may occur as
well. The life of the motor can be reduced by approximately 50% for every 10 ◦C increase in the
stator winding temperature design limit [2,3]. The motor parameters are dependent on current and
temperature. Due to high temperatures, or high currents, turn faults [4–6] in the stator may occur.
Current can be easily measured using the current sensors of the inverter. However, it is difficult to
obtain the internal temperature of the motor, especially that of the stator winding.

Among all temperature monitoring methods, the most accurate is to insulate temperature
sensors [3]. However, the insulation of the temperature sensor is not cost-effective and temperature
sensor reliability problems may occur. Motor internal temperature estimation methods can be
classified into thermal model methods [7–10], and motor parameter estimation methods [11–15].
The lumped-parameter thermal network [7] is the most well-known thermal model method.
The thermal model system is an eighth-order dynamic model, with many thermal capacitances and
resistances, either directly acquired from various experimental tests, or derived from the dimensions
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and material thermal properties of the motor. However, with some assumptions in place, a few
simplified thermal models have been proposed [8–10]. The computations are less complicated, but the
thermal models are still significant with many model parameters able to be identified from simulations
and experimental tests. The thermal model is highly dependent on the cooling system and the geometry
of the motor, and specific analysis for each motor design and application is required. These results
lead to limited applications and require long development times. In the parameter estimation method,
stator resistance is used as the indicator of the stator winding temperature. This approach has
significant advantages over the thermal model method. The accuracy of the stator temperature
estimation is not affected by the motor specifications, cooling method, or operating conditions [11,12],
and the stator resistance can be estimated from the electrical equivalent model of the motor [13].
However, the stator resistance is significantly small and the performance of the temperature estimation
is too sensitive to motor inductance variations [2]. To improve the accuracy of the stator resistance
estimation, an inductance map and back electromotive force (BEMF) map are required. The inductance
map and BEMF map are identified from the simulations and experimental results. These factors lead
to long development times being required.

This paper presents a stator winding temperature estimation method for motor systems without
additional temperature sensors. To obtain the stator winding temperature, the motor parameters
are estimated. The estimated parameters enable the stator winding temperature to be obtained
because the parameters vary with temperature. For the motor parameter estimation, the d-axis current
injection method is proposed. This paper is organized as follows: the principles and analysis of the
SPMSM operation are presented in Section 2; the proposed estimation method is analyzed in Section 3;
simulation and experimental results are described in Sections 4 and 5 to evaluate the performance of
the temperature estimation; and finally, conclusions are presented in Section 6.

2. Operations of PMSMs

The fundamental model of PMSMs in the synchronous reference frame is given by [14–16]:
ve
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q + pLdie
d
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where ve
d,q and ied,q are the d-, q-axis stator voltage and current vectors in the synchronous reference

frame, respectively. Rs and Ld,q are the stator resistance and d-, q-axis inductance. The equivalent
circuit of PMSMs is shown in Figure 1. The motor speed and the rotor flux are denoted by ωr and ψm,
respectively. p and P are the differential operator and the motor poles, respectively.
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Assuming the steady-state condition, voltage Equation (1) can be approximated as Equation (2).
It is noteworthy that ωrLd,qied,q are the coupling terms, and that ωrψm is the BEMF voltage. Based on
Equation (2), the voltage and current vectors are described in Figure 2 [16].{

ve
d = Rsie

d − ωrLqie
q
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q = Rsie

q + ωrLdie
d + ωrψm

(2)
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As shown in Equation (1), the electrical torque is composed of the magnetic torque and the
reluctance torque. The magnetic torque is from the Lorentz force, and the reluctance torque is
oriented from the Ld, Lq asymmetry [17,18]. Because the inductances Ld, Lq are equal for the SPMSMs,
the reluctance torque becomes zero, and the torque equation can be rewritten as

Te =
3
2

P
2

ψmie
q . (3)

The electrical torque for the SPMSMs can be controlled using the q-axis current. The constant
torque curves of the SPMSMs are shown in Figure 3. The torque of the SPMSMs is generated by the
q-axis current and the d-axis current does not contribute to torque generation.
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Figure 4 shows the conventional control configuration of SPMSMs for speed control. Because the
torque of SPMSMs is generated by the q-axis current, the d-axis current command is set to zero, and the
q-axis current is used to construct the speed controller. Information about position and speed is
measured by the position sensor. The q-axis current command is determined by the speed controller,
and the d-, q-axis current controllers generate the d-, q-axis voltage references. The pulse width
modulation (PWM) duties are determined using the space vector PWM method, based on the voltage
reference in the synchronous reference frame. Finally, PWM duties are applied to the power switch
using the gate drive of the inverter.
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3. Stator Winding Temperature Estimation Using d-Axis Current Injection

A temperature increase can cause several adverse effects [18,19]. For example, a temperature rise
in the stator winding causes stator resistance variation and can degrade the stator winding insulation.
The stator winding temperature can be detected through estimation of the stator resistance.

Under the steady-state condition, the voltage equation of PMSMs can be expressed as a variable
depending on the temperature and current as{

ve
d = Rsie

d − ωrLqie
q

ve
q = Rsie

q + ωrLdie
d + ωrψm

(4)

In Equation (4), Rs and ψm are functions of the stator and magnet temperatures, respectively.
Ld,q are the functions of the magnet temperature and the stator current. Equation (4) can be rewritten
as Equation (5), because the d-axis current becomes zero for the torque maximization of SPMSMs:{

ve
d = −ωrLqie

q
ve

q = Rsie
q + ωrψm

(5)
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From Equation (5), the q-axis inductance can be expressed as Equation (6).

Lq = −
ve

d
ωrie

q
(6)

Rs =
ve

q − ωrψm

ie
q

(7)

The stator temperature can be estimated through the calculation of the stator resistance, as in
Equation (7). However, as the rotor flux can vary with the rotor temperature, the stator winding
temperature estimation may exhibit low accuracy. This may cause a large error in the temperature
estimation of the stator winding. Therefore, an additional equation is required to obtain the stator
winding temperature.

As mentioned in the previous section, the constant torque for the SPMSMs is maintained even if
the d-axis current is applied while the constant q-axis current is generated. Under the constant torque
operation, the motor speed is maintained, and Equation (4) can be expressed. Figure 5 shows voltage
and current vectors for temperature estimation. The d-axis current injection can be performed while
the q-axis current is constant. When the d-axis current i is injected, the voltages and currents can be
expressed as ve

d(i), ve
q(i), and ied(i), ieq(i), respectively. When ied = 0, the voltage and the current can be

expressed as ve
d(0), ve

q(0), and ied(0), ieq(0), respectively. The voltage equation for generating the same
torque can be summarized as Equations (8) and (9).
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{
ve

d(i) = Rsie
d(i)− ωrLqie

q(i)
ve

q(i) = Rsie
q(i) + ωrLdie

d(i) + ωrψm
(8)

{
ve

d(0) = −ωrLqie
q(0)

ve
q(0) = Rsie

q(0) + ωrψm
(9)

Because the currents, motor speed, and voltage can be measured or calculated by the current sensor,
position sensor, and current controller output, the q-axis inductance can be calculated as Equation (10)
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from Equation (9). We can assume Equation (10) because the difference between the d-axis inductance
and the q-axis inductance is sufficiently small.

Ld = Lq = −
ve

d(0)
ωrie

q(0)
(10)

Equation (10) can be substituted into Equation (8) and arranged as Equation (11). The phase
resistance Rs can be derived by using Equations (11) and (12).

ve
d(i) = Rsie

d(i) + ve
d(0)

ie
q(i)

ie
q(0)

(11)

Rs =
ve

d(i)
ie
d(i)

−
ve

d(0)
ie
d(i)

ie
q(i)

ie
q(0)

(12)

Based on finite element analysis (FEA), the SPMSMs can be modeled and analyzed. The Rs map
according to the stator winding temperature can be obtained from the FEA results. The stator winding
temperature can be estimated by comparing the calculated Rs with the temperature map. Analysis is
not required regarding the inductance and the rotor flux variation according to the current vectors and
the magnet temperature using FEA, because the d-, q-axis inductances can be calculated as shown in
Equation (10) and the rotor flux is not required to calculate the stator resistance.

Figure 6 shows the control block-diagram of the proposed stator winding temperature estimation
method using the motor parameter estimation for the SPMSMs. As described above, two equations,
depending on whether the d-axis current is injected or not, are required for estimating the stator
temperature. To detect the stator temperature, the output d-, q-axis currents, the applied d-,
q-axis voltages, and the motor speed are stored when ied = 0. Subsequently, the d-axis current is applied
in the same q-axis current to measure the output d-, q-axis currents, the applied d-, q-axis voltages,
and the motor speed. The d-axis current should be applied considering the current limit. After the
detection of variables for the temperature estimation, the d-axis current is again applied at zero.
The stator resistance is estimated using Equation (12). The stator winding temperature is estimated
using the look-up table obtained from FEA. An averaging filter can be used in consideration of inverter
noise during data acquisition. The estimation time is determined by the response performance of the
current controller and filtering. The stator winding temperature estimation procedure does not need to
be continuously operated, and the stator winding temperature can be estimated by applying the d-axis
current only when the stator winding temperature is required. A rectangular d-axis current, can be
used to estimate the stator winding temperature.
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4. Simulation Results

Finite element modeling (FEM) was used for the verification of motor parameter variation.
The motor design used for the motor parameter variation simulation with temperature is shown in
Figure 7, and the motor parameters at 20 ◦C are shown in Table 1.
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Figure 8 shows the stator resistance as a function of temperature. As the temperature increases,
the stator resistance increases. The stator resistance can be calculated from Equation (12). The stator
winding temperature can be estimated using the resistance table as shown in Figure 8.
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Figure 8. Motor parameter map according to stator winding temperature.

Figure 9 shows the d- and q-axis inductance maps according to id and iq at 20 ◦C. Unlike stator
resistance, motor inductance varies with rotor temperature and current. Therefore, the inductance in
the simulation should vary according to the temperature and the current. The inductance map was
derived from the FEM analysis and applied to motor modeling.
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The basic parameters of the SPMSM are listed in Table 1. The motor parameters with nonlinear
characteristics, as shown in Figures 8 and 9, were applied using a look-up table. The proposed
estimation method of motor parameter Rs was modeled and simulated in MATLAB Simulink.
The motor model for the simulation is shown in Figure 10. The stator resistance was determined by the
stator resistance table according to the stator winding temperature. The inductances were determined
by the inductance a three-dimensional table according to current and rotor temperature.
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The SPMSM controller and the motor model were configured as shown in Figure 11, based on
the speed controller. To verify the proposed method, the simulation for the temperature estimation
method was performed at 1000 rpm and 0.2 Nm. The rotor and the stator temperatures were assumed
to be 20 ◦C and 60 ◦C, respectively.
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5. Experimental Results

Figure 13 shows an experimental setup for validating the stator winding temperature estimation
method, consisting of a prototype SPMSM and an inverter. The test motor is the outer-rotor-type
for a drone, and the specifications are shown in Table 1. A 20 kHz PWM frequency was applied to
the inverter, and the stator winding estimator was operated synchronously with the PWM frequency.
For comparison with the estimation value, the negative temperature coefficient (NTC) thermistor
103NT-4-R025H34G temperature sensor was attached inside the stator winding. A characteristic of the
NTC thermistor is that the resistance decreases when the temperature increases. The stator winding
temperature was obtained from the NTC thermistor, and the accuracy of the estimated stator winding
temperature was evaluated. For the competitive experiment, the test was carried out with the actual
load fan. The stator winding temperature estimation was compared until temperature saturation at
1000 rpm, where the drone fan motor was mainly operated.

Figure 14 shows the phase current, q-axis current, and d-axis current waveforms for when the
d-axis current was or was not injected at 1000 rpm. For estimating the stator winding temperature,
a d-axis current of −1 A was injected. The magnitude of the phase current was slightly increased due
to the d-axis current injection.
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Figure 14. Phase current waveforms when d-axis current was injected at 1000 rpm.

Figure 15 shows the stator winding temperature estimation results for no load and fluid load.
At no load, stator temperature saturation occurred after approximately 8 min of motor operation,
and the temperature increased to 32 ◦C. However, the stator temperature saturation occurred after
approximately 2 min of motor operation at the fluid load, and the temperature increased to 30 ◦C.
In the fluid load, the fan affects the temperature of the motor, and the stator temperature saturated at
lower temperatures than at no load. The maximum error of temperature estimation was measured
at approximately 2 ◦C. The stator winding temperature estimation was verified for both no load and
fluid load.
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Figure 15. Stator winding temperature estimation results at (a) no load; (b) fluid load.

6. Conclusions

We presented a stator winding temperature estimation method for SPMSMs without additional
temperature sensors. To estimate the stator winding temperature, the stator resistance was estimated
using the proposed d-axis current injection. To evaluate the possibilities for the proposed estimation
method, simulations and experimental tests were performed. The test and simulation results showed
similar trends. According to both the simulation and the test results, the proposed estimation method
demonstrated potential for winding temperature estimation without additional temperature sensors.
However, after estimating the stator winding temperature, a control strategy is needed to limit stator
winding temperature in the SPMSM control system. Future work will focus on developing such
a control strategy to limit stator winding temperature.
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