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Abstract: Drilling processes, as some of the most widely used machining processes in the
manufacturing industry, play an important role in manufacturing process energy-saving programs.
However, research focus on energy modeling of drilling processes, especially for the modeling
of material-drilling power, are really scarce. To bridge this gap, an improved material-drilling
power model is proposed in this paper. The obtained material-drilling power model can improve
the accuracy of the material-drilling power and lay a good foundation for energy modeling and
optimization of drilling processes. Finally, experimental studies were carried out on an XHK-714F
CNC machining center (Hangzhou HangJi Machine Tool Co., Ltd., Hangzhou, China) and a JTVM6540
CNC milling machine (Jinan Third Machine Tool Co., Ltd., Jinan, China). The results showed that
predictive accuracies with the proposed model are generally higher than 96% for all the test cases.

Keywords: drilling process; material-drilling power; energy management

1. Introduction

Nowadays, climate change has become one of the most imperative topics [1]. Manufacturing
processes are partially responsible for climate change due to the emissions generated as a result
of energy consumption [2]. According to International Energy Outlook 2017 [3], the industrial
sector (including manufacturing, mining, and so forth) accounts for about 50% of the world’s
energy use. World industrial sector energy use will increase by 18% from 2015 to 2040, reaching
280 quadrillion British thermal units (Btu) by 2040, as shown in Figure 1 [3]. Manufacturing activities
and production processes play a major role in industrial energy consumption, and are responsible
for approximately 90% of the energy consumption in the industrial sector [4]. It has been pointed
out that the manufacturing industry has a remarkable energy-saving potential [5]. More specifically,
the worldwide manufacturing industries’ energy-saving potential is estimated to be 20% through
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2050 [6]. Therefore, energy efficiency improvement of the manufacturing industry is identified as
an important path for energy savings and climate change mitigation [1].
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Figure 1. World energy consumption by end-use sector [3].

Manufacturing systems are complex entities with multiple subsystems that interact
dynamically [7]. Machining systems, as some of the most important and widespread subsystems in
manufacturing [8], play a key role in energy-saving for the manufacturing industry [9]. Moreover,
a study conducted by Gutowski showed a very interesting result [10]: CO2 emissions of one computer
numerical control (CNC) machine tool (22 kW spindle power) in one year are equivalent to the CO2

emissions of 61 SUVs (20.7 mpg, 12,000 miles/year). When it comes to SO2 and NOx emissions,
as shown in Figure 2, one CNC machine tool is equivalent to 248 SUVs and 34 SUVs, respectively [10].
It can be seen that energy consumption and carbon emissions of machine tools are significant.
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Figure 2. Machine tool emissions compared with SUVs [10].

Unfortunately, extensive studies have revealed that the energy efficiency of machine tools
is generally less than 30% [11–13]. Therefore, the energy saving potential of machine tools is
remarkable and energy efficiency improvement of machining processes has become a notable research
area. Extensive existing studies have focused on energy modeling and energy savings of turning
processes [14], milling processes [15,16], and grinding processes [17]. Drilling, as an important
machining process, plays a significant role in the energy management of machining processes [18].
However, the energy modeling method focused on drilling processes, especially for the modeling
of material-drilling power, has not been well studied [19]. The material-drilling power is the
tool-tip cutting power, and is solely related to the material removal during drilling process [20].
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The material-drilling power, as an important part of total drilling power, establishing its accurate
power model is important for the energy modeling and energy optimization of the drilling processes.
Up to now, research focused in particular on modeling of material-drilling power is really rare. To fill
this gap, an improved material-drilling power model is established to support energy modeling
and optimization of drilling processes. The advantages of this research are summarized as follows:
(i) an improved material-drilling power model can be established for improving the prediction
accuracy of drilling power; (ii) the obtained power model can lay a good foundation for energy
modeling and optimization of drilling processes; (iii) material-drilling power, as a crucial part of
total drilling power, the establishment of its power model can improve the transparency of energy
consumption and help us to better understand energy characteristics during drilling processes.

2. Literature Review

Triggered by the necessity to improve the energy efficiency and environmental friendliness and
reduce the energy-related costs of the manufacturing industry, extensive studies have been conducted
in term of energy monitoring [21–23], energy modeling and carbon-emission evaluating [24–26], energy
optimization and energy efficiency improvement [27–30], energy benchmarking [31,32], and solid
waste reduction [33] of the manufacturing industry. Turning, milling, drilling and grinding processes
are widely used in the manufacturing industry [8]. Unfortunately, a large number of existing studies
have shown that the energy efficiencies of the above machining processes are generally less than
30% [11–13,34]. Therefore, extensive existing studies have been carried out focused specially on
energy modeling and the energy saving potential of turning [35,36], milling [37–40], grinding [41,42],
and sandcasting processes [43]. When it comes to drilling processes, the existing energy-related
researches mainly focused on the micro-drilling processes [44], which are usually used for the
manufacturing of the cooling holes in jet turbines blades, micro-holes in automotive fuel injection
systems and so forth [45]. In order to help the operators decide on process parameters of micro-drilling
process, an effective energy-saving strategy was devised for micro-drilling [46]. Moreover, for electrical
discharge machining (EDM) drilling, as one of the most used micro-drilling processes, the specific
electricity requirement is expressed as a function of the rate of material processed, as shown in
Figure 3 [47]. However, the power required for EDM drilling in Figure 3 is an approximate value
rather than an exact value, and the power is assumed to be 75% of rated power for EDM drilling [47].

It is necessary to point out that the energy consumption characteristics of the micro-scale drilling
are significantly different from those of the traditional drilling process. The energy involved in material
removal in micro-scale machining is negligible compared to the energy consumed by the machine
module [45]. For the traditional drilling process, the energy involved in material removal is much
more important, and the material-drilling power is an important part of the total drilling power.
However, the power model of the drilling process, especially for the material-drilling power, has not
been well studied. The theoretical material-drilling power can be calculated based on the manual
of machining process [48,49]. However, the actual material-cutting power includes not only the
theoretical material-drilling power but also the additional loss power, which is involved with the
drilling cutters, drilling parameters, machine tools and workpiece [19]. Research specially focused
on the material-drilling power is really rare. In our previous study [19] we tried to establish a simple
material-drilling power model, however, the accuracy and the effectiveness of the material-drilling
power model needs to be further improved. Consequently, an improved material-drilling power model
is proposed in this paper to improve the material-drilling power predictive accuracy. The outcomes of
this study can improve the transparency of energy consumption and help us to better understand the
energy characteristics of drilling processes.
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Figure 3. Specific electricity requirements for various manufacturing processes as a function of the rate
of material processed [47].

3. Methodology

3.1. Composition of Material-Drilling Power

The material-drilling power is defined as the tool-tip cutting power during drilling process, which
is solely related to the material removal [20]. The material-drilling power (Pmd) is an important part
of total drilling power (PTD) during material cutting. As shown in Figure 4. The total drilling power
is composed of power of standby operation (Pso), power of spraying cutting flood (Ps f ), power of
spindle rotation (Psr), power of Z-axis feeding (Pz f ) and power of material-drilling (Pmd). The power
of standby operation Pso is the power consumed by the various basic modules (i.e., NC (Numerical
control) system, display, fans, etc.) to ensure the operational readiness. The power of spraying cutting
flood Ps f is related to the cooling device, which is turned on during drilling processes. The power of
spindle rotation Psr refers to the power needed to guarantee the rotation of the spindle. The power of
Z-axis feeding Pz f is the power consumed by the feed driving system during Z-axis feeding. The power
models of standby operating, spraying cutting flood, spindle rotating and Z-axis feeding have been
researched in our previous work [19,20], so the establishment of the above power models (Pso, Ps f ,
Psr and Pz f ) are out of the scope of this paper while the establishment of the material-drilling power
model (Pmd) is the focus in this paper. Moreover, the standby operating power, spraying cutting flood
power, spindle rotating power, Z-axis feeding power constitute the air cutting power (Pair), which is
the power consumed while the cutter approaching the workpiece with the designed tool path and
cutting parameters before actual material removal [35]. Therefore, the material-drilling power Pmd
can be obtained by subtracting the air cutting power Pair from the total drilling power PTD. More
specifically, the material-drilling power can further be divided into two parts: theoretical cutting power
(PTcut) and additional loss power (PAloss). The detailed modeling approach will be discussed in the
next subsection.
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3.2. Improved Material-Drilling Power Model

As mentioned above, the material-drilling power can be divided into two parts: (a) theoretical
cutting power (PTcut), and (b) additional loss power (PAloss). Hence, the material-drilling power can be
expressed as:

Pmd = PTcut + PAloss (1)

where Pmd is material-drilling power, W; PTcut is theoretical drilling power, W; PAloss is additional loss
power, W.

The theoretical drilling power PTcut is the cutting power of the tool tip acting on the workpiece,
which is the theoretical and minimum power needed to ensure the material removal, and is related
to the cutter material, workpiece material and cutting parameters. In addition, the additional loss
power PAloss is the power loss of the machine tool caused by the cutting load on the cutting tool.
The value of the additional loss power depends on the structure and energy characteristic of machine
tool. Moreover, the additional loss power PAloss can be calculated as a linear function of the theoretical
cutting power PTcut [50]. Therefore, the additional loss power can be expressed as:

PAloss = α0PTcut (2)

where α0 is additional power loss coefficient.
According to Equations (1) and (2), the material-drilling power can further be calculated as:

Pmd = PTcut + PAloss = PTcut + α0PTcut = (1 + α0)PTcut (3)

More specifically, the theoretical drilling power can be computed as [48,49]:

PTcut = Mω = (CMdzM f yM kM)
2πn
60

(4)

where M is drilling torque, N·m; ω is rotation angular velocity of the cutting tool, rad/s; CM and kM
are correction coefficients related to the cutter material, workpiece material and cutting conditions; d is
drill diameter, mm; zM is exponent of the drill diameter; f is feed rate, mm/r; yM is exponent of the
feed rate; n is spindle speed, r/min. The theoretical drilling power is the minimum power to ensure
the material removal. However, the additional loss power of machine tool caused by the cutting load
was not considered in the theoretical drilling power. Therefore, the theoretical drilling power is not
machine tool dependent.
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According to Equations (3) and (4), the material-drilling power can be written as:

Pmd = (1 + α0)PTcut = (CMdzM f yM kM)
2πn
60

=
π(1 + α0)CMkM

30
dzM f yM n (5)

For a given combination of machine tool, workpiece material and cutting tool, the values of the
π(1+α0)CMkM

30 , zM and yM are constant. Therefore, the material-drilling power can also be expressed as:

Pmd = λD1 dαD1 f βD1 n (6)

where λD1, αD1 and βD1 are constants and set λD1 = π(1+α0)CMkM
30 , αD1 = zM and βD1 = yM. It can

be seen that the material-drilling power Pmd is a function of drill diameter, feed rate and spindle
speed. In addition, the exponents of the drill diameter, feed rate and spindle speed are αD1, βD1 and
1, respectively.

According to the experimental research of literature [51], the material-drilling power was
expressed as the function of feed rate ( f ) and cutting speed (vc).

Pmd = CF f xvy
c (7)

where CF is correction coefficient; f is feed rate, mm/r; vc is cutting speed, m/min; x is exponent of
the feed rate; y is exponent of the cutting speed.

For drilling process, the cutting speed can be calculated as:

vc =
nπd
1000

(8)

where n is spindle speed, r/min; d is drill diameter, mm.
According to Equations (7) and (8), the material-drilling power can further written as:

Pmd = CF f x(
nπd
1000

)
y
= CF(

π

1000
)

y
dy f xny (9)

Similarly, CF(
π

1000 )
y, x and y are constants. Consequently, the material-drilling power is also

a function of drill diameter, feed rate and spindle speed. However, in this model, the value of exponent
of the spindle speed is y (the value of y may not be 1, and y = 0.77 was obtained for the given
combination of machine tool, cutter and workpiece in [51]), and is equal to the exponent of the drill
diameter. Based on the preliminary experimental data of our research group, the changing trend of
material-drilling power with respect to drill diameter and spindle speed is shown in Figure 5. It can
be seen that the material-drilling power Pmd increases with the increase of the spindle speed n and
drill diameter d. However, the degree of the influence is different. Thus, the exponent of the spindle
speed and the drill diameter should be different. That is to say, the exponent of the spindle speed in
the material-drilling power model will be a value that is not necessarily equal to 1 and different from
the exponent of the drill diameter.
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According to the above analysis, an improved material-drilling power model can be proposed on
the basis of Equation (6). The improved material-drilling power model is written as:

Pmd = λD2 dαD2 f βD2 nγD2 (10)

where λD2 is the coefficient of the improved material-drilling power model; d is the drill diameter, mm;
αD2 is the exponent of the drill diameter in the improved power model; f is feed rate, mm/r; βD2 is
exponent of the feed rate in the improved power model; n is spindle speed, r/min; γD2 is exponent
of the spindle speed in the improved power model. λD2, αD2, βD2, and γD2 are all constants and the
values of the above constants are determined by the combination of machine tool, cutter material and
workpiece material, which are extremely difficult to be obtained by theoretical analysis. Thus, the
values of these constants will be obtained by pre-experiments and statistical analysis. The proposed
material-drilling power model considers both the theoretical drilling power and the additional loss
power. The additional loss power depends on the structure and energy characteristic of machine
tool. Consequently, the proposed material-drilling power model is machine tool dependent. It is
necessary to point out that the limitation of the proposed model is that the coefficients in the model
will be different under different combinations of machine tools, cutting tools, and workpiece materials.
Consequently, the pre-experiments and statistical analysis need to be repeated to obtained the model
coefficients when it applies to other combination of machine tool, cutting tool, and workpiece material.

4. Experimental Study

4.1. Design of Experiments

In order to show the validity of the improved material-drilling power model, experimental
studies were conducted on a XHK-714F CNC machining center (Hangzhou HangJi Machine Tool
Co., Ltd., Hangzhou, China) and a JTVM6540 CNC milling machine (Jinan Third Machine Tool Co.,
Ltd., Jinan, China). The rated power of the spindle motor of the XHK-714F CNC machining center is
7.5 kW and the rapid-positioning speeds of X, Y, and Z-axis are 12,000, 12,000, and 10,000 mm/min,
respectively. For the JTVM6540 CNC milling machine, the rated power of the spindle motor is 4.0 kW
and the rapid-positioning speeds of X, Y, and Z-axis are all 6000 mm/min. Based on to the improved
material-drilling power model, the experimental design parameters are selected as the drill diameter
d, feed rate f, and spindle speed n. According to the machining process manual, the recommended
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cutting parameters of the cutter, and the machine tool performance [19,48,49], the drilling parameters
and their levels were determined, as shown in Table 1.

Table 1. Drilling parameters and their levels.

Variables Level 1 Level 2 Level 3

Drill diameter d (mm) 8 10 12
Feed rate f (mm/r) 0.06 0.08 0.10

Spindle speed n (r/min) 450 550 650

Based on the number of the drilling parameters and levels of the experiment, a L27 (313)
orthogonal table was used to arrange the experiments. The selected cutter is a parallel shank twist drill
manufactured by NACHI Company (Tokyo, Japan) and the drill point angle is 118◦. The material of the
workpiece for experiments is 45# steel and the shape of the workpiece is 150 × 150 × 30 mm. Moreover,
the drilling condition is wet cutting and the ordinary water base emulsion was used as the cutting
fluid. In order to measure the material-drilling power during experiments, a power-energy acquisition
system has been established by our research group [36]. As shown in Figure 6, the power-energy
acquisition system is mainly composed of one compactDAQ crate, two NI-9215 (National Instruments,
Austin, TX, USA) data collection cards, one sensor power supply, three voltage sensors, and three
current sensors. The experiments were conducted on the XHK-714F CNC machining center and
JTVM6540 CNC milling machine, respectively. Simultaneously, the power-energy acquisition system
was connected with the machine tool and the power and energy data during experiments were
recorded once every 0.1 s.
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4.2. Results and Discussion

The values of material-drilling power during the experiments can be obtained by using the
power-energy acquisition system shown in Figure 6. The measured material-drilling power under
different combinations of drilling parameters for the XHK-714F CNC machining center and JTVM654
CNC milling machine are shown in Table 2. In order to clearly display the characteristics and trends of
the material-drilling power, the measured material-drilling power values for the researched machine
tools are also shown in Figure 7. It can be seen that the material-drilling power of the XHK-714F CNC
machining center is larger than the JTVM654 CNC milling machine under the same combination of
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the drilling parameters. The main reason for this is that the rated power of spindle motor (7.5 kW) of
the XHK-714F CNC machining center is far greater than the rated power of spindle motor (4.0 kW) of
the JTVM654 CNC milling machine. The material-drilling power is influenced by the additional loss
power, which is related with the rated power of the spindle motor.
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Figure 7. Comparison of the measured material-drilling power for the researched machine tools.

Table 2. Measured material-drilling power under different combinations of drilling parameters for the
XHK-714F CNC machining center and JTVM654 CNC milling machine.

No. Drill Diameter
d (mm)

Feed Rate
f (mm/r)

Spindle Speed
n (r/min)

Material-Drilling
Power Pmd

1 (W)
Material-Drilling
Power Pmd

2 (W)

1 8 0.06 450 133.0 84.5
2 8 0.08 450 173.0 109.2
3 8 0.10 450 211.7 132.6
4 10 0.06 450 199.6 122.4
5 10 0.08 450 257.0 159.3
6 10 0.10 450 309.6 197.6
7 12 0.06 450 264.2 178.5
8 12 0.08 450 336.4 229.3
9 12 0.10 450 408.8 282.9
10 8 0.06 550 152.8 102.7
11 8 0.08 550 193.5 131.2
12 8 0.10 550 238.2 159.9
13 10 0.06 550 230.6 150.0
14 10 0.08 550 292.6 190.3
15 10 0.10 550 350.7 235.8
16 12 0.06 550 304.9 216.3
17 12 0.08 550 384.6 275.8
18 12 0.10 550 468.3 334.7
19 8 0.06 650 166.5 118.6
20 8 0.08 650 215.5 150.9
21 8 0.10 650 261.4 183.3
22 10 0.06 650 253.7 172.2
23 10 0.08 650 319.6 220.3
24 10 0.10 650 388.1 272.8
25 12 0.06 650 340.2 248.7
26 12 0.08 650 429.5 314.7
27 12 0.10 650 529.7 385.9

1 Measured material-drilling power for the XHK-714F CNC machining center. 2 Measured material-drilling power
for the JTVM654 CNC milling machine.

According to the above measured material-drilling power values, the curve fitting was carried
out according to Equations (6) and (10) with the Origin8.0® Software (OriginLab Corporation,
Northampton, MA, USA). The curve fitting results for material-drilling power of the XHK-714F
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CNC machining center are shown in Table 3. In addition, the Analysis Of Variance (ANOVA) for the
material-drilling power of the XHK-714F CNC machining center is shown in Table 4.

Table 3. Curve fitting results for material-drilling power of the XHK-714F CNC machining center.

Model Coefficients Value Standard Error t-Value Prob > |t| Statistics

Model A 1

λD1 0.095 0.021 4.530 1.371 × 10−4 R-Square(COD)
αD1 1.675 0.072 23.153 0 0.974

βD1 0.856 0.055 15.479 5.462 ×
10−14

Model B 2

λD2 0.866 0.107 8.095 3.499 × 10−8 R-Square(COD)
αD2 1.673 0.018 94.531 0 0.998
βD2 0.856 0.014 63.256 0
γD2 0.652 0.017 37.493 0

1 Empirical model with the equation Pmd = λD1 · dαD1 · f βD1 · n. 2 Improved model with the equation
Pmd = λD2 · dαD2 · f βD2 · nγD2 .

Table 4. ANOVA for material-drilling power of the XHK-714F CNC machining center.

Model Items DF Sum of Squares Mean Square F Value Prob > F

Model A 1

Regression 3 2.517 × 106 839,115.840 2951.245 0
Residual 24 6823.826 284.326

Uncorrected
Total 27 2.524 × 106

Corrected
Total 26 262,952.539

Model B 2

Regression 4 2.524 × 106 630,944.704 36,969.728 0
Residual 23 392.530 17.067

Uncorrected
Total 27 2.524 × 106

Corrected
Total 26 262,952.539

1 Empirical model with the equation Pmd = λD1 · dαD1 · f βD1 · n. 2 Improved model with the equation
Pmd = λD2 · dαD2 · f βD2 · nγD2 .

According to the fitting results of Table 3, the coefficients and exponents in the traditional empirical
model of material-drilling power are as follows: λD1 = 0.095, αD1 = 1.675, and βD1 = 0.856. Therefore,
the traditional empirical model of material-drilling power of the CNC machining center XHK-714F
can be expressed as:

Pmd(XHK − 714F) = 0.095 d1.675 × f 0.856 × n (11)

Similarly, the coefficients and exponents in the improved model of material-drilling power are
obtained according to Table 3. The values are shown as follows: λD2 = 0.866, αD2 = 1.673, βD2 = 0.856,
and γD2 = 0.652. Consequently, the improved material-drilling power model of the CNC machining
center XHK-714F can be written as:

Pmd(XHK − 714F) = 0.866 d1.673 × f 0.856 × n0.652 (12)

According to the ANOVA table for material-drilling power of the CNC machining center
XHK-714F (Table 4), the P value for the model A and model B are both very small (Prob = 0 < 0.05, 95%
confidence level), which indicates the strong correlation between Pmd (material-drilling power) and
the drilling parameter d (cutter diameter), f (feed rate) and n (spindle speed). In addition, the R-Square
value can be obtained according to Table 3, R-Square = 0.974 for the model A and R-Square = 0.998 for
the model B. The closer the R-Square value is to 1, the better the fitting result is. Therefore, the model B
(improved material-drilling power model) could describe the material-drilling power under various
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combinations of cutter diameter, feed rate and spindle speed better than the model A (traditional
empirical material-drilling power model).

In order to further show the validity of the improved material-drilling power model,
the experimental data obtained on the JTVM654 CNC milling machine were analyzed. Similarly,
the curve fitting was conducted according to Equations (6) and (10) with the Origin8.0® Software.
The curve fitting results for material-drilling power of the JTVM654 CNC milling machine were shown
in Table 5. In addition, the Analysis Of Variance (ANOVA) for material-drilling power of the JTVM654
CNC milling machine is shown in Table 6.

Table 5. Curve fitting results for material-drilling power of the JTVM6540 CNC milling machine.

Model Coefficients Value Standard Error t-Value Prob > |t| Statistics

Model A 1
λD1 0.045 0.004 10.220 3.211 ×

10−10
R-Square

(COD)
αD1 1.860 0.032 57.680 0 0.996
βD1 0.881 0.024 36.491 0

Model B 2

λD2 0.103 0.013 7.818 6.349 × 10−8 R-Square
(COD)

αD2 1.860 0.019 100.424 0 0.999
βD2 0.881 0.014 63.542 0
γD2 0.870 0.018 48.645 0

1 Empirical model with the equation Pmd = λD1 · dαD1 · f βD1 · n. 2 Improved model with the equation
Pmd = λD2 · dαD2 · f βD2 · nγD2 .

Table 6. ANOVA for material-drilling power of the JTVM6540 CNC milling machine.

Model Items DF Sum of Squares Mean Square F Value Prob > F

Model A 1

Regression 3 1.215 × 106 405,086.248 15,596.363 0
Residual 24 623.355 25.973

Uncorrected
Total 27 1.216 × 106

Corrected
Total 26 151,650.362

Model B 2

Regression 4 1.216 × 106 303,921.230 35,451.033 0
Residual 23 197.179 8.573

Uncorrected
Total 27 1.216 × 106

Corrected
Total 26 151,650.362

1 Empirical model with the equation Pmd = λD1 · dαD1 · f βD1 · n. 2 Improved model with the equation Pmd =
λD2 · dαD2 · f βD2 · nγD2 .

According to the fitting results of Table 5, the coefficients and exponents in the traditional empirical
model of material-drilling power are as follows: λD1 = 0.045, αD1 = 1.860, and βD1 = 0.881. Therefore,
the traditional empirical model of material-drilling power of the JTVM6540 CNC milling machine can
be expressed as:

Pmd(JTVM6540) = 0.045 d1.860 × f 0.881 × n (13)

Similarly, the coefficients and exponents in the improved model of material-drilling power are
obtained according to Table 5. The values are shown as follows: λD2 = 0.103, αD2 = 1.860, βD2 = 0.881,
and γD2 = 0.870. Consequently, the improved material-drilling power model of the JTVM6540 CNC
milling machine can be written as:

Pmd(JTVM6540) = 0.103 d1.860 × f 0.881 × n0.870 (14)
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According to the ANOVA table for material-drilling power of the JTVM654 CNC milling machine
(Table 6), the P value for the model A and model B are both very small (Prob = 0 < 0.05, 95% confidence
level), which indicates the strong correlation between Pmd (material-drilling power) and the drilling
parameter d (cutter diameter), f (feed rate) and n (spindle speed). In addition, the R-Square value can
be obtained according to Table 5, R-Square = 0.996 for the model A and R-Square = 0.999 for the model
B. The closer the R-Square value is to 1, the better the fitting result is. Therefore, for the JTVM654 CNC
milling machine the model B (improved material-drilling power model) is also better than the model A
(traditional empirical material-drilling power model) for describing the material-drilling power under
various combinations of cutter diameter, feed rate and spindle speed.

In order to show the effectiveness of the improved material-drilling power model, four random
tests were selected and the detailed drilling parameters of the four tests are listed in Table 7. In
order to make the experiments more scientific and more credible, the four test experiments were
carried out on both the XHK-714F CNC machining center and the JTVM6540 CNC milling machine.
The material-drilling power during drilling process of the researched machine tool were measured by
the power-energy acquisition system shown in Figure 6. The predicted material-drilling power values
were obtained with both the traditional empirical model and the improved power model in this paper,
as shown in Table 7.

Table 7. The accuracy of the developed material-drilling power models of four test cases.

Items
CNC Machining Center XHK-714F CNC Milling Machine JTVM6540

Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4

Drill diameter (mm) 12 10 10 8 12 10 10 8
Feed rate (mm/r) 0.07 0.08 0.07 0.09 0.07 0.08 0.07 0.09

Spindle speed (r/min) 460 580 540 640 460 580 540 640
Measured power (W) 319.8 298.1 256.8 236.5 213.8 200.8 170.6 166.4

Predicted P with model A 1 (W) 288.1 300.1 249.2 252.0 202.2 204.3 169.1 165.1
Predicted P with model B 2 (W) 309.4 297.4 253.2 241.5 208.6 204.5 170.8 163.2

Accuracy of model A 90.1% 99.3% 97.0% 93.4% 94.6% 98.3% 99.1% 99.2%
Accuracy of model B 96.7% 99.8% 98.6% 97.9% 97.6% 98.2% 99.9% 98.1%

1 Empirical model with the equation Pmd = λD1 · dαD1 · f βD1 · n. 2 Improved model with the equation
Pmd = λD2 · dαD2 · f βD2 · nγD2 .

The comparison of accuracy of the traditional empirical model (model A) and the improved power
model in this paper (model B) for the researched machine tools (XHK-714F CNC machining center
and JTVM6540 CNC milling machine) are shown in Figures 8 and 9. It can be seen that the improved
material-drilling power model can improve the prediction accuracy of the material-drilling power.
As shown in Figure 8, the prediction accuracies of Test 1–Test 4 are 96.7%, 99.8%, 98.6%, and 97.9%
for the XHK-714F CNC machining center. The prediction accuracies are improved by 6.6%, 0.5%,
1.6%, and 4.5% compared with the traditional empirical model of material-drilling power. Moreover,
the average accuracy of the improved material-drilling power model is up to 98.3%, which is improved
by 3.3% compared with the traditional empirical model.
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Figure 8. Comparison of accuracy of models A and B for XHK-714F CNC machining center.
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Figure 9. Comparison of accuracy of models A and B for JTVM6540 CNC milling machine.

As shown in Figure 9, the improved material-drilling power model (model B) can improve the
prediction accuracy of the material-drilling power compared with the traditional empirical model
of the material-drilling power (model B). It can be seen that the average accuracy of the improved
material-drilling power model is up to 98.5%, which is improved by 0.7% compared with the traditional
empirical model. The results show that the prediction accuracy of the improved material-drilling
power model established in this paper is significantly improved, generally higher than 96% for all the
test experiments of the researched machine tools (XHK-714F CNC machining center and JTVM6540
CNC milling machine).

It can be seen that although the accuracy of the traditional empirical model is not low, it can further
be improved by the improved material-drilling power model in this paper. The main reason is that the
exponent of the spindle speed was assumed to be a fixed value (fixed to 1) in the traditional empirical
model. However, this assumption is not very consistent with the exiting research result [51] and our
previous experimental result showed in Figure 5. Actually, the influence of the drilling parameters (drill
diameter d, feed rate f, and spindle speed n) on the material-drilling power are different. The different
influence of each drilling parameter has been reflected in the improved material-drilling power model.
The exponent of the spindle speed in the improved model is not a fixed value. Its value is affected
by the cutting tool, workpiece material, and machine tool. That is to say, the value may be different
under different combinations of cutting tools, workpiece materials, and machine tools. It can be drawn
that the improved material-drilling power model is more reasonable and scientific compared with
the traditional empirical model. The prediction accuracy can be expected to become better with the
improved material-drilling power model. The experimental results also verify the above statement.
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5. Conclusions

Drilling process is some of the most widely used machining processes in the manufacturing
industry. Establishing the accurate power model of the drilling process plays a significant role in
manufacturing process energy modeling and energy savings. Material-drilling power is an important
part of total drilling power, which is insufficiently researched. In this paper, the composition of
the material-drilling power is studied firstly. Then, an improved material-drilling power model is
established. Finally, experimental studies were carried out on a XHK-714F CNC machining center and
JTVM6540 CNC milling machine. The results showed that the prediction accuracy of the improved
material-drilling power model established in this paper is significantly improved, generally higher than
96% for all the test experiments. The average prediction accuracies of the improved material-drilling
power are 98.3% and 98.5% for the XHK-714F CNC machining center and JTVM6540 CNC milling
machine, respectively. Moreover, the prediction accuracy with the proposed model can be increased
compared with the traditional empirical model, improvement of 3.3% and 0.7% can be achieved
for the XHK-714F CNC machining center and JTVM6540 CNC milling machine. The power model
proposed in this paper can provide a good foundation for energy modeling and optimization of
drilling processes. Moreover, the establishment of a material-drilling power model can improve the
transparency of energy consumption and help us to better understand the energy characteristics during
drilling processes.

The differences and trends of the coefficients in the proposed model under different combinations
of machine tools, cutting tools, and workpiece materials will be studied in our future research.
Moreover, the material-drilling power is a crucial part of the total drilling power. With the proposed
material-drilling power model, further research will be carried out to analyze and establish a prediction
model of total drilling power, and then the energy optimization model of drilling processes will
be researched.
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