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Abstract: Adaptive proportional resonant (PR) controllers, whose resonant frequencies are obtained
by the phase-locked loop (PLL), are employed in grid connected voltage source converters (VSCs) to
improve the control performance in the case of grid frequency variations. The resonant frequencies can
be estimated by either synchronous reference frame PLL (SRF-PLL) or dual second order generalized
integrator frequency locked loop (DSOGI-FLL), and there are three different implementations of
the PR controllers based on two integrators. Hence, in this paper, system stabilities of the VSC
with different implementations of PR controllers and different PLLs under weak grid conditions are
analyzed and compared by applying the impedance-based method. First, the αβ-domain admittance
matrixes of the VSC are derived using the harmonic linearization method. Then, the admittance
matrixes are compared with each other, and the influences of their differences on system stability
are revealed. It is demonstrated that if DSOGI-FLL is used, stabilities of the VSC with different
implementations of the PR controllers are similar. Moreover, the VSC using a DSOGI-FLL is more
stable than that using a SRF-PLL. The simulation and experimental results are conducted to verify
the correctness of theoretical analysis.
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1. Introduction

With the increasing energy consumption worldwide, the use of renewable energy sources like
wind and solar energies [1,2] in the grid has been growing increasingly. The voltage source converters
(VSCs) have many desirable features, such as full controllability, low current harmonics, and high
efficiency, thus they are widely used to deliver the power produced by the renewable energies into the
grid [3].

Proportional resonant (PR) controllers could control positive-sequence and corresponding
negative-sequence grid current at the same time without any additional negative-sequence current
controller, and they allow a relatively low computational cost as they are implemented in the stationary
frame [3–5]. Hence, PR controllers working on the stationary reference frame are widely used in
grid-connected VSCs. Implementations of the PR controllers based on two integrators are widely
employed, since no explicit trigonometric functions are needed [5]. Three typical implementations of
the resonance term of the current controllers in the prior studies are shown in Figure 1 [5–7]. For future
reference, they are called implementation I, II and III, respectively. If the resonant frequency is constant,
these implementations are equivalent to each other.

The grid frequency is practically not a constant but within a certain range [8,9], thus the control
performance would be inevitable weakened if the center frequency of the resonance controller is set to
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be constant. If the resonant frequency is set to be the fundamental frequency and the grid frequency
deviates from it, there would be a phase shift between the grid current and the corresponding grid
voltage, though the aimed power factor is unity [6]. To improve control performance in the case of
grid frequency variations, the authors of [6,8,10–13] developed frequency adaptive PR controllers,
whose resonant frequencies are not constant values, but are updated online according to the frequency
estimated by the phase-locked loop (PLL) system. If the adaptive PR controllers are applied, a unity
power factor operation can be achieved [6]. The resonant frequency of the adaptive PR controller is
time-variant, thus dynamic properties of the adaptive PR controllers with different implementations
might be dramatically different. Consequently, the port characteristics of the converter with different
implementations of adaptive PR controllers would not be the same.

Figure 1. Implementations of the resonant term of frequency adaptive proportional resonant (PR)
controllers based on two integrators.

The resonant frequency of the adaptive PR controller can be obtained by grid synchronization
techniques based on phase locking approach, e.g., synchronous reference frame-phase locked loop
(SRF-PLL) [14] which is widely used for its simplicity and robustness, or frequency locking approach,
e.g., dual second-order generalized integrator-frequency locked loop (DSOGI-FLL) [15] which is
implemented in the stationary reference frame. As SRF-PLL and DSOGI-FLL use different approaches
to obtain the grid frequency, their influences on the port characteristics of the converter with adaptive
current controllers might differ be different.

Under weak grid conditions, stability issues introduced by the grid-connected VSCs are of great
importance [16–22]. The differences of the port characteristics of the converter introduced by applying
different control schemes, including three different implementations of the adaptive PR controllers
and the two different PLLs to obtain the resonant frequency, might significantly change the stability of
the VSC connected to a weak grid. Hence, it is necessary to compare the robustness of the VSC with
different control schemes.

In this paper, the stability issues of the VSC with different implementations of the adaptive PR
controllers and different PLLs are studied and analyzed using the impedance-based method [18,23–28].
A suggestion to choose a suitable controllers’ implementation and the related PLL for the VSC with
adaptive PR controllers is given.

The rest of the paper is organized as follows: in Section 2, the studied system with adaptive current
controller is briefly introduced. Section 3 shows how to model the adaptive resonant controller with
different implementations of the resonant terms, and the approach to incorporate it into the admittance
model of the converter. In Section 4 the effects of the adaptive resonant controllers with different
implementations on system stability is analyzed and compared, and the stability of the system using
a SRF-PLL for grid synchronization and the system using a DSOGI-FLL for grid synchronization is
compared. Section 5 includes experimental verifications of the theoretical analysis. Section 6 concludes
this paper.

2. VSC with Adaptive PR Current Controllers

The L-type grid connected converter with grid current regulation working on αβ reference frame
is studied, as depicted in Figure 2. The inductance of the filter is L, and the equivalent series resistance
is r. The grid inductance is Lg. The grid voltages, the voltages at the point of common coupling (PCC),
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the ac-side converter voltages, and the currents delivered to the grid are usk, ugk, vk, and ik (k = a, b, c),
respectively. The dc input voltage of the converter is Vdc.

Grid current references in the stationary reference frame (iαr, iβr) can be obtained by applying an
inverse Park transformation to the active, reactive current references (Idr, Iqr). In this paper, unit-power
factor is considered, i.e., Iqr is set to be zero. Subscripts ‘α’ and ‘β’ refer to the α-axis and β-axis,
respectively, while subscripts ‘d’ and ‘q’ refer to the d-axis and q-axis, respectively.

Figure 2. Block diagram of a voltage source converter (VSC) with adaptive PR controllers for
grid-connected applications.

2.1. Adaptive PR Controller

The grid current error signals (eα, eβ) are sent to the PR controllers to generate the reference of the
ac-side converter voltages (vαr, vβr). The PR current controllers are defined as follows:

H(s) = kp + kr
s

s2 + ω2
f
= kp + krR(s) (1)

where ωf is the resonant frequency, different from the conventional PR controller, the adaptive PR
controller uses the frequency estimated by the PLL as the resonant frequency instead of the constant
fundamental frequency ω1; kp, kr are the proportional- and resonant-gain of the controller, respectively.
The controller gains can be tuned according to: kp = αcL, ki = αcr [18] where αc is the current control loop
bandwidth. R(s) is the resonant term of the controller. R(s) has infinite gain at the resonant frequency
and thus it is capable for the grid current to track its reference without steady-state error.

The detailed block diagrams of different implementations of the PR controller based on two
integrators are depicted in Figure 3, where xiα and yoα are the input and output of R(s), respectively.
The α-axis and β-axis are decoupled, thus only the PR controller implemented in the α-axis is given
for simplicity. In time domain, the relationships between xiα and yoα can be derived from Figure 3,
as follows: 

xiα(t) =
dyoα(t)

dt + ω2
f (t)
∫ t

0 yoα(t)dt · · · I

xiα(t) =
dyoα(t)

dt +
∫ t

0 ω2
f (t)yoα(t)dt · · · II

xiα(t) =
dyoα(t)

dt + ω f (t)
∫ t

0 ω f (t)yoα(t)dt · · · III

(2)

where Equations (2-I), (2-II) and (2-III) are obtained with implementation I, II, and III of the PR
controllers, respectively. If ωf is constant, the three equations are equivalent to each other. However,
for the adaptive PR controllers, ωf is time varying, the equations are no longer the same. Thus the
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dynamic properties of the adaptive PR controllers with different implementations might be different,
and the transfer function shown in Equation (1) is not enough to describe the dynamic properties of
adaptive PR controllers.

Figure 3. Detailed block diagrams of adaptive PR controllers with different implementations of R(s).

The adaptive PR controllers’ outputs are sent to the SVPWM to generate the control signals.

2.2. Grid Synchronization Methods

Two typical grid synchronization methods, i.e., SRF-PLL and DSOGI-FLL as shown in Figure 4
are used to provide the phase angle to calculate the reference currents and the controller’s resonant
frequency. The block diagram of a typical SRF-PLL is shown in Figure 4a, where GPLL(s) is the PLL
controller. Figure 4b shows the block diagram of DSOGI-FLL with frequency locked loop (FLL) gain
normalization, where k is the gain of the SOGI, and γ is used to regulate the settling time of the
FLL [22]. The DSOGI-FLL consists of four parts: (1) SOGI; (2) positive/negative-sequence calculation
block (PNSC) to obtain the positive-sequence voltages (uα+, uβ+) and the negative-sequence voltage
(uα−, uβ−); (3) FLL with FLL gain normalization to estimate the grid frequency; (4) the “atan2” uses
the positive-sequence voltages for the phase angle calculation.

Figure 4. Block diagram of (a) a basic synchronous reference frame PLL (SRF-PLL); (b) a dual second
order generalized integrator frequency locked loop (DSOGI-FLL) based grid synchronization with
frequency locked loop (FLL) gain normalization.

With different implementations of the adaptive PR controllers and different PLLs, the stability of
the grid-connected converter might be quite different under weak grid conditions.
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3. Impedance Modeling

Impedance-based methods were a popular choice in prior studies to analyse the stability of
grid-connected converters. Impedance modeling of the converter can be performed in either the
dq-domain [25] or in the αβ-domain [26,27]. Considering that the grid current regulation working
on αβ reference frame is used, impedance-based method in the αβ-domain is applied in this paper.
The αβ-domain converter impedances are derived using harmonic linearization method.

A positive-sequence perturbation at an arbitrary frequency ωp is injected to the grid to obtain
the reflected admittances at the ac terminals. Thus, in three phase variables, there would have
positive-sequence components at frequency ωp and negative-sequence components at frequency
ωp − 2ω1 [28]. In this paper, it is defined that s = jω, where ω = ωp − ω1.

3.1. Model of the Adaptive PR Controllers

The outputs of the adaptive PR controllers are affected by the error signal and the estimated
frequency, as shown in Figure 3, thus the small-signal part of controllers’ outputs can be described by
Equation (3): {

vp
αr(ω + ω1) = H(s + jω1)e

p
α(ω + ω1) + Hx

p(s + jω1)ω f (ω)

vn
αr(ω−ω1) = H(s− jω1)en

α(ω−ω1) + Hx
n(s− jω1)ω f (ω)

(2)

where H(s) is defined in Equation (1); Hx
p(s) and Hx

n(s) are used to describe the influence of ωf
on the positive-, negative-sequence components of the current controllers’ outputs, respectively.
The superscripts of the variables ‘p’ and ‘n’ are used to indicate the positive-, negative-sequence of
the variables, respectively. The superscripts of the transfer functions ‘x’ in Hx

p(s) and Hx
n(s) is used to

distinguish the implementations of adaptive controllers: x = i, ii, and iii indicates that implementation
I, II and III is used, respectively.

To obtain the detailed expressions of Hx
p(s) and Hx

n(s), eα is assumed to be zero, thus from Figure 3,
it can be easily obtained that xiα = 0, and yoα = vαr. If the implementation I of the adaptive PR controller
is used, it can be derived from (2-I) by using convolution that: (s + jω1)v

p
ar(ω + ω1) +

(
ω2

1
vp

ar(ω+ω1)
s+jω1

+ 2ω1ω f (ω)Vα [ω1]
jω1

)
= 0

(s− jω1)vn
ar(ω−ω1) +

(
ω2

1
vn

ar(ω−ω1)
s−jω1

+ 2ω1ω f (ω)Vα [−ω1]
−jω1

)
= 0

(3)

where Vα[±ω1] = (Vm + rIdr ± jLω1Idr)/2 are the Fourier coefficients of vαr at the positive/negative
fundamental frequency, Vm is the magnitude of PCC voltage. For simplicity, set Vp = 2Vα[ω1],
and Vn = 2Vα[−ω1].

The detailed expressions of Hx
p(s) and Hx

n(s) for x = i can be easily obtained from Equations (3)
and (4), as shown in Table 1. Following the same procedure, Hx

p(s) and Hx
n(s) for x = ii, and iii can also

be derived as shown in Table 1.

Table 1. Detailed expressions of Hx
p (s) and Hx

n(s) in Equation (3) with different implementations of the
adaptive PR current controllers.

X i ii iii

Hx
p(s + jω1)

jVp(s+jω1)
s(s+j2ω1)

− Vpω1

s(s+j2ω1) j Vp
2s

Hx
n(s− jω1)

− jVn(s−jω1)
s(s−j2ω1)

− Vnω1
s(s−j2ω1) −j Vn

2s

3.2. Model of the PLL System

The frequency domain forms of ωf and θf are shown in Equation (5). The superscripts ‘y’ is
used to distinguish the PLL that is applied: y = pll means that a SRF-PLL is used; y = fll means
that a DSOGI-FLL is used. The expressions of the transfer functions are shown in Table 2 where
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Tpll(s) = GPLL(s)/(s + VmGPLL(s)) and D(s) = s2 + kω1s + ω1
2. The derivations are shown in the

Appendix A. {
ω f (ω) = Hy

wp(s)u
p
gα(ω + ω1) + Hy

wn(s)un
gα(ω−ω1)

θ f (ω) = Hy
sp(s)u

p
gα(ω + ω1) + Hy

sn(s)un
gα(ω−ω1)

(4)

Table 2. Detailed expressions of the transfer functions in Equation (5) with different phase-locked
loops (PLLs).

Hpll
sp (s) = −jTpll(s) Hpll

wp(s) = −jsTpll(s)

Hpll
sn (s) = jTpll(s) Hpll

wn(s) = jsTpll(s)

H f ll
sp (s) = − jkω1(s+j2ω1)

2Vm D(s+jω1)

(
1 +

λ
(

s−j2ω1
D(s−jω1)

+
s+j2ω1

D(s+jω1)

)
1+λ

kω1
s

(
s−jω1

D(s−jω1)
+

s+jω1
D(s+jω1)

)
)

H f ll
wp(s) =

−jλ kω1
Vm

s+j2ω1
D(s+jω1)

1+λ
kω1

s

(
s−jω1

D(s−jω1)
+

s+jω1
D(s+jω1)

)

H f ll
sn (s) = j kω1(s−j2ω1)

2Vm D(s−jω1)

(
1 +

λ
(

s−j2ω1
D(s−jω1)

+
s+j2ω1

D(s+jω1)

)
1+λ

kω1
s

(
s−jω1

D(s−jω1)
+

s+jω1
D(s+jω1)

)
)

H f ll
wn(s) =

jλ kω1
Vm

s−j2ω1
D(s−jω1)

1+λ
kω1

s

(
s−jω1

D(s−jω1)
+

s+jω1
D(s+jω1)

)

3.3. Model of the Current References

The αβ-domain current references in the frequency domain is shown in Equation (6) [22]:{
ip
αr(ω + ω1) = j0.5Idrθ f (ω)

in
αr(ω−ω1) = −j0.5Idrθ f (ω)

(5)

3.4. Model of the Grid Current Loop

Based on the adaptive PR controller (3), the PLL system (5) and the current references (6), the
detailed small-signal model of the grid current with adaptive PR controllers can be obtained, as
depicted in Figure 5, where Gd(s) is used to depicts the gain and delays (digital computation delay and
the PWM delay) [29] of the converter, as follows:

Gd(s) = e−1.5sTs (6)

where Ts is the sampling period.

Figure 5. Small signal model of grid current control loop influenced by the PLL system.

Because of the adaptive PR controller, extra branches are introduced in the model of grid current
loop, as shown in the red part of Figure 5. Moreover, Hx

p(s), Hx
n(s) (as shown in Table 1) are different

for different implementations of adaptive PR controllers, and Hy
wp(s), Hy

wn(s) (as shown in Table 2) are
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not the same for different PLLs. Hence, the port characteristics of the grid-connected converters with
different implementations of the adaptive PR controllers and different PLLs are different.

The small-signal part of grid current can be obtained from Figure 5, as follows:{
ip
α(ω + ω1) = Ti(s + jω1)i

p
αr(ω + ω1)−Yi(s + jω1)u

p
gα(ω + ω1) + Twp(s + jω1)∆ω f (ω)

in
α(ω−ω1) = Ti(s− jω1)in

αr(ω−ω1)−Yi(s− jω1)un
gα(ω−ω1) + Twn(s− jω1)∆ω f (ω)

(7)

where: 
Yi(s) = 1

H(s)Gd(s)+Ls+r
Ti(s) = H(s)Gd(s)Yi(s)
Twp(s) = Hx

p(s)Gd(s)Yi(s)
Twn(s) = Hx

n(s)Gd(s)Yi(s)

(8)

3.5. Admittance Matrix

The admittance matrix of the converter, Yαβ(s), is defined in Equation (10):

[
−ip

α(ω + ω1)

−in
α(ω−ω1)

]
=

[
Ypp(s + jω1) Ypn(s + jω1)

Ynp(s− jω1) Ynn(s− jω1)

][
up

gα(ω + ω1)

un
gα(ω−ω1)

]
= Yαβ(s)

[
up

gα(ω + ω1)

un
gα(ω−ω1)

]
(9)

The elements can be derived from Figure 5, as follows:
Ypp(s + jω1) = Yi(s + jω1)−

(
j0.5Idr Hy

sp(s)Ti(s + jω1) + Twp(s + jω1)Hy
wp(s)

)
Ypn(s + jω1) = −j0.5IdrTi(s + jω1)Hy

sn(s)− Twp(s + jω1)Hy
wn(s)

Ynp(s− jω1) = j0.5IdrTi(s− jω1)Hy
sp(s)− Twn(s− jω1)Hy

wp(s)
Ynn(s− jω1) = Yi(s− jω1)−

(
−j0.5IdrTi(s− jω1)Hy

sn(s) + Twn(s− jω1)Hy
wn(s)

) (10)

4. Impedance-Based Stability Analysis

4.1. Addmittances Analysis and Verifications

Figures 6 and 7 shows the magnitude responses of the admittances of the grid-connected converter
with SRF-PLL and DSOGI-FLL, respectively. The solid lines are plotted using the theoretical models in
Equation (11), while the circles are the point-by-point numerical simulation results of the admittances
for comparison. The parameters used in simulations are as shown in Table 3 with the bandwidth of the
SRF-PLL fbω_PLL = 40 Hz (the corresponding parameters of the GPLL(s) is designed based on [30]), and
the parameters of the DSOGI-FLL are: k = 1.1, γ = 41. It can be observed from Figures 6 and 7 that for
different implementations of adaptive PR controllers and different PLLs, the numerical admittances
match the theoretical admittances of the grid-connected converter, which verify the correctness of the
proposed admittance model.



Energies 2018, 11, 2004 8 of 17

Figure 6. Magnitude responses of admittances of the converter synchronized by a SRF-PLL:
(a) Ypp(s + jω1); (b) Ypn(s + jω1); (c) Ynp(s − jω1); (d) Ynn(s − jω1). Red line: Implementation I; Green line:
implementation II; Black line: implementation III is applied. Circles: numerical simulation results.

Figure 7. Magnitude responses of admittances of the converter synchronized by a DSOGI-FLL:
(a) Ypp(s + jω1); (b) Ypn(s + jω1); (c) Ynp(s − jω1); (d) Ynn(s − jω1). Red line: Implementation I; Green line:
implementation II; Black line: implementation III is applied. Circles: numerical simulation results.

Table 3. Parameters of grid-tied converter prototype.

Symbol Description Value

V1 Grid phase-neutral peak voltage 30
√

2 V
ω1 Grid angular frequency 2π × 50 rad/s
fs Switching frequency 10 kHz

Vdc Dc-link voltage 130 V
L Inductance of the L-type filter 2 mH
r Resistance of the filter 0.2 Ω

αc Current control loop bandwidth 2π × 833 rad/s
ki Proportional gain of ac/dc current controller 10.47
kr R parameter of ac/dc current controller 1047
Idr D channel current reference of VSC 10 A
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4.1.1. SRF-PLL is Used for Grid Synchronization

It can be observed from Figure 6 that the Ypp(s + jω1) and Ypn(s + jω1) with different
implementations of the adaptive controllers are similar as shown in Figure 6a,b, while Ynp(s− jω1) and
Ynn(s − jω1) are different, especially at the frequencies around s − jω1 = jω1, i.e., s = j2ω1, as shown in
Figure 6c,d. The value of Ynp(s − jω1) and Ynn(s − jω1) at s = j2ω1 can be obtained by Equation (11),
as follows: 

Ynn(jω1) = −Ynp(jω1) = −
(

Idr
2 + j 2ω1Vn

kr

)
Tpll(j2ω1) · · · I

Ynn(jω1) = −Ynp(jω1) = −
(

Idr
2 − j 2ω1Vn

kr

)
Tpll(j2ω1) · · · II

Ynn(jω1) = −Ynp(jω1) = − Idr
2 Tpll(j2ω1) · · · III

(12)

where Equations (12-I), (12-II), and (12-III) are the admittances of the converter with implementation I,
II, and III of the adaptive PR controller, respectively.

Obviously, it can be obtained from Equation (12) that for a small kr as suggested in [16], the
magnitudes of Ynp(s− jω1) and Ynn(s− jω1) of the converter using implementation III around s = j2ω1

are much smaller than those using implementation I or II.

4.1.2. DSOGI-FLL is Used for Grid Synchronization

It can be observed from Figure 7 that for different implementations of the adaptive resonant
controllers, the converter admittances Ypp(s + jω1), Ypn(s + jω1), Ynn(s − jω1) are similar,
while Ynp(s − jω1) are different at the frequencies around s = j2ω1. Due to the effect of the zeros

in H f ll
wn(s − jω1) and H f ll

sn (s − jω1) (as shown in Table 2) at s = j2ω1, it can be derived from
Equation (11) that:

Ynn(jω1) = Ypn(j3ω1) = 0 (11)

Equation (13) is valid with different implantations of the adaptive PR controllers.

4.2. Stability Analysis

4.2.1. Stability Criterion

System stability is determined by applying general Nyquist stability criterion to the minor
loop gain Lαβ(s) = Zgαβ(s)Yαβ(s), where Zgαβ(s) is the impedance matrix of the grid as shown in
Equation (14) [28]. The system is stable if the Nyquist curves of the eigenvalues of Lαβ(s), i.e., λ1(s) and
λ2(s) as defined in Equation (15), do not encircle the critical point (−1, j0), otherwise, the system is
unstable [27,28]:

Zgαβ(s) =

[
Zg(s + jω1

)
0

0 Zg(s− jω1
) ] (12)

λ1,2(s) = 0.5
(

Zg(s + jω1
)

Yp(s + jω1) + Zg(s− jω1
)
Yn(s− jω1)

)
±

0.5

√ (
Zg(s + jω1

)
Yp(s + jω1) + Zg(s− jω1

)
Yn(s− jω1)

)2−
4Zg(s + jω1

)
Zg(s− jω1

)(
Ypp(s + jω1)Ynn(s− jω1)−Ypn(s + jω1)Ynp(s− jω1)

) (13)

4.2.2. Stability Analysis with Different PLLs

Figure 8 shows the Nyquist curves of characteristic loci of the grid system using different
implementations of the adaptive current controllers and different PLLs. The parameters used in
simulations are as shown in Table 3 with fbω_PLL = 75 Hz, the parameters of the DSOGI-FLL are: k = 1.1,
γ = 41, and the grid inductance Lg = 6 mH.

It can be observed from Figure 8a that if a DSOGI-FLL is used, the stabilities of grid-
connected converters with different implementations of the adaptive PR controllers are similar.
Since Ypn(j3ω1) = 0 as derived in Equation (13), Ypn(s + jω1) × Ynp(s − jω1) are very small around
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s = j2ω1. Therefore, based on Equation (15), it can be concluded that although that Ynp(s − jω1) are
different around s = j2ω1, the differences would have very limited influence on the λ1(s) and λ2(s).

It can be observed from Figure 8b that if a SRF-PLL is used, the stabilities of grid-connected
converters with different implementations of the adaptive PR controllers are quite different.
The converter with implementation I is unstable, while the converter with implementation II and III are
stable. The stability boundaries of the grid-connected converters with different implementations of the
adaptive PR controllers are obtained based on the stability criterion, as depicted in Figure 9. It can be
observed from Figure 9 that the system with implementation III has the largest stable region, while the
system with implementation I has the smallest stable region. When the short circuit ratio (SCR) is set
to be 2.23, the maximum bandwidth to maintain system stability is around 73.3 Hz if implementation
I is used, the maximum value extends to about 107.9 Hz if implementation II is applied, and the
maximum value can be further raised to about 121.2 Hz if implementation III is applied. Above all,
implementation III of the adaptive PR current controllers is suggested to be used for the grid connected
converter using SRF-PLL for grid synchronization.

Figure 8. Nyquist curves of characteristic loci of Lαβ with different implementations of the adaptive
resonance controllers using (a) DSOGI-FLL; (b) SRF-PLL for grid synchronization. Solid line: λ1(s);
Dash line: λ2(s).

Figure 9. Stability boundaries of the grid-connected converter using different implementations of the
adaptive PR controller and SRF-PLL for grid synchronization.
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4.2.3. Comparison with Different PLLs

In this subsection, the effects of the SRF-PLL and DSOGI-FLL on stability of the grid connected
converter with adaptive resonance current controllers using implementation III are compared.

Based on Equation (6), the dynamic properties of the output angle of a SRF-PLL with
fbω_PLL = 40 Hz and a DSOGI-FLL with k = 1.1, γ = 41 are similar, as shown in Figure 10a. Under this
circumstance, Figure 10b shows the corresponding dynamic properties of the output frequency for
different PLLs. The magnitudes of H f ll

wp(s) and H f ll
wn(s) are smaller than that of Hpll

wp(s) and Hpll
wn(s), hence

it can be concluded that ωf is more robust if the DSOGI-FLL is used than that if the SRF-PLL is used.
The influence of a PLL on system stability depends on the dynamic properties of the output phase
angle and the estimated frequency. Hence, the converter using DSOGI-FLL for grid synchronization
should be more stable than the converter using SRF-PLL for grid synchronization.

Figure 11 shows the corresponding Nyquist curves of characteristic loci of converters with
different synchronization method. The other parameters used in the simulation are as shown in Table 3.
It can be concluded from Figure 11 that the converter using DSOGI-FLL for grid synchronization has a
larger stability margin than that of the converter using SRF-PLL.

Figure 10. Frequency response of the effects of point of common coupling (PCC) voltages on θf in
(a) and ωf in (b). Solid line: DSOGI-FLL is used; Dash line: SRF-PLL is used.

Figure 11. Nyquist curves of characteristic loci of Lαβ using different PLLs. Black line: SRF-PLL;
Red line: DSOGI-FLL is used. Solid line: λ1(s); Dash line: λ2(s).



Energies 2018, 11, 2004 12 of 17

5. Experimental Verifications

A three-phase grid-connected converter has been built and tested to verify proposed analysis.
The current controllers, frame transformation and the PLL were implemented in a TMS320F28335 DSP
board (Texas Instruments, Inc, Dallas, TX, USA). The grid current is sensed by a TCP0150 current probe
(Tektronix, Beaverton, OR, USA) and the bandwidth of the SRF-PLL fbw_PLL, the q-axis component of
the grid current iq, and the estimated frequency ωf are sent to the D/A in the board as output signals.
The output of the D/A cannot be negative, hence, it is programed to have a 15 A offset in iq and a
200 rad/s offset in ωf compared to the corresponding actual values. Parameters for this experimental
setup are provided in Table 3, which are consistent with the simulation parameters. The parameters of
DSOGI-FLL are: k = 1.1, γ = 41, and the short circuit ratio is 2.23 (the corresponding Lg is 6 mH).

Figure 12 are the experimental waveforms of A-phase current of the converter using SRF-PLL
for grid synchronization. In Figure 12a, the implementation I of the adaptive resonance controller
is applied. At time T0, the bandwidth of the PLL jumps from 56 Hz to 70 Hz, and after T0, the grid
current diverges. Once the grid currents reach the up-limited value, the system would stop running.
In Figure 12b, the implementation II is applied. At time T0, the bandwidth of the PLL jumps from
102 Hz to 112 Hz, and after T0, system becomes unstable. In Figure 12c, the implementation III is
applied. At time T0, the bandwidth of the PLL jumps from 114 Hz to 126 Hz, and after T0, system is no
longer stable. The experimental results match the theoretical stability boundaries shown in Figure 9.

Figure 12. A-phase current waveforms for the converter using (a) implementation I; (b) implementation
II; (c) implementation III of the adaptive resonance controllers with fbw_pll changes at time T0.

Figure 13 shows the experimental waveforms of ia, ωf, and iq of the grid connected converter
using DSOGI-FLL for grid synchronization. In Figure 13a–c, implementation I, II and III of the adaptive
PR controllers are used, respectively. The active current reference Idr changes from 0 A to 10 A at time
T0, and the dynamic responses of ωf, and iq are similar for all implementations of the adaptive PR
controllers. The experimental results match the theoretical analysis in Section 4.2.2.
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Figure 13. Dynamic responses of the converter using (a) implementation I; (b) implementation II;
(c) implementation III of the adaptive resonance controllers with changing active current reference.

Figure 14 shows the experimental waveforms of A-phase current and iq of the grid connected
converter with Implementation III of the adaptive PR controllers. In Figure 14a, the SRF-PLL with
40 Hz bandwidth is applied while in Figure 14b, the DSOGI-FLL is used. The reactive current reference
Iqr changes from −6 A to 0 A at time T0. It is can be obtained from Figure 14 that: the percentage
overshoot (PO) of iq in Figure 14a is about 14% (0.84/6) while in Figure 14b the PO is less than 8%
(0.48/6). The system with DSOGI-FLL has a stronger damping than that of the system with SRF-PLL.
The experimental results verify the effectiveness of the analysis in Section 4.2.3.

Figure 14. Dynamic response of q-axis component of grid current with its reference changes from −6 A
to 0 A at time T0: (a) SRF-PLL; (b) DSOGI-FLL is used for grid synchronization.

6. Conclusions

The impedance model and stability of the grid-connected VSCs with adaptive resonance current
controllers has been explored in this paper. Based on the proposed small-signal impedance model,
some tips should be aware of when implementing adaptive resonant controllers:
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(1) If a SRF-PLL is used for grid synchronization, the system using implementation III of the resonant
controller has the best stability margin, while the system using implementation I has the worst
stability margin under weak grid conditions.

(2) If a DSOGI-FLL is used for grid synchronization, the systems using implementation I, II, and III
of the resonant controller have similar stability margins.

(3) The system using a DSOGI-FLL for grid synchronization has a larger stability margin than
that of the system using a SRF-PLL if the dynamic property of the output angle of the two
synchronization methods are similar.

Experimental results validate the conclusions based on the theoretical analysis. In sum, the
implementation of the resonance controller and the grid synchronization method should be carefully
chosen for the weak-grid connected converter using adaptive resonance current controllers.
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to the paper writing.
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Appendix A.

Appendix A.1. Modeling of the SRF-PLL

It can be obtained from [22] that, the output angle of the SRF-PLL is:

θ f (ω) = −jTpll(s)
(

up
gα(ω + ω1)− un

gα(ω−ω1)
)

(A1)

where Tpll(s) is the close loop gain of the PLL, as follows:

Tpll(s) =
GPLL(s)/s

1 + VmGPLL(s)/s
(A2)

The estimated frequency is in fact the differential of the output angle of the PLL, i.e., ωf(ω) = sθf(ω),
hence, from Equation (A1) it can be obtained that:

ω f (ω) = −jsTpll(s)
(

up
gα(ω + ω1)− un

gα(ω−ω1)
)

(A3)

Appendix A.2. Modeling of the DSOGI-FLL

Appendix A.2.1. Modeling of the SOGIs

According to the block diagram shown in Figure 4b, it can be obtained that:{
ε

p
α(ω + ω1) = up

gα(ω + ω1)− up
α(ω + ω1)

εn
α(ω−ω1) = un

gα(ω−ω1)− un
α(ω−ω1)

(A4)

The steady-state value of the uα is Vmcos(ω1t), by using convolution, it can be obtained that:{ (
kε

p
α(ω + ω1)− qup

α(ω + ω1)
)

ω1
s+jω1

− Vm
2j

1
s+jω1

ω f (ω) = up
α(ω + ω1)

(kεn
α(ω−ω1)− qun

α(ω−ω1))
ω1

s−jω1
+ Vm

2j
1

s−jω1
ω f (ω) = un

α(ω−ω1)
(A5)

{
qup

α(ω + ω1) =
ω1

s+jω1
up

α(ω + ω1) +
Vm

j2ω1
ω f (ω)

qun
α(ω−ω1) =

ω1
s−jω1

un
α(ω−ω1)− Vm

j2ω1
ω f (ω)

(A6)
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With Equations (A4)–(A6), it can be obtained that: up
α(ω + ω1) =

s+jω1
D(s+jω1)

(
kω1up

gα(ω + ω1) + jVmω f (ω)
)

un
α(ω−ω1) =

s−jω1
D(s−jω1)

(
kω1un

gα(ω−ω1)− jVmω f (ω)
) (A7)

 qup
α(ω + ω1) =

kω2
1

D(s+jω1)
up

gα(ω + ω1) +
(

jVmω1
D(s+jω1)

+ Vm
j2ω1

)
ω f (ω)

qun
α(ω−ω1) =

kω2
1

D(s−jω1)
un

gα(ω−ω1)−
(

jVmω1
D(s−jω1)

+ Vm
j2ω1

)
ω f (ω)

(A8)

 ε
p
α(ω + ω1) =

s(s+j2ω1)
D(s+jω1)

up
gα(ω + ω1)− jVm(s+jω1)

D(s+jω1)
ω f (ω)

εn
α(ω−ω1) =

s(s−j2ω1)
D(s−jω1)

un
gα(ω−ω1) +

jVm(s−jω1)
D(s−jω1)

ω f (ω)
(A9)

where D(s) = s2 + kω1s + ω1
2 is used to simplify the expression.

Appendix A.2.2. Modeling of the PNSC

For a balanced positive-, negative-sequence vector, the α-, β-axis components keep the following
steady-state relationship on frequency domain:{

qup
α(ω + ω1) = jqup

β(ω + ω1)

qun
α(ω−ω1) = −jqun

β(ω−ω1)
(A10)

Thus, the input signals of the “atan2” are: up
α+(ω + ω1) =

1
2

kω1(s+j2ω1)
D(s+jω1)

up
gα(ω + ω1) +

Vm
2

(
j(s+j2ω1)
D(s+jω1)

+ 1
2ω1

)
ω f (ω)

un
α+(ω−ω1) =

1
2

kω1(s−j2ω1)
D(s−jω1)

un
gα(ω−ω1) +

Vm
2

(
−j(s−j2ω1)
D(s−jω1)

+ 1
2ω1

)
ω f (ω)

(A11)

Appendix A.2.3. Modeling of the FLL

The steady state values of εα, εβ are zeros, while quα, quβ are Vmsin(ω1t) and −Vmcos(ω1t),
respectively. Hence, by using convolution, it can easily be obtained that:

u f (ω) = −Vm

j2
ε

p
α(ω + ω1) +

Vm

j2
εn

α(ω−ω1)−
Vm

2
ε

p
β(ω + ω1)−

Vm

2
εn

β(ω−ω1) (A12)

Using the similar steady-state relationship as shown in Equation (A10), Equation (A12) can be
simplified as follows:

u f (ω) = −Vm

j
ε

p
α(ω + ω1) +

Vm

j
εn

α(ω−ω1) (A13)

The steady-state value of uf is zero, hence the output of the FLL can be written as follows:

− λ
kω1

V2
m

1
s

u f (ω) = ω f (ω) (A14)

With Equations (A9), (A13), and (A14), the output of the FLL can be obtained that:

ω f (ω) =
−λ kω1

Vm
1
j

(
s−j2ω1

D(s−jω1)
un

gα(ω−ω1)− s+j2ω1
D(s+jω1)

up
gα(ω + ω1)

)
1 + λ kω1

s

(
s−jω1

D(s−jω1)
+ s+jω1

D(s+jω1)

) (A15)
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Appendix A.2.4. Modeling of the Output Angle

As demonstrated in [31], the output angle of “atan2” satisfies the following relationship:

Vmθ f (ω) = − j
2

up
α+(ω + ω1) +

j
2

un
α+(ω−ω1) +

1
2

up
β+(ω + ω1) +

1
2

un
β+(ω−ω1) (A16)

It is pointed out in [27,28] that the vector at frequency ω − ω1 is not positive-sequence, but
negative-sequence, hence, Equation (A16) can be simplified to:

Vmθ f (ω) = −jup
α+(ω + ω1) + jun

α+(ω−ω1) (A17)

With Equations (A11), (A15), and (A17), it can be obtained that:

θ f (ω) =
j
(

kω1(s−j2ω1)
D(s−jω1)

un
gα(ω−ω1)−

kω1(s+j2ω1)
D(s+jω1)

up
gα(ω+ω1)

)
2Vm

×(
1 +

λ
(

s−j2ω1
D(s−jω1)

+
s+j2ω1

D(s+jω1)

)
1+λ

kω1
s

(
s−jω1

D(s−jω1)
+

s+jω1
D(s+jω1)

)
) (A18)

References

1. Blaabjerg, F.; Chen, Z.; Kjaer, S.B. Power electronics as efficient interface in dispersed power generation
systems. IEEE Trans. Power Electron. 2004, 19, 1184–1194. [CrossRef]

2. Dash, P.P.; Kazerani, M. Dynamic modeling and performance analysis of a grid-connected current-source
inverter-based photovoltaic system. IEEE Trans. Sustain. Energy 2011, 2, 443–450. [CrossRef]

3. Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for
distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [CrossRef]

4. Zmood, D.N.; Holmes, D.G. Stationary frame current regulation of PWM inverters with zero steady-state
error. IEEE Trans. Power Electron. 2003, 18, 814–822. [CrossRef]

5. Yepes, A.G.; Freijedo, F.D.; Gandoy, J.D.; Lopez, O.; Malvar, J.; Comesana, P.F. Effects of Discretization
Methods on the Performance of Resonant Controllers. IEEE Trans. Power Electron. 2010, 25, 1692–1772.
[CrossRef]

6. Yang, Y.; Zhou, K.; Blaabjerg, F. Enhancing the Frequency Adaptability of Periodic Current Controllers with a
Fixed Sampling Rate for Grid-Connected Power Converters. IEEE Trans. Power Electron. 2016, 31, 7232–7285.
[CrossRef]

7. Bojoi, R.I.; Griva, G.; Bostan, V.; Guerriero, M.; Farina, F.; Profumo, F. Current Control Strategy for
Power Conditioners Using Sinusoidal Signal Integrators in Synchronous Reference Frame. IEEE Trans.
Power Electron. 2005, 20, 1402–1412. [CrossRef]

8. Yang, Y.; Zhou, K.; Wang, H.; Blaabjerg, F.; Wang, D.; Zhang, B. Frequency Adaptive Selective Harmonic
Control for Grid-Connected Inverters. IEEE Trans. Power Electron. 2015, 30, 3912–3924. [CrossRef]

9. Cadaval, E.R.; Spagnuolo, G.; Franquelo, L.G.; Paja, C.A.R.; Suntio, T.; Xiao, W.M. Grid-connected
photovoltaic generation plants: Components and operation. IEEE Ind. Electron. Mag. 2013, 7, 6–20.
[CrossRef]

10. Espin, F.G.; Garcera, G.; Patrao, I.; Figueres, E. An adaptive control system for three-phase photovoltaic
inverters working in a polluted and variable frequency electric grid. IEEE Trans. Power Electron. 2012,
27, 4248–4261. [CrossRef]

11. Herran, M.A.; Fischer, J.R.; Gonzalez, S.A.; Judewicz, M.G.; Carugati, I.; Carrica, D.O. Repetitive control with
adaptive sampling frequency for wind power generation systems. IEEE J. Emerg. Sel. Top. Power Electron.
2014, 2, 58–69. [CrossRef]

12. Jorge, S.G.; Busada, C.A.; Solsona, J.A. Frequency-adaptive current controller for three-phase grid-connected
converters. IEEE Trans. Ind. Electron. 2013, 60, 4169–4177. [CrossRef]

13. Timbus, A.V.; Ciobotaru, M.; Teodorescu, R.; Blaabjerg, F. Adaptive Resonant Controller for Grid-Connected
Converters in Distributed Power Generation Systems. In Proceedings of the Twenty-First Annual IEEE
Applied Power Electronics Conference and Exposition, Dallas, TX, USA, 19–23 March 2006; pp. 1601–1606.

http://dx.doi.org/10.1109/TPEL.2004.833453
http://dx.doi.org/10.1109/TSTE.2011.2149551
http://dx.doi.org/10.1109/TIE.2006.881997
http://dx.doi.org/10.1109/TPEL.2003.810852
http://dx.doi.org/10.1109/TPEL.2010.2041256
http://dx.doi.org/10.1109/TPEL.2015.2507545
http://dx.doi.org/10.1109/TPEL.2005.857558
http://dx.doi.org/10.1109/TPEL.2014.2344049
http://dx.doi.org/10.1109/MIE.2013.2264540
http://dx.doi.org/10.1109/TPEL.2012.2191623
http://dx.doi.org/10.1109/JESTPE.2013.2290572
http://dx.doi.org/10.1109/TIE.2012.2209617


Energies 2018, 11, 2004 17 of 17

14. Chung, S.K. A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electron.
2000, 15, 431–438. [CrossRef]

15. Rodriguez, P.; Luna, A.; Aguilar, R.S.M.; Otadui, I.E.; Teodorescu, R.; Blaabjerg, F. A Stationary Reference
Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters under Adverse
Grid Conditions. IEEE Trans. Power Electron. 2012, 27, 99–112. [CrossRef]

16. Liserre, M.; Teodorescu, R.; Blaabjerg, F. Stability of photovoltaic and wind turbine grid-connected inverters
for a large set of grid impedance values. IEEE Trans. Power Electron. 2006, 21, 263–272. [CrossRef]

17. Wang, X.; Blaabjerg, F.; Wu, W. Modeling and analysis of harmonic stability in an AC power-electronics-based
power system. IEEE Trans. Power Electron. 2014, 29, 6421–6432. [CrossRef]

18. Harnefors, L.; Bongiorno, M.; Lundberg, S. Input-Admittance Calculation and Shaping for Controlled
Voltage-Source Converters. IEEE Trans. Ind. Electron. 2007, 54, 3323–3334. [CrossRef]

19. Alawasa, K.M.; Mohamed, Y.A.R.I.; Xu, W. Active mitigation of subsynchronous interactions between PWM
voltage-source converters and power networks. IEEE Trans. Power Electron. 2014, 29, 121–134. [CrossRef]

20. Zhou, J.Z.; Ding, H.; Fan, S.; Zhang, Y.; Gole, A.M. Impact of short-circuit ratio and phase-locked-loop
parameters on the small-signal behavior of a VSC-HVDC converter. IEEE Trans. Power Deliv. 2014,
29, 2287–2296. [CrossRef]

21. Alvarez, A.E.; Fekriasl, S.; Hassan, F.; Bellmunt, O.G. Advanced Vector Control for Voltage Source Converters
Connected to Weak Grids. IEEE Trans. Power Syst. 2015, 30, 3072–3081. [CrossRef]

22. Li, X.; Lin, H. Multifrequency Small-Signal Model of Voltage Source Converters Connected to a Weak Grid
for Stability Analysis. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition
(APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 728–732.

23. Cho, Y.; Lee, C.; Hur, K.; Kang, Y.C.; Muljadi, E. Impedance-Based Stability Analysis in Grid Interconnection
Impact Study Owing to the Increased Adoption of Converter-Interfaced Generators. Energies 2017, 10, 1355.
[CrossRef]

24. Sun, J. Impedance-Based Stability Criterion for Grid-Connected Inverters. IEEE Trans. Power Electron. 2011,
26, 3075–3078. [CrossRef]

25. Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Analysis of D-Q Small-Signal Impedance of
Grid-Tied Inverters. IEEE Trans. Power Electron. 2016, 31, 675–687. [CrossRef]

26. Cespedes, M.; Sun, J. Impedance Modeling and Analysis of Grid-Connected Voltage-Source Converters.
IEEE Trans. Power Electron. 2014, 29, 1254–1261. [CrossRef]

27. Rygg, A.; Monlinas, M.; Zhang, C.; Cai, X. A modified sequence domain impedance definition and its
equivalence to the dq-domain impedance definition for the stability analysis of ac power electronic systems.
IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1383–1396. [CrossRef]

28. Bakhshizadeh, M.K.; Wang, X.; Blaabjerg, F.; Hjerrild, J.; Kocewiak, L.; Bak, C.L.; Hesselbaek, B. Couplings
in Phase Domain Impedance Modeling of Grid-Connected Converters. IEEE Trans. Power Electron. 2016,
31, 6792–6796.

29. Timbus, A.; Liserre, M.; Teodoresce, R.; Rodriguez, P.; Blaabjerg, F. Evaluation of current controllers for
distributed power generation systems. IEEE Trans. Power Electron. 2009, 24, 654–664. [CrossRef]

30. Wang, Y.F.; Li, Y.W. Grid synchronization PLL based on cascaded delayed signal cancellation. IEEE Trans.
Power Electron. 2001, 26, 1987–1997. [CrossRef]

31. Yi, H.; Wang, X.; Blaabjerg, F.; Zhou, F. Impedance Analysis of SOGI-FLL-Based Grid Synchronization.
IEEE Trans. Power Electron. 2017, 32, 7409–7413. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/63.844502
http://dx.doi.org/10.1109/TPEL.2011.2159242
http://dx.doi.org/10.1109/TPEL.2005.861185
http://dx.doi.org/10.1109/TPEL.2014.2306432
http://dx.doi.org/10.1109/TIE.2007.904022
http://dx.doi.org/10.1109/TPEL.2013.2251904
http://dx.doi.org/10.1109/TPWRD.2014.2330518
http://dx.doi.org/10.1109/TPWRS.2014.2384596
http://dx.doi.org/10.3390/en10091355
http://dx.doi.org/10.1109/TPEL.2011.2136439
http://dx.doi.org/10.1109/TPEL.2015.2398192
http://dx.doi.org/10.1109/TPEL.2013.2262473
http://dx.doi.org/10.1109/JESTPE.2016.2588733
http://dx.doi.org/10.1109/TPEL.2009.2012527
http://dx.doi.org/10.1109/TPEL.2010.2099669
http://dx.doi.org/10.1109/TPEL.2017.2673866
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	VSC with Adaptive PR Current Controllers 
	Adaptive PR Controller 
	Grid Synchronization Methods 

	Impedance Modeling 
	Model of the Adaptive PR Controllers 
	Model of the PLL System 
	Model of the Current References 
	Model of the Grid Current Loop 
	Admittance Matrix 

	Impedance-Based Stability Analysis 
	Addmittances Analysis and Verifications 
	SRF-PLL is Used for Grid Synchronization 
	DSOGI-FLL is Used for Grid Synchronization 

	Stability Analysis 
	Stability Criterion 
	Stability Analysis with Different PLLs 
	Comparison with Different PLLs 


	Experimental Verifications 
	Conclusions 
	
	Modeling of the SRF-PLL 
	Modeling of the DSOGI-FLL 
	Modeling of the SOGIs 
	Modeling of the PNSC 
	Modeling of the FLL 
	Modeling of the Output Angle 


	References

