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Abstract: It is of great significance to accurately get the running state of power transformers and
timely detect the existence of potential transformer faults. This paper presents a prediction method
of transformer running state based on LSTM_DBN network. Firstly, based on the trend of gas
concentration in transformer oil, a long short-term memory (LSTM) model is established to predict
the future characteristic gas concentration. Then, the accuracy and influencing factors of the LSTM
model are analyzed with examples. The deep belief network (DBN) model is used to establish the
transformer operation using the information in the transformer fault case library. The accuracy of
state classification is higher than the support vector machine (SVM) and back-propagation neural
network (BPNN). Finally, combined with the actual transformer data collected from the State Grid
Corporation of China, the LSTM_DBN model is used to predict the transformer state. The results
show that the method has higher prediction accuracy and can analyze potential faults.
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1. Introduction

As one of the important pieces of equipment in the power system, power transformers can
directly influence the stability and safety of the entire power grid. If the transformer fails in operation,
it will cause power to turn off and also cause damage to the transformer itself and the power system,
which may result in greater damage [1]. So, it is necessary to take real-time condition monitoring into
consideration and make diagnoses for the transformer to predict future running states. The potential
failure of the transformer is discovered in time and the potential failure types are analyzed. Sending
early warning signals to maintainers and taking corresponding measures in a timely manner can
reduce the possibility of an accident.

At present, there is much research on transformer fault diagnosis, but there are relatively few
studies on the prediction of future running states of transformers and fault prediction. During the
operation of the transformer, its internal insulating oil and solid insulating material will be dissolved
in the insulating oil due to aging or external electric field and humidity. The content of various
components of the gas in the oil and the proportional relationship between the different components
are closely related to the running state of the transformer. Before the occurrence of electrical or thermal
faults, the concentration of various gases has a gradual and regular change with time. Therefore,
the dissolved gas analysis (DGA) is an important method to find the transformer defects and latent
faults. It is highly feasible and accurate to predict transformer running states and make future fault
classifications based on the trend of each historical gas concentration and the ratio between gas
concentrations [2–4]. Current methods include oil gas ratio analysis [5–7], SVM [8,9] and artificial
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neural network (ANN) [10,11]. Li et al. [12] proposes an incipient problem diagnosis method based
on the combined use of a multi-classification algorithm self-adaptive evolutionary extreme Learning
machine (SaE-ELM) and a simple arctangent transform (AT). This paper uses AT alter the data structure
of the experiment data to enhance the generalization capability for SaE-ELM. This article utilizes AT to
change the structure of experimental data to enhance SaE-ELM fitting and generalization capabilities.
Sherif S.M. Ghoneim [13] utilizes the thermodynamic theory to evaluate the fault severity based on
dissolved gas analysis, also it proposes fuzzy logic approach to enhance the network fault diagnosis
ability. Zhao et al. [14] proposes a transformer fault combination prediction model based on SVM.
The prediction results of multiple single prediction methods such as exponential model, gray model, etc.
are taken as the input of SVM for the second prediction to form a variable weight combination forecast.
Compared with single prediction, the accuracy of fault prediction is improved. Zhou et al. [15] uses
cloud theory to predict the expected value of gas changes in oil in the short term to obtain a series
of prediction results with stable tendency. The current method still has the following two problems.
(1) The current research is mostly aimed at fault diagnosis at the current moment, which lack analysis
of the running states in the future and fault warning analysis. (2) In the state assessment and fault
classification of transformers, the gas concentration ratio coding is mainly used as the input of the
model, but there are problems such as incomplete coding and too-absolute boundaries [16].

In recent years, with the continuous development of deep learning technologies, some deep
learning models have been applied to the analysis of time series data. The deep learning model is a
kind of deep neural network with multiple non-linear mapping levels. It can abstract the input signal
layer by layer and extract features to discover potential laws at a deeper level. In many deep learning
models, the recurrent neural network (RNN) can fully consider the correlation of time series and can
predict future data based on historical data. It is more adaptable to predict and analyze time series
data. The LSTM is used as an improved model of RNN to make up for the disappearance of gradients,
gradient explosions, and lack of long-term memory in the training process of the RNN model. It can
make full use of historical data. At present, LSTM has achieved extensive research and application in
such fields as speech recognition [17], video classification [18], and flow prediction [19,20]. In this paper,
the LSTM model is used to process the superiority of the time series, and the gas concentration in
the future is predicted based on the trend of the gas concentration in the transformer oil history.
The DBN is cumulatively accumulated by multiple restricted Boltzmann machines (RBM), and the data
is pre-trained using a comparative divergence (CD) algorithm. The error back-propagation is used
to adjust the parameters of the whole network. The DBN network can effectively support traditional
neural networks that are vulnerable to initial parameters, and that handle high-dimensional data at
a slower speed. Currently, DBN networks have been widely used in fault diagnosis [21], pattern
recognition [22], and image processing [23]. In this paper, the ratio of the future gas concentration
obtained from the LSTM prediction model is used as the DBN network input to classify the future
operating status of the transformer.

This paper presents a prediction method of transformer running state based on LSTM_DBN
model. Firstly, the ability of LSTM model to deal with time series is used to analyze the changing
trend of dissolved gas concentration data in transformer oil to obtain the future gas concentration and
calculate the gas concentration ratio. Using the powerful feature learning ability of DBN network,
the gas concentration ratio value is the input of the model, and the transformer operation state type is
output, and a plurality of hidden layer deep networks are constructed. The entire LSTM_DBN model
makes full use of the historical data of the transformer oil chromatogram and realizes the analysis
of the state of the transformer in the future and the analysis of the early fault warning. Through the
analysis of specific examples, we can see that the model proposed in this paper has good prediction
accuracy and can analyze potential faults.
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2. Prediction of Dissolved Gases Concentration in Transformer Oil Based on LSTM Model

2.1. Prediction of Dissolved Gases Concentration

Transformer oil chromatographic analysis technology has become one of the important methods
for monitoring the early latency faults of oil-immersed power transformers and analyzing fault nature
and locations after failure. Condition-based maintenance of oil-immersed transformers is fully based
on oil chromatographic data. Transformer oil chromatographic analysis test can quickly and effectively
find potential faults and defects without interruption of power. It has high recognition of overheating
faults, discharge faults, and dielectric breakdown failures.

Most transformers use oil-paper composite insulation. When the transformer is under normal
operation, the insulating oil and solid insulating material will gradually deteriorate and a small
amount of gas will be decomposed, mainly including H2, CH4, C2H2, C2H4, C2H6, CO, and CO2.
When the internal fault of the transformer occurs, the speed of these gases will be accelerated.
As the failure develops, the decomposed gas forms bubbles, causing bubbles to flow and diffuse
in oil. The composition and content of the gas are closely related to the type of fault and the severity
of the fault. Therefore, during the operation of the transformer, chromatographic analysis of the oil
is performed at regular intervals, so as to detect potential internal equipment failures as early as
possible, which can avoid equipment failure or greater losses. However, due to the complex operation
of the transformer oil chromatography test and the long sampling interval, it is of great significance
to predict the future development trend based on the historical trend of the gas concentration in the
transformer oil.

2.2. Principles of Prediction

The LSTM network is an improved model based on the RNN. While retaining the recursive nature
of RNNs, the problem of disappearance of gradients and gradient explosions in the RNN training
process is solved [24–27].
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Figure 1. (a) Basic recurrent neural network (RNN) network; (b) RNN expansion diagram. 
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Figure 1. (a) Basic recurrent neural network (RNN) network; (b) RNN expansion diagram.

A basic RNN network is shown in Figure 1a. It consists of an input layer, a hidden layer, and an
output layer. The RNN network timing diagram is shown in Figure 1b. x = [x(1), x(2), x(3) . . . , x(n−1), x(n)] is
the input vector and y = [y(1), y(2), . . . , y(n)] is the output vector. h is the state of the hidden layer. Wxh is
the weight matrix of the input layer to the hidden layer. Why is the weight matrix of the hidden layer to
the output layer, and Whh is the weight matrix of the hidden layer state as the input at the next moment.
The layer state h(t−1) is used as the weight matrix input at time t. So when the input at t is x(t), the value of
the hidden layer is h(t) and the output value is y(t).

h(t) = f (W(t)
xh ·x

(t) + W(t−1)
hh ·h(t−1)) (1)

y(t) = g(W(t)
xh ·h

(t)) (2)
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where f is the hidden layer activation function and g is the output layer activation function. Substituting
(2) into (1), we can get:

y(t) = g(W(t)
xh ·h

(t)) = g(W(t)
xh · f (W

(t)
xh ·x

(t) + W(t−1)
hh · f (W(t−1)

xh ·x(t−1) + W(t−2)
hh · f (W(t−2)

xh ·x(t−2)

+W(t−3)
hh · f (W(t−3)

xh ·x(t−3) + ...))))
(3)

From (3), it can be seen that the output value y(t) of the RNN network is affected not only by the
input x(t) at the current moment, but also by the previous input value x(t−1), x(t−2), x(t−3) . . . .

The RNN network has a memory function and can effectively deal with non-linear time series.
However, when the RNN processes a time sequence with a long delay, the problem of gradient
disappearance and gradient explosion will occur during the back-propagation through time (BPTT)
training process. As an improved model, LSTM adds a gating unit which allows the model to store
and transmit information for a longer period of time through the selective passage of information.

The gating unit of LSTM is shown in Figure 2. It consists of an input gate, a forget gate and an
output gate. The workflow of the LSTM gate unit is as follows:

(1) Input the sequence value x(t) at time t and the hidden layer state h(t−1) at time t − 1.
The discarded information is determined by the activation function. The output at this time is:

f(t) = σ(W f ·h(t−1) + W f ·x(t) + b f ) (4)

where f (t) is the result of the forget state, W f is the weight matrix of forget state, and bf is offset of
forget state. σ is the activation function. It is usually a tanh or sigmoid function.

(2) Enter the gate unit state c(t−1) at time t − 1 and determine the information to update. Update
the gate unit state c(t) at time t:

i(t) = σ(Wi·h(t−1) + Wi·x(t) + bi) (5)

c̃(t) = tanh(Wc·h(t−1) + Wc·x(t) + bc) (6)

c(t) = i(t) ◦ c̃(t) + f (t) ◦ c(t−1) (7)

where i(t) is the input gate state result. c̃(t) is the cell state input at t. W i is the input gate weight matrix.
Wc is the input cell state weight matrix. bi is the input gate bias, and bc is the input cell state bias.
◦means multiplication by elements.

(3) The output of the LSTM is determined by the output gate and unit status:

o(t) = σ(Wo·h(t−1) + Wo·x(t) + bo) (8)

h(t) = o(t) ◦ tanh(c(t)) (9)

where o(t) is the output gate state result. Wo is the output gate weight matrix and bo is the output
gate offset.
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3. Analysis of Transformer Running State Based on Deep Belief Network

3.1. Transformer Running Status Analysis

For the running state classification of the transformer, it is firstly divided into healthy state (H) and
potential failure (P). According to the IEC60599 standard, the types of potential transformer faults can
be classified into thermal fault of partial discharge (PD), low-energy discharge (LD), and high-energy
discharge (HD), low temperature (LT), thermal fault of medium temperature (MT), thermal fault
of high temperature (HT) [21]. Thus, the predicted running state of the transformer is divided into
7 (6 + 1) types.

Due to the normal aging of the transformer, the decomposed gas in the transformer oil is in
an unstable state and will accumulate over time and change dynamically. Even though different
transformers are in healthy operation, because of their different operating times, the concentration of
dissolved gases in the oil varies greatly among different transformers. Therefore, it is necessary to use
the ratio between the gas concentrations instead of the simple gas concentration as a reference vector
for the prediction of the final running state.

The currently used ratios include IEC ratios, Rogers ratios, Dornenburg ratios and Duval ratios.
This paper combines these four methods with other codeless ratio methods. The gas concentration
ratios used is shown in Table 1.

Table 1. Structure of LSTM gate unit.

IEC ratios CH4/H2, C2H2/C2H4, C2H4/C2H6
Rogers ratios CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4

Dornenburg ratios CH4/H2, C2H2/C2H4, C2H2/CH4, C2H6/C2H2
Duval ratios CH4/C, C2H2/C, C2H4/C, where C = CH4 + C2H2 + C2H4

gas concentration ratios
CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4, C2H2/CH4, C2H6/C2H2,

CH4/C1, C2H2/C1, C2H4/C1, H2/C2, CH4/C2, C2H2/C2, C2H4/C2, C2H6/C2
where C1 = CH4 + C2H2 + C2H4, where C2 = H2 + CH4 + C2H2 + C2H4 + C2H6

3.2. Deep Belief Network

RBM, as a component of DBN, includes a visible layer v and a hidden layer h. The structure of
RBM is shown in Figure 3. The visible layer consists of visible units vi and is used to input the training
data. The hidden layer is composed of hidden units hi and is used for feature detection. w represents
the weights between two layers. For the visible and hidden layers of RBM, the interlayer neurons are
fully connected and the inner layer neurons are not connected [28–31].
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∑
j=1

bjhj−
nv

∑
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∑
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where θ = (ωij, ai, bj) is the parameter of RBM. ωij is the connection weight between the visible layer
node vi and the hidden layer node hj. ai and bj are the offsets of vi and hj respectively. According to
this energy function, the joint probability density of (v, h) is:

p(v, h|θ) = e−E(v,h|θ)/Z(θ) (11)

Z(θ) = ∑
v

∑
h

e−E(v,h|θ) (12)

The probability that the jth hidden unit in the hidden layer and the ith visible unit in the visible
layer are activated are:

p(hj = 1|v, θ) = σ(bj +
nv

∑
i=1

viωji) (13)

p(vj = 1|h, θ) = σ(ai +
nh

∑
i=1

hjωji) (14)

where σ(·) is the activation function. Usually we can choose sigmoid function, tanh function or ReLU
function. The expressions are:

sigmoid(x) =
1

1 + e−x (15)

tanh(x) =
ex − e−x

ex + e−x (16)

ReLU(x) = max(0, x) (17)

Since the ReLU function can improve the convergence speed of the model and has the non-saturation
characteristics, this paper uses the ReLU function as the activation function.

When given a set of training samples S, ns is the number of training samples. Maximizing the
likelihood function can achieve the purpose of training RBM.

ln Lθ,S =
ns

∑
i=1

ln P(vi) (18)

The DBN network is essentially a deep neural network composed of multiple RBM networks and a
classified output layer. Its structure is shown in Figure 4.
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j i j ji
i=

p v = | ,θ = σ a + h ω
1

( 1 ) ( )  (14)

where ( )⋅σ  is the activation function. Usually we can choose sigmoid function, tanh function or 
ReLU function. The expressions are: 

−

1sigmoid( ) =
1+ e xx  (15)

−

−

−e etanh( ) =
e + e

x x

x xx  (16)

x xReLU( ) = max(0, )  (17)

Since the ReLU function can improve the convergence speed of the model and has the non-
saturation characteristics, this paper uses the ReLU function as the activation function. 

When given a set of training samples S, ns is the number of training samples. Maximizing the 
likelihood function can achieve the purpose of training RBM. 


sn

i
θ,S

i=
L = P v

1
ln ln ( )  (18)

The DBN network is essentially a deep neural network composed of multiple RBM networks 
and a classified output layer. Its structure is shown in Figure 4. 
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The DBN training process includes two stages: pre-training and fine-tuning. In the pre-training
phase, a contrast divergence (CD) algorithm is used to train each layer of RBM layer by layer.
The output of the first layer of RBM hidden layer is used as the input of the upper layer of RBM.
In the fine-tuning phase, the gradient descent method is used to propagate the error between the
actual output and the labeled numerical label from top to bottom and back to the bottom to achieve
optimization of the entire DBN model parameters.

4. Transformer State Prediction Process

With the continuous development of power equipment on-line monitoring technology, the monitoring
data are also increasing rapidly. Utilizing the existing historical state information, such as the type and
development law of the characteristic gas in the insulating oil, and analyzing the change of the running
state is of great significance to the state assessment and prediction.

The flowchart of the transformer running state prediction method based on the LSTM_DBN
model is shown in Figure 5. The specific steps are as follows:

(1) Collect the transformer oil chromatographic data and select the characteristic parameters H2,
CH4, C2H2, C2H4 and C2H6 as input for the model;

(2) Train the LSTM model. According to the transformer oil chromatography historical data, each
characteristic gas concentration is taken as the input, and the corresponding gas concentration is
used as the output to train LSTM model to obtain future gas concentration values;

(3) Train the DBN model. According to the samples of the transformer fault case library, the gas
concentration ratios are taken as the input of the DBN network, and 7 kinds of transformer
running states are used as the output to train DBN model;

(4) Use the trained LSTM_DBN network to test the test set samples. Input the five characteristic gas
concentration values to the LSTM model and predict future gas changes. Then calculate the gas
concentration ratio and use the ratio results as input to the DBN network to obtain the future
running states of the transformer;

(5) If there is fault information in the prediction result, an early warning signal needs to be issued in
time and the fault type can be predicted.
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5. Case Analysis

5.1. Gas Concentration Prediction

This paper takes the oil chromatographic monitoring data collected by a 220 kV transformer oil
chromatography online monitoring device as an example. The sampling interval is 1 day. For the methane
gas concentration sequence, 800 monitoring data are selected as training samples and 100 monitoring data
are used as test samples. The prediction results are shown in Figure 6.

In order to evaluate the accuracy and validity of the prediction model proposed in this paper,
the following evaluation criteria are used for analysis.

avg_err =
1
N

N

∑
i=1

∣∣∣∣ x̃i − xi
xi

∣∣∣∣ × 100% (19)

max_err = max
∣∣∣∣ x̃i − xi

xi

∣∣∣∣ (20)

where N is the number of set, xi is the real value and x̃i is the predicted value.
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As shown in Figure 6, the prediction model proposed in this paper has better fitting ability and has
a good degree of fitting to the changing trend of methane gas concentration. The relative percentage
error between the true and predicted values is shown in Figure 7, where the average relative percentage
error is 0.26% and the maximum relative percentage error is 1.21%.

The LSTM model is used to predict the other gas concentrations. The predicted results are shown
in Table 2, which shows that the average error of the LSTM method is lower than general regression
neural network (GRNN), DBN, and SVM. Therefore, it can be seen that the use of LSTM to predict
transformer concentration has high stability and reliability.

Table 2. Gas Concentration Prediction Results.

Type of Gas
Average Error (%)

LSTM GRNN DBN SVM

H2 1.89 5.01 2.48 6.77
CH4 0.26 3.93 1.78 4.01
C2H2 2.45 4.67 1.93 6.32
C2H4 1.45 2.98 2.05 5.94
C2H6 2.1 4.24 1.64 8.46

5.2. Gas Concentration Prediction

The transformer oil chromatographic gas concentration ratios are used as the input to the DBN
network and the seven transformer running states are output. The case database used in this paper
contains a total of 3870 datasets, including 838 normal cases and 3032 failure cases (521 LT cases,
376 MT cases, 587 HT cases, 519 PD cases, 489 LD cases and 540 HD cases). 90% of the sample data are
randomly selected from the database to train the DBN network, leaving 10% of the sample data as the
test sample to test the accuracy of the classification.

The results of the classification of DBN, SVM, and BPNN at a test are shown in Figure 8. This paper
evaluates the classification results of transformer running states by drawing confusion matrix. Light
green squares on the diagonal indicate the number of samples that match the predicted category
with the actual category, and the blue squares indicate the number of falsely identified samples.
The last row of gray squares is the precision (the number of correctly predicted samples/number of
predicted samples). The last column of orange squares is the recall (the number of correctly predicted
samples/actual number of samples). The last purple square is the accuracy (all correctly predicted
samples/all samples).
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Figure 8. Comparison of classification results (a) DBN results; (b) SVM results; (c) BPNN results.

From Figure 8, it can be seen that compared with the SVM model and the BPNN model, the DBN
model has the highest classification accuracy, which respectively increases the accuracy by 9.6%
and 16.2%. And the precision and recall rate of the DBN model are both high, exceeding 85%.
The comparison shows that the DBN model has a good effect for the classification of transformer
running states. Since a single experiment may be accidental, this paper repeats 10 sets of tests on
the DBN model, the SVM model, and the BPNN model to obtain the average accuracy respectively.
The average accuracy of the three models is 89.4%, 80.1%, and 71.9%. Therefore, it can be seen that the
DBN model has strong classification stability while maintaining a high accuracy.

5.3. Running State Prediction

The oil chromatogram data from January to October in 2015 of a main transformer in a substation
are selected for analysis. The sampling interval for data points is 12 h. The original data are shown in
Figure 9.
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First, using the IEC three-ratio method integrated in the original system for analysis, there is
no abnormal warning before September. Until September, the measured ratio code is 021, which is
consistent with thermal fault of medium temperature. An abnormal warning should be issued at this
time. Secondly, using the integrated threshold method in the original system, H2 content in excess of
150 µL/L is detected in October and an early warning signal is required.

Using the LSTM_DBN model proposed in this paper, the transformer running state is predicted
and evaluated. Starting from the 5th month, use the LSTM model to predict the transformer gas
concentration value in the next month, then calculate the gas concentration ratios and input them into
the DBN network to get the transformer’s future running state. The transformer’s running state from
May to October is shown in Table 3.

Table 3. Transformer running state prediction results.

Month H LT MT HT PD LD HD Fault Case Rate

May 57 1 3 0 1 0 0 8.1%
June 53 0 5 1 1 0 0 11.7%
July 49 0 10 2 0 0 1 20.9%

August 30 2 28 1 0 1 0 51.6%
September 21 4 34 1 0 0 0 65%

October 16 3 37 4 0 2 0 74.2%

As it can be seen from Table 3, the percentage of fault cases that are obtained through analysis
using the LSTM_DBN model is gradually increasing, of which the percentage in August has exceeded
50% and the highest percentage of fault cases in October is 74.2%. It can be seen that there is a potential
operational failure. Table 3 shows that, among all the fault type analysis results, the number of fault
cases with MT is the largest, so that there is a potential fault type with thermal fault of medium
temperature. It needs to send early warning signals. Oil chromatography monitoring device can be
interfered with the external environment and cause errors in data acquisition. When the fault case
accounts for more than 50%, it should immediately attract the attention of the staff. For this case,
equipment early warning should be issued in August: “Closely concerned with the development trend
of chromatographic data and timely check the transformer status”.

The actual situation for the operation and maintenance personnel’s detection records shows that
the oil temperature rises abnormally since June and the value of the core grounding current increases
gradually. The value of H2 in the oil chromatographic device exceeds 150 µL/L from October to
December. During the outage maintenance in 2016, there are traces of burn at the end of the winding
and the B phase winding is distorted. The prediction results of the transformer running state through
the LSTM_DBN model are more consistent with the actual situation. This example shows that the
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transformer running state prediction method based on LSTM_DBN model can detect the abnormal
upward trend of oil chromatographic data in time and provide early warning to the abnormal state of
the transformer.

6. Conclusions

(1) The LSTM model has excellent ability to process time series and solves problems such as
gradient disappearance, gradient explosion, and lack of long-term memory in the training process.
It can fully utilize historical data. The DBN model can extract the characteristic information hidden in
fault case data layer by layer and has high classification ability.

(2) The transformer running state prediction method based on the LSTM_DBN model presented
in this paper has high accuracy and can send warning information to potential transformer faults in
time. Compared with the threshold method according to the standard and the state prediction method
in the research literature, this paper can make full use of the historical and current state data.

(3) We will focus on the improvement of the LSTM model and the DBN model, as well as
parameter optimization, to further improve the transformer state prediction accuracy in the next step.
Due to the small number of substations with complete online monitoring equipment and rich state
data, the method proposed in this paper needs further verification.
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Nomenclature

Variables
x the input vector
y the output vector
h the state of the hidden layer
Wxh the weight matrix of the input layer to the hidden layer of RNN network
Why the weight matrix of the hidden layer to the output layer of RNN network
Whh the weight matrix of the hidden layer state as the input at the next moment of RNN network
f (t) the result of the forget state
W f the weight matrix of forget state
bf The offset of forget state
i(t) the input gate state result
c̃(t) the cell state input at time t
W i the input gate weight matrix
Wc the input cell state weight matrix
bi the input gate bias
bc the input cell state bias
o(t) the output gate state result
Wo the output gate weight matrix
bo the output gate offset
v a visible layer
w the weights between visible layers and hidden layers
θ the parameter of RBM
ωij the connection weight between the visible layer node vi and the hidden layer node hj
ai the offsets of vi
bj the offsets of and hj
Symbol
σ the activation function
◦ multiplication by elements
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