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Abstract: Recently, increased use of non-linear loads has intensified the harmonic distortion and
voltage unbalance in distribution systems. Inverter Based Distributed Generators (IBDGs) can
be employed as distributed compensators to improve the power quality, as well as to supply
distribution systems. In this paper, an enhanced hierarchical control scheme for the compensation
of voltage disturbance in an AC Micro Grid (MG) that includes of two control levels is proposed.
The secondary control level is performed by a centralized controller. Data of voltage harmonics
and voltage unbalance at the MG Sensitive Load Bus (SLB) is sent to the centralized controller by a
measurement unit. A general case with a combined voltage harmonic and unbalance distortion is
considered. The compensation coefficients for IBDG units are computed by the centralized controller,
and reference commands are sent to the local controllers of the IBDG units that act as a primary
level of control. In the secondary control level, harmonic analysis is performed for the MG in order
to provide a guide for properly assigning the harmonics and unbalance compensation priorities
to IBDGs at different locations in the distribution system. Some buses have more participation in
exciting the MG resonance modes; therefore, larger harmonic compensation factors are considered for
the IBDGs that are near to these buses. For other IBDGs, the voltage unbalance compensation factor
is selected bigger. The control system of the IBDGs mainly includes a current controller, a virtual
damping resistor loop, and a load compensation block. Effectiveness of the proposed control scheme
is demonstrated through simulation studies.

Keywords: power quality; distributed generation sources; interface inverter

1. Introduction

The proliferation of nonlinear loads and power electronic equipment has caused high penetration
of harmonic pollution and voltage unbalance in electrical systems [1]. This might result in malfunction
or overheating in devices and motors. Identifying and damping these distortions in the network
help to improve voltage and power quality. On the other hand, Distributed Generators (DGs) units
are increasingly being implemented in the network; they usually connect via an interface inverter.
The inverter in the output stage of the DG is able to control output power, voltage, or current.
However, recently some control approaches are proposed to control the inverter to compensate
for power quality problems [2–7]. Most of these methods use the extra capacity of the inverters.
For example in [2], each DG unit of MG is controlled as a negative sequence conductance to compensate
for voltage unbalance. In this approach, which is implemented in the synchronous dq reference frame,
compensation is done by generating a reference for negative-sequence conductance based on the
negative-sequence reactive power. Then, this conductance is applied to produce the compensation
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reference current. An autonomous voltage unbalance compensation scheme which works based on
the local measurements is proposed in [3] for DGs of an islanded MG. By applying this method,
DGs voltages become balanced despite the presence of unbalanced loads. However, under severely
unbalanced conditions, a large amount of the interface converter capacity is used for compensation, and
it may interfere with the active and reactive power supply by the DG. In [4–7], the inverters emulate
a resistance at harmonic frequencies to compensate for voltage harmonic distortion. This approach
is applicable to both grid-connected and islanded operating MG modes. The idea of resistance
emulation is originally used for active power filters. The methods discussed in [2–7] are designed for
compensation of voltage unbalance or harmonics at each DG terminal, while the power quality at the
SLB is the main concern due to the sensitive loads [8]. In addition, if the DGs try to compensate for
local voltage harmonics, because of the “whack-a-mole” phenomenon, the harmonic distortion may be
amplified in some of the buses of the electrical system [9]. Thus, good power quality can be guaranteed
for sensitive loads connected to SLB by compensation of SLB voltage harmonics and unbalance.

The concept of MG hierarchical control was applied for cooperative compensation of voltage
unbalance [10,11] and harmonics [12,13] at the network SLB. In this regard, a two-level hierarchical
control approach for IBDGs in MG applications was proposed in [14]. In this strategy, the control
structure comprises a virtual impedance loop that is set by the central controller to mitigate the voltage
distortion at SLB. However, the unbalanced voltage drop across the virtual impedance is not considered,
which leads to limited unbalance compensation performance of the output voltage. On the other hand,
in [15], an enhanced control structure was proposed for a MG in which the DGs are properly controlled
to compensate for voltage unbalance and harmonics to achieve a high voltage quality at the SLB. In most
of the previous compensation methods, the IBDGs contribute to compensation with the same priorities,
while the location of DGs has a significant effect on the compensation of voltage distortion. In a practical
system, DGs can be connected anywhere in the distribution system. With compensation priorities
defined, DGs at different locations can be assigned with associate priorities for harmonic compensation.
To achieve improved harmonic compensation results in such a practical scenario, finding an effective
way to determine harmonic compensation priorities of each DG and at each harmonic is an important
topic that can help to improve network power quality.

In this paper, a hierarchical control strategy is applied to compensate for the voltage harmonics
and unbalance at SLB in a MG. Indeed, a selective harmonic compensation scheme is developed
to assign compensation priorities on DGs operating at different distribution system nodes and at
different harmonic frequencies for improved compensation performance. This is implemented using
assignment compensation priority for DGs operating at different nodes and at different harmonic
frequencies. The proposed hierarchical control scheme consists of two levels. The primary control
comprises local controllers in order to provide proper sharing of fundamental (main component power)
and non-fundamental powers (distortion power) among the IBDGs. In the secondary control, the first
resonance analysis is carried out for the MG using the modal impedance analysis, and harmonics
compensation priorities at different nodes are identified. Then, a selective compensation scheme is
used to assign the calculated harmonic and unbalance compensation priorities on IBDGs at different
positions for improved compensation performance. Then, an effective virtual impedance method [16]
is used in IBDGs control systems for the damping of distortions.

The rest of the paper is organized as follows. In Section 2, the network modal impedance
analysis is discussed. In Section 3, compensation of voltage distortion by the proposed control system
is investigated. In Section 4, the MG admittance model is obtained. The compensation priority
coefficients are identified in Section 5. A simulation of case study is carried out in Section 6, and finally,
conclusions are presented in Section 7.
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2. Concept of Resonance Modes

The frequency scan method was implemented in [17] to detect the system resonances. But this
method cannot identify the component and bus that excites the resonance. To solve this problem,
the modal impedance analysis was used to identify system resonances [18]. In this method, first, the
system admittance matrix is acquired. Then, the modal impedance matrix [Zm], is calculated by using
Equations (1)–(3). According to these equations, if input current vector [I] is always set to 1 p.u. (per
unit), the high voltage vector [V] values are associated with the singularity of the admittance matrix
[Y]. This singularity of [Y] matrix can be found when one of its eigenvalues is close to zero.

[V] = [Y]−1[I] (1)

[V] = [L][Λ]−1[T][I] (2)

[Zm] = [Λ]−1 (3)

where [T], [L] and [Λ] are matrices that were constructed from right eigenvectors, left eigenvectors,
and the diagonal matrix composed of eigenvalues of the MG admittance matrix, respectively. Clearly, if
the eigenvalues of [Λ] matrix tend towards smaller amounts, the modal impedances of the [Zm] matrix
move towards the big values and cause the propagation of parallel resonances. The critical modal
impedance (highest modal impedance) is much higher than other modal impedances [6]. In the
presence of the critical mode (for example mode number 1), the matrix [Zm] can be estimated as
follows, and the Participation Factor (PF) matrix may also be obtained afterwards: Zm,1 · · · 0

...
. . .

...
0 · · · Zm,n

 ≈

 Zm,1 · · · 0
...

. . .
...

0 · · · 0

 = Zm,1

 1 · · · 0
...

. . .
...

0 · · · 0

 (4)

By replacing the approximation of relation (4) in the Equation (2) and simplification:

[V] = [L]Zm,1

 1 · · · 0
...

. . .
...

0 · · · 0

[T][I] = Zm,1[L]

 1 · · · 0
...

. . .
...

0 · · · 0

[T][I] (5)

[V] = Zm,1

PF︷ ︸︸ ︷ L11T11 · · · L11T1n
...

. . .
...

Ln1T11 · · · Ln1T1n

[I] = Zm,1[PF][I] (6)

The diagonal elements of the PF-matrix in Equation (6) characterize the excitability of the critical mode
1 at different buses. They are called participation factors of the buses to critical mode 1. The definition is
PFb1 = Lb1T1b, where b is the bus number, and here, 1 is the number of the first mode.

In general and without approximation, the PF-matrix represents the impact of each bus on the
critical modes. In this matrix, the number of rows matches the node number; the number of columns
represents the number of impedance modes.

3. MG Hierarchical Control Scheme

Figure 1 presents the proposed hierarchical plan for compensating for harmonics and voltage
unbalance at SLB in a MG. The MG includes many current control IBDGs which are connected to the
SLB by distribution lines. The inverters have LCL output filter, in which L f , Lg and C f are inverter side
inductance, network side inductance, and capacitor of the filter, respectively. The hierarchical control
plan consists of two levels: primary and secondary. As shown in the figure, at first, the SLB voltage
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data are extracted by the measurement block and sent to the secondary control. This data includes the
fundamental negative sequence component and positive components of selected harmonics.
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Figure 1. Control structure and power section of the hierarchical control plan.

Then, the secondary control should collect the required data from the measurement block and
produce an appropriate reference control signal for IBDGs. The secondary controller can be far from
the DGs and SLB. Thus, as shown in Figure 1, SLB voltage and frequency information are sent to this
controller by means of Low Bandwidth Communication (LBC). In order to ensure that LBC is sufficient,
the transmitted data should consist of approximately DC signals. Hence, the SLB voltage harmonic
components are in dq (synchronous) reference frame. In local controllers, these signals are returned to
the αβ (stationary) reference frame for compensation. Details of the primary and secondary control
plans is presented in the following section.

3.1. Secondary Control Level

As shown in Figure 1, for extraction of the SLB voltage negative sequence component and
main harmonics, the measured SLB voltage (Vabc) is transformed to dq reference frames at −ω and
other harmonic orders. ω is the system angular frequency estimated by a Phase Locked Loop (PLL).
Afterwards, the second order Low Pass Filters (LPF) with cut-off frequencies of 2 Hz are used to
extract Vdq,−1 and Vdq,i, which are the dq components at negative sequence and harmonic frequencies.
The block diagram of the central secondary controller is shown in Figure 2.

The generated signals in the measurement block should be modified according to the
compensation priority indexes to improve compensation results. For this reason, the extracted
harmonic Vdq,i is multiplied by the participation factor index PFi,j and weighting factor Zi,j, in which i
represents bus number, and j denotes harmonic order [6]. The negative sequence component Vdq,−1
is also multiplied by the voltage unbalance factor (UFi) to determine the IBDGs contribution to the
voltage unbalance compensation. The amount of UFi should be considered more in the buses that
participate less in exciting critical modes, in order that these buses have a greater share in the unbalance
compensation and vice versa. Hence, the compensation capacities of buses with a high participation
factor in the critical modes are used more for the damping of corresponding harmonics.
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Figure 2. Schematic control of the secondary level.

3.2. Primary Control Level

The detail of the primary control level of an IBDG is presented in Figure 3. The received signals
from the secondary control level, after returning to αβ stationary frame, are sent to the DG load
compensation block. This block configures the compensation share of each IBDG according to its
extra capacity.
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As shown in this block Sn, Sf, Sd, S and Sr are nominal power of IBDG, positive sequence
output power, distortion output power, total output power, and free capacity of IBDG, respectively.
According to standards [19], the produced distortion power of each inverter can be calculated as follows:

Sd = S f

√
THD2

I + THD2
V (7)
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where THDI and THDV are current and voltage total harmonic distortions. Afterwards, Sr can be
calculated as shown in the figure, according to nominal power Sn and total output power S. The output
signal of the dead zone block of this figure can be presented as follows [13]:

Vαβ,j =


Vαβ,j

Sr︷ ︸︸ ︷
(Sn −

√
S2

d + S2
f︸ ︷︷ ︸

S

) Sr > 0

0 Sr ≤ 0

(8)

where j represents harmonic order. According to the Equation (8), if Sr > 0, with increasing in
the total output power S, Sr reduces which represents reduction of IBDG load. In other words,
there is inherited negative feedback in this equation which divides the compensation load between
the IBDGs appropriately. Also, if Sr is less than zero, the dead zone block prevents any attempt
of the compensation to avoid a DGs overload. The produced negative sequence component and
voltage harmonic signals are sent to the virtual damping resistor block to multiply signals by 1/Rv,i.
Afterwards, the compensation reference of each harmonic is generated separately, and then all of the
compensation references are added together. Finally, total compensation reference I∗c,αβ is inserted as a
current reference in the control system, as shown in Figure 1.

4. The MG Admittance Model

Figure 4a represents the single line diagram of a three-phase balanced MG. The implemented
inverters are current control type and are used for supplying the pre-defined powers to the MG
in connected operation mode. Also, Zli and Zgrid are the impedance of lines and grid impedance,
respectively. Furthermore, many linear and nonlinear loads are also considered in this bus. The details
of IBGD control system are shown in Figure 1. The inverter current control loop includes a Proportional
Resonant (PR) controller that is designed in the stationary reference frame [20]. A PLL is used to
synchronize the current control inverter with the MG.
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The Pulse Width Modulation (PWM) converter is linearized around its operation point, and the
relation between the inverter output current, reference current, and output voltage can be obtained
as follows:

Io(S) = Gcc(S)I∗(S)− Yoc(S)Vo(S) (9)

Equation (9) represents the Norton equivalent circuit of the current control inverter in which
Gcc(S), Yoc(S) and I∗(s) are a closed loop transfer current function, output admittance, and reference
current of the inverter, respectively. By using Figure 4b and employing Masson’s formula, Gcc(S) can
be computed as:

Gcc(S) =
Io(S)
I∗(S)

∣∣∣∣
Vo(S)=0

(10)

Gcc(S) =
GI(S)Gpwm(S)

C f S(r f + SL f )(rg + SLg) + (r f + SL f ) + (rg + SLg) + GI(S)Gpwm(S)
(11)

Also, Yoc(S) can be calculated as:

Yoc(S) =
Io(S)
Vo(S)

∣∣∣∣
I∗(S)=0

(12)

Yoc(S) =
C f S(r f + SL f ) + 1

C f S(r f + SL f )(rg + SLg) + (r f + SL f ) + (rg + SLg) + GI(S)Gpwm(S)
(13)

where r f and rg are the internal resistances of the filter inductances. Also, GI(S) is the transfer function
of the PR controller and Gpwm(s) is the transfer function of the PWM converter, that are written as:

GI(S) = Kpi I + ∑
k=1,5,...,19

KriS

S2 + (kω0)
2 (14)

Gpwm(S) =
1

1 + 1.5TsS
(15)

where Kri, Kpi, k, ω0, and Ts are resonance coefficient, proportional coefficient, harmonic order,
fundamental frequency, and the converter switching period, respectively. In the following, the
admittance matrix is constructed for the MG. In order to more precisely identify system resonances,
the output impedance of IBDGs is considered in the MG admittance matrix.

[Y] =

 Yoc,1 + Yl,1 0 −Yl,1
0 Yoc,2 + Yl,2 −Yl,2

−Yl,1 −Yl,2 Yoc,3 + Yload,pcc + . . .

 (16)

where Yl,i and Yload,pcc are line and load admittances.

5. Identification of the Priority Factors

The resonance mode concepts presented in Section 2 are illustrated with a simple system shown
in Figure 4a. There are three buses in the system in which harmonic resonance could be excited or
observed. By considering the parameters of the control system and power circuit listed in Table 3, a
modal impedance analysis is carried out for the MG to identify the participation factors of the buses.
At first, in order to investigate the effect of inverter output impedance in the network resonances, a MG
modal impedance analysis is carried out without considering the output impedance of the inverters.
This is accomplished by replacing Equation (16) in Equations (1)–(6) and using the frequency scan
of the obtained relationship. Regardless of the inverter output impedance, the MG behavior is the
same as that of the inductance network; therefore, no resonance is observed in the system (Figure 5).
The per-unit frequency is based on the fundamental frequency, and is equal to harmonic number.
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Figure 5. Magnitude of network impedance modes.

Considering the effect of inverter output impedance, due to the presence of capacitors in the
inverter output filter, as shown in Figure 6, the magnitude of modal impedances have critical values
in the low order frequencies. According to Table 1 and Figure 6, the maximum points in low order
frequencies are related to the third and second modes which occur at harmonic orders 11.2 and
13.7, respectively. Bus 2 and 1 have the highest participation factor in creating these resonance
modes. Therefore, the 11th harmonic at bus 2 and the 13th harmonic at bus 1 need to do more
attenuation, and the compensation share of these two buses should be more than those of other IBDGs
for these harmonics.
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Figure 6. Impedance modes by considering the effect of IBDGs output impedance.

Table 1. Critical impedances and participation factors.

Harmonic Order Critical Impedance (Zi,j)
Participation Factor (PFi,j) of

Bus 1 Bus 2 Bus 3

11.21 478.0 0.25 0.59 0.14
13.74 21.13 0.57 0.37 0.05
21.32 15.13 0.16 0.02 0.80

The MG resonances can be excited by the main grid. The resonance frequencies are also affected
by the number of parallel inverters. Further considering that the main grid voltage often contains some
low order steady state harmonics, significant steady state harmonic currents can be produced due to
the effects of resonances. For example, when five parallel inverters with the same specifications are
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included in the MG, one of the resonance frequencies is around 350 Hz, which may excite the seventh
steady state resonance in a 50 Hz system (Figure 7 and Table 2).
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Table 2. MG participation factors with five inverters.

Harmonic Order Critical Impedance (Zi,j)
Participation Factor (PFi,j) of

Bus 1 Bus 2 Bus 3

7.18 87.8 0.29 0.51 0.62
9.07 206.82 0.45 0.49 0.25
17.13 658.85 0.33 0.04 0.86

Due to the impacts of the aforementioned resonances, it can be concluded that neglecting the
inverters output impedance in the modal impedance analysis, creates inaccuracy in the identification
of bus participation factors, and the lines current quality can be severely distorted.

6. Simulation Results

To test the effectiveness of the proposed approach, a test MG was built based on a system defined
by NTUA, with slight changes used to test proposed control scheme. The electrical system comprises
a MG and utility grid. Complete details of the test system and its power system parameters can be
found in [21]. The MG single-line diagram is shown in Figure 8. All inverters operated in PQ control
mode to supply a given active and reactive power set-point.

The control system parameters of DGs and loads are presented in Table 3. All the inverters have
the similar parameters. A single-phase load is connected between phase A and phase B at PCC to
create voltage unbalance. Also, in order to excite the MG resonances by the main grid, it is assumed
that the grid voltage contains 7% seventh and 5% eleventh steady-state harmonics. The simulation is
carried out in three steps:

• Step 1 (0 ≤ t < 0.4 s): DGs operate with only a fundamental controller, and harmonic
compensation is not used.

• Step 2 (0.4 s ≤ t < 0.9 s): harmonic compensation is added.
• Step 3 (0.9 s ≤ t < 1.5 s): non-uniform harmonic compensation is activated.
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Table 3. Parameters of load and control system.

Symbol Parameter Value Unit

Vdc Voltage of DC link 650 V
Zlump load Balanced load 5 + j6 Ω

ZUL Unbalanced load 20 + j6.5 Ω
Lg, L f Filter inductances 0.2, 1.8 mH

Fs Switching frequency 10 kHZ
Rv,−1, Rv,5, Rv,7, Rv,11, Rv,13 Virtual resistances 9 Ω

C f Filter capacitor 25 µF
kpi, kri Controller coefficients 1, 100 -

UF1, UF2, UF3 Unbalance factors 0.5, 0.5, 1 -Energies 2018, 11, x FOR PEER REVIEW  10 of 13 
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Figure 8. Single line of MG architecture, comprising DGs and loads.

6.1. Simulation Step 1

In this step, no compensation is carried out, and linear and unbalanced load are connected to
the PCC. The simulation starts with zero initial values, and after the initial transient state, it goes to a
stable state. As seen in Figure 9, before activating harmonic compensation, PCC voltage is distorted
noticeably due to harmonics in the utility grid voltage and unbalanced load. This fact can be seen in
Figure 9b–d as very high 7th and 11th harmonics, total harmonic distortions, and voltage unbalance
(H7 and H11, THD and voltage negative sequence respectively) of PCC bus. The magnitude of voltage
THD and the voltage negative sequence at bus 3 in an uncompensated state are almost 19% and 12 V.
The output currents of inverters can be observed in Figure 9e–g. Also, the network voltages are shown
in Figure 9a,h.
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Figure 9. (a) The peak magnitude of phase voltage. (b) The magnitude of 7th and 11th voltage
harmonics. (c) Voltage THD at PCC. (d) Negative sequence voltage at PCC. (e) The output currents of
inverter 1. (f) The output currents of inverter 2. (g) The output currents of inverter 3. (h) Instantaneous
voltages at PCC.

6.2. Simulation Step 2

At this stage, uniform compensation starts acting from t = 0.4 s. Regardless of the inverter
output impedance, the DGs participate equally in harmonic and voltage unbalance compensation.
The participation factors of IBDGs are the considered unit in the compensation, and all the DGs
participate in the harmonics compensation with the same priority. This leads to a slight reduction
of PCC voltage THD and voltage unbalance, according to the figures. Improvement of PCC voltage
quality can also be observed in these figures. The amount of voltage THD and the voltage negative
sequence at PCC bus in this state are reduced to 9% and 10 V, according to the figures.

6.3. Simulation Step 3

Finally, non-uniform compensation is activated at t = 0.9 s. In this case, the influence of IBDG
output impedance and the coefficients of participation matrix are considered in the compensation.
The normalized values of the system PF-matrix are used to assign DGs participation factors. This results
in a significant reduction of PCC voltage THD and voltage unbalance compared to the previous section.
Non-uniform compensation provides approximately sinusoidal voltage at PCC. In this method, voltage
THD is reduced to 4%. The instantaneous waveforms of PCC voltage and inverter 1 output currents
are shown in Figure 10 (with magnification).

According to these results, it is evident that, in the non-uniform compensation method, results
are improved comparing to the traditional harmonic compensation method.
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7. Conclusions

In this paper, a hierarchical compensation method for improving the voltage quality of SLB in a
MG is presented. The compensation method is non-uniform, and compensation priorities for different
DGs location and harmonic frequencies are identified for improved compensation performance
compared to traditional compensation methods. The priority factors for compensation are identified
by modal impedance analyses of the MG. The control method consists of two primary and secondary
control levels. In the secondary control level, the values of compensation signals for the fundamental
negative sequence component and positive components of selected harmonics are determined by
the central secondary controller, according to the obtained priority coefficients, and then sent to the
DGs local controllers. Assigning such compensation priorities to different IBDGs in the MG improves
compensation performance, and harmonic distortion and voltage unbalance are divided between DGs
appropriately. In the primary level, the load compensation factor of each DG is identified considering
its extra capacity. The system is applicable to the tracking of reference currents and compensation
for voltage harmonics and voltage unbalance at SLB. Simulation results prove the efficiency of the
proposed method in different situations.
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