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Abstract: Energy management strategies based on instantaneous optimization have been widely
used in hybrid/plug-in hybrid electric vehicles (HEV/PHEV) in order to improve fuel economy
while guaranteeing vehicle performance. In this study, an adaptive-equivalent consumption
minimum strategy (A-ECMS) based on target driving cycle (TDC) generation was proposed for
an extended-range electric bus (E-REB) operating on fixed routes. Firstly, a Hamilton function and
a co-state equation for E-REB were determined according to the Pontryagin Minimum Principle
(PMP). Then a series of TDCs were generated using Markov chain, and the optimal solutions under
different initial state of charges (SOCs) were obtained using the PMP algorithm, forming the optimal
initial co-state map. Thirdly, an adaptive co-state function consisting of fixed and dynamic terms
was designed. The co-state map was interpolated using the initial SOC data and the vehicle driving
data obtained by an Intelligent Transport System, and thereby the initial co-state values were solved
and used as the fixed term. A segmented SOC reference curve was put forward according to the
optimal SOC changing curves under different initial SOCs solved by using PMP. The dynamic term
was determined using a PI controlling method and by real-time adjusting the co-states to follow the
reference curve. Finally with the generated TDCs, the control effect of A-ECMS was compared with
PMP and Constant-ECMS, which was showed A-ECMS provided the final SOC closer to the pre-set
value and fully used the power of the batteries. The oil consumption solutions were close to the PMP
optimized results and thereby the oil depletion was reduced.

Keywords: extended-range electric bus; adaptive-equivalent consumption minimum strategy;
Markov chain; target driving cycles; SOC reference curve; energy management system

1. Introduction

1.1. Literature Review

Environmental deterioration and the increasing shortage of petroleum resources have greatly
increased the demand for energy-saving and environmental protective vehicles. The new energy
vehicle technology is regarded as an excellent way to simultaneously address the energy crisis and
insecurity and reduce environmental impacts [1]. As a type of plug-in hybrid electric vehicle (PHEV),
extended-range electric buses (E-REBs) can coordinate the energy allocation between batteries and
the auxiliary power unit, and prolong the mileage of pure electric vehicles while improving the
fuel economy. Thus, extended-range electric buses have gained growing attention from vehicle
manufacturers and customers [2,3].

Energy management is still a technical puzzle faced by hybrid electric vehicles because it not
only aims at the minimum energy consumption, but also needs to take into consideration the vehicle

Energies 2018, 11, 1805; doi:10.3390/en11071805 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/7/1805?type=check_update&version=1
http://dx.doi.org/10.3390/en11071805
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1805 2 of 26

dynamic performance, emission performance and the characteristic of each component. Due to the
presence of multiple power sources, the reasonability of energy allocation directly affects the dynamic
performance and fuel economy of vehicles [4]. However, the conventional energy management
strategy only considers a single performance index and cannot achieve an overall optimization.
Thus deeper research shows the energy management has gradually transited from the initially single
goals of fuel depletion or emission to the currently multi-goal real-time intelligent integrated control.
So far, the control strategies can be divided into rule-based and optimization-based energy allocation
strategies [5].

In the first category, the vehicle working states are firstly divided according to pre-set control
rules and then controlled separately. The rules are set to make the engine, generator and batteries work
within the pre-set high-efficiency zones, but are only slightly dependent on specific working conditions
and thereby operate in real-time. The two main directions of this category are the control strategies
based on logic thresholds or fuzzy rules [6]. Firstly, the logic thresholds are usually the state of charge
(SOC) of battery power or the speed signals of vehicles, which allow for switching between different
operation modes [7]. Its disadvantage is that the dynamic performance of the vehicle will be greatly
reduced when the work mode enters the charging-sustaining phase. The control strategies based on
fuzzy rules control energy allocation via the use of fuzzy algorithms. Firstly, the control parameters are
fuzzified into a power allocation factor, and thereby the driving system is controlled [8,9]. The common
problem of rule-based strategies is that energy can only be allocated according to fixed rules without
considering optimization, so the fuel consumption is relatively high.

The energy management of extended-range electric vehicles is essentially aimed to solve a
multi-objective nonlinear optimization problem. Since the major objective is the minimization of
systematic energy consumption, the energy control strategies based on global optimization and
instantaneous optimization algorithms have been widely studied. As one global optimization
algorithm, PMP constructs a Hamilton function, and when the Hamilton function reaches the minimum
value under constraints, the target function is also minimized [10]. Dynamic programming (DP),
another global algorithm, divides the whole working condition into several segments, and starting
from the final state, reversely calculates the initial state and finally selects the controlling rule that
makes the target function reach the minimum value as the optimal strategy [11,12]. However, both
PMP and DP can get the optimal solution only when the whole driving cycles are known. Since the
road conditions and driving behaviors are all unknown in real driving, global optimization algorithms
are unfeasible in reality, but can be used as the benchmark for real-time energy management strategies.
With the same hybrid electric vehicle model, Yuan compared DP and PMP and found their control
effects were similar, but PMP was faster [13].

The energy management based on instantaneous optimization does not need any information
about driving cycles and can be controlled in real-time according to the real driving conditions.
The DP-developed stochastic dynamic programming (SDP) control strategies utilize DP algorithms
to solve a number of working conditions, and apply the datasets as-obtained into neural network
training [14]. In real applications, the real-time working conditions are substituted into the classifier
to form energy distribution relations. Similarly, the artificial intelligent algorithms for energy
management also include neural network control [15], particle swarm optimization [16], and genetic
algorithm [17,18]. These Artificial Intelligence-strategies are faced with the problem of large amount of
data training and too much computation in real-time operation. Model prediction control is aimed to
model the controlled object, predict the output according to the vehicle state as-collected, optimize
the predicted value, and input the resulting optimal energy allocation into the control system [19,20].
Borhan built an energy optimization control strategy based on model prediction and the simulations
showed in the recycled working conditions of UDDS, the MPC control strategy reduced the oil
consumption by 4.7% than the rule-based control strategy [21]. ECMS originating from PMP finds the
minimum value through real-time solving the target function, and obtains the instantaneous energy
distribution relation between batteries and APU [22]. However, the co-state of ECMS is constant
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and cannot well adapt to different working conditions in real tests. Thus, researchers have proposed
adaptive-ECMS (A-ECMS) which is developed on the basis of ECMS. It can adjust the co-state value
of Hamilton function in real time according to the operation state of the vehicle. The strategy can
well adapt to the actual operation state and make the important vehicle performances reach the ideal
value. Gu put forward an adaptive ECMS based on driving pattern recognition, and by identifying
the information of working conditions, it adjusted the value of co-state to adapt to different working
conditions [23]. Mahyar proposed to use GPS and ITS to predict the working conditions and built an
A-ECMS control strategy based on reference SOC, so that the real SOC could decline along with the
reference SOC curve [24]. According to the optimal co-state values under different driving conditions,
Onori et al. plotted a co-state map and used SOC feedback to build a linear co-state function, which
performed well in simulations [25,26]. Because A-ECMS has the characteristics of strong adaptability,
good real-time performance and excellent control effect, it is selected as the energy management
strategy of this paper.

1.2. Motivation

The objective of energy management strategy for an E-REB is to guarantee the dynamic
performance of the E-REB during operation. Meanwhile the strategy ensures the SOC is always
greater than the pre-set value and makes the final SOC close to the pre-set value, which not only
protects the battery pack, but also fully uses the battery pack power.

In order to meet the above performance requirements, the co-state value needs to be adjusted in
real time according to the vehicle status. The motivation for this is explained as follows: (1) to solve the
optimal co-state value, the Hamilton function and co-state equation for E-REB should be developed
based on PMP; (2) the co-state is affected by driving distance and working conditions, so in order to
establish the relationship between the co-state and its influencing factors, the target driving cycles are
needed, however, there is often a lack of TDCs in practice. In order to solve this problem, the Markov
chain based generation technology is proposed; (3) by the way of making the fuel consumption close
to the optimal control result, and the final SOC value is similar to the pre-set value, SOC reference
curve should be reasonably designed; (4) taking the SOC deviation value as the independent variable,
the co-state adaptive function is established by PI control technology; (5) also, the initial value of SOC
also has a significant impact on the co-state, thus the change of co-state function should be considered
under different initial values.

1.3. Major Contribution

During formulation of A-ECMS, the key is to build a co-state adaptive function, which fully
considers the effects of initial SOC, driving distance, and working conditions on the co-state. Since this
study was targeted at extended-range electric buses operating on fixed routes, the driving distance
could be ignored. The co-state function consisting of fixed term and dynamic term was designed.
To determine the fixed term, we first had to get the optimal initial co-state map, which could be
determined by solving multiple target driving cycles by using PMP. However, during control strategy
research, there are always few working conditions suitable for the exploitation goal, which largely
hinders the determination of concrete control strategy parameters and the simulation of control
effect. For this problem, a goal condition generation method based on Markov chain was proposed.
The working condition was gradually generated through the formation of a highway and city transition
probability matrix. Furthermore, with the ITS-acquired vehicle information, the average vehicle speed
was determined by weighted averaging. Together with the initial SOCs of vehicles, the fixed terms
could be determined by interpolating the co-state map. The role of the dynamic term was to make the
SOC at termination be equal to the set value, so as to make full use of the electrical energy. It usually
can be realized by following the reference SOC. However, the common SOC reference curve is a
linear function of SOC and distance, which totally disobeys the ideal solution. A segmented SOC
reference curve was put forward according to the optimal SOC changing curves under different initial
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SOC conditions solved using PMP. When the initial SOC was large or small, an exponential reference
curve and a linear reference curve were selected, respectively, which better fitted the variation of the
optimal SOC. With the introduction of PI, the deviation of the real SOC from the reference curve was
regarded as the input to real-time adjust the co-state dynamic term, so as to follow the reference curve.
During the research, A-ECMS was simulated under different working conditions and different initial
SOCs. Results showed A-ECMS could meet the design requirements and was well adaptive.

1.4. Outline

This study is organized as below: Section 2 introduced the mathematical model and concrete
parameters of E-REB; In Section 3, the PMP algorithm targeting at E-REB is developed and thus the
co-state differential equation is achieved. In Section 4, Markov chain was used to generate the target
driving cycles; In Section 5, the co-state map and SOC reference curve were acquired, and A-ECMS
was designed through PI control. In Section 6, the A-ECMS, ECMS and PMP were simulated and
comparatively analyzed under different target driving cycles and different initial SOCs. Finally, the
conclusions are summarized in Section 7.

2. E-REB Model Description

2.1. Powertrain and Parameters

The extended-range electric bus studied here is the inter-city passenger car travelling between
Changchun and Shenyang, and its powertrain structure is showed in Figure 1. The E-REB is powered
by an auxiliary power unit (APU) and a battery pack. The APU consists of the engine and the generator,
while the engine drives the generator to generate power. The output power of the APU is coupled with
that of batteries, and the electric power is converted by a driving generator to machinery power, and
then the main reducer and the differential further transfer the energy to the wheels. The parameters of
main vehicle components are listed in Table 1.
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Figure 1. Extended-range electric bus powertrain.

Table 1. Main component parameters of E-REB.

Component Parameter Value

Engine
Max speed 4000 rpm
Max power 95 kW
Max torque 311 Nm @ 2200 rpm

Generator
Max speed 5000 rpm

Rated power 95 kW
Rated torque 420 Nm @ 0~2160 rpm

Battery pack
Type Lithium-ion

Capacity 300 Ah
Rated voltage 576 V

Driving motor
Max speed 2000 rpm

Peak /Rated power 180/120 kW
Peak/Rated torque 1800/1200 Nm @ 0~955 rpm
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2.2. Key Component Model

2.2.1. Battery Model

The battery pack consists of 156 battery cells in series, the total capacity of which is 300 Ah and the
rated voltage is 576 V. Then ten battery cells in series are selected and tested at ambient temperature
25 ◦C. The data of charge/discharge resistance, open circuit voltage (OCV) and SOC from the ten cells
are fitted in Figure 2.
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Figure 2. The internal resistance and OCV relative to SOC (10 cells).

The batteries are constructed using the internal resistance equivalent model (Rint model). At the
discharge stage, the total power of the batteries Pbat is equal to the external power Pb and internal
resistance Rint depletion. At this moment, the internal resistance is discharge resistance Rdc. At the
charge stage, the external power Pb charges the batteries, where the internal resistance is charging
resistance Rc. The open circuit voltage Uocv and the internal resistance Rint are both correlated with
SOC. It is supposed the batteries are maintained at 25 ◦C, or namely the effect of temperature on
internal resistance is ignored:

Pbat = Uocv(SOC) · I = I2 · Rint(SOC) + Pb (1)

The current can be solved by Equation (1) as follows:

I =
Uoc(SOC)−

√
Uoc(SOC)2 − 4Pb · Rint(SOC)

2Rint(SOC)
(2)

The changing rate of SOC can be expressed as follows:

S
.

OC = d(
Qb −

∫ t
0 Idt

Qb
)/dt = − I

Qb
(3)

where Qb is the capacity of the battery pack.

2.2.2. Driving Motor Model

This extended-range electric bus is driven by a permanent magnet synchronous motor, and
its efficiency map at the rated power is showed in Figure 3. The driving motor efficiency at given
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rotating speed and torque could be determined by the lookup-table interpolation method. When the
driving motor works as a generator (braking energy recovery stage), the efficiency map is symmetrical.
The efficiency of the driving motor is:

ηm = ηm(nm, Tm) (4)
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The coupling total power Pm supplies to the driving motor, the motor output power is delivered
by the transmission to the wheels, so as to meet the driving demanded power Preq, and its power
transfer is expressed as:

Preq = Pm · ηm · ηT (5)

where ηT is the transmission efficiency.

2.2.3. APU Model

As for an instantaneous energy management strategy, the optimal working point of each
demanded power is computed offline in advance, which largely reduced the computational amount
and favored the timeliness of the strategy. The optimal working point of APU is defined as to meet
the demanded output power of APU and to minimize the fuel consumption. The optimal working
points at different APU power values is connected, forming the optimal operation curve of APU.
Since the output power and fuel consumption rate of APU are affected jointly by the engine and the
generator, the characteristics of these two parts should be integrated to solve the optimal working
curve. The output power of APU was expressed as:

PAPU = Pe · ηg(ng, Tg) = Pe · ηg(ne, Te) (6)

where ηg is the generator efficiency, ne is the rotation speed and Te is the torque. The fuel consumption
rate of APU was calculated as:

be = be(ne, Te) (7)

The universal characteristics and APU optimal operation curve of the engine are shown in Figure 4.
Unlike the optimal working curve of the engine, that of the APU is integrated the generator efficiency.
The minimum fuel consumption of each disperse power was plotted in Figure 5. Since the maximum
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output power of APU is 85 kW, the fuel consumption rate is very low when the output power of APU
is 40–50 kW. Since the optimal working point of each discrete power is only and known, the rotating
speed and torque of a working point can be determined if the allocation power of APU in the energy
management algorithm is known.Energies 2018, 11, x FOR PEER REVIEW  7 of 26 
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2.3. Dynamic Model

According to the driving dynamic equation of a vehicle, the driving force can be expressed as:

Ft = mg · f +
CD Av2

21.15
+ σm

dv
dt

(8)

Preq =
v

3600
· Ft (9)
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The symbols and their values are shown in Table 2.

Table 2. E-REB model parameters.

Symbol Parameter Value

m Vehicle mass 11,718 kg
f Rolling resistance coefficient 0.01

CD Air resistance coefficient 0.7
A Windward area 8.6 m2

σ Rotational inertia coefficient 1.1
io Main ratio 4.875
r Rolling Radius 0.511 m

ηT Transmission efficiency 0.9

3. PMP Algorithm Formulation

Since PMP is the basis of ECMS, complete driving cycles are needed to solve the optimal control
rate under the constraint conditions. The goal of the optimal energy management of a hybrid electric
vehicle is that: the power of APU and the battery pack is allocated to minimize the fuel consumption
while meeting the driver's required power Preq [27]. For extended-range vehicles, since the APU and
transmission system are decoupled, the working points of APU can be randomly selected under the
premise of meeting the constraint conditions. At the end of driving, SOC reached the set minimum
value SOCf so as to fully utilize electric energy and reduce oil consumption. During the whole driving
process, SOC is maintained at the reasonable range [SOCf,SOCinitial] so as to prolong the service life
of batteries. Meanwhile, the output power of APU should never surpass the demanded power and
thereby enter the mode of APU charging batteries, which avoided the secondary energy transfer and
increased the energy use rate. Taken together, the target function and constraint conditions of energy
management of E-REB can be expressed as:

Minimize J(t) =
∫ t f

0

.
m f (u(t)) · dt =

∫ t f

0

be(u(t)) · u(t)
3600

· dt (10)

subject to S
.

OC(t) = − I(t)
Qb

(11)

SOC(t0) = SOCinitial , SOC(t f ) = SOC f (12)

SOC(t) ∈ [SOC f , SOCinitial ] (13)

u(t) = PAPU(t) ∈ [Pmin, Pmax] and u(t) ≤ Preq(t) (14)

Here mf is fuel consumption rate (g/s); u(t) is the APU allocation power, as the control variable,
which varies within [0,85] kW according to Section 2.2.3. SOC is a state variable and its termination
value is usually SOCf = 30%. The energy management Hamilton function is:

H =
be(u) · u

3600
+ λ · S

.
OC (15)

where λ is the co-state, which is time-variant during the solving process of PMP and can be expressed as:

.
λ = − ∂H

∂SOC
= −λ · ∂S

.
OC

∂SOC
(16)
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Since the partial derivatives in this equation cannot be directly solved, it can be further transformed
according to Equation (3):

− ∂S
.

OC
∂SOC

=
1

Qb
· ∂I

∂Uoc(SOC)
· ∂Uoc(SOC)

∂SOC
(17)

According to the characteristics of battery pack in Figure 2, when SOCf = 30%, the charge/discharge
resistance nearly does not change with voltage. Namely under the restrictions of SOC, the battery
internal resistance can be regarded as constant:

∂Rint
∂SOC

=
∂Uoc

∂SOC
· ∂Rint

∂Uoc
≈ 0 (18)

On this basis, the partial derivative of Equation (2) over Uoc can be determined:

∂I
∂Uoc(SOC)

= − I√
Uoc(SOC)2 − 4 · PbRint

(19)

The partial derivative of voltage over SOC can be determined from the battery characteristics in
Figure 2, marked as k(SOC). Taken together, the state equation of the co-state can be expressed as:

.
λ =

λ

Qb
·

√
Uoc(SOC)2 − 4 · PbRint −Uoc(SOC)

2Rint

√
Uoc(SOC)2 − 4 · PbRint

· k(SOC) (20)

After the state equations of SOC and λ are determined, the PMP algorithm can be solved using
the Shooting method [28]. However, for PMP as a global optimization algorithm, all information
about driving cycles should be acquired in advance, and thus, PMP cannot be directly applied in a
real environment. The instantaneous optimization algorithms ECMS and A-ECMS based on PMP
will be introduced in Section 5. The driving cycle generation method based on Markov chain will be
introduced in Section 4. With the PMP algorithm, the optimal initial value of λ was solved, forming
the optimal initial λ maps at different vehicle speeds and different initial SOCs.

4. Markov Chain Based Target Driving Cycles Generation

During research on control strategies, usually real driving cycles suitable for the development
goal are insufficient. For instance, this study on the energy management strategies for the fixed
route from Changchun to Shenyang required similar simulation conditions of several driving cycles.
However, the shortage of driving cycles largely hindered the determination of concrete control strategy
parameters and the simulation of control effect. To achieve this goal, we put forward a target driving
cycle generation method based on Markov chain. The Markov chain method is widely used in speed
prediction. Xie adopted it to forecast velocity sequences at every current state, with post-processing
algorithms to moderate fluctuations of the prediction results like average filtering [29]. In addition to
forecasting the vehicle speed, Liu forecasted the demand power accurately through a Markov chain
approach. According to the current vehicle running state, the probability transfer matrix is used to
estimate the demand power at the next time [30,31]. In fact, the speed prediction is intrinsically linked
to the demand power prediction. According to the vehicle dynamics equation, the conversion of vehicle
speed and demand power can be performed. The above methods all use Markov chain for short-term
prediction. In contrast, this paper uses it to generate complete driving cycles. The main purpose is to
perform optimal co-state calculations, reference curve solving and verification, rather than real-time
forecasting. Based on the collected data and the data of typical driving cycles, a probability transition
matrix is formed, and thereby the simulated driving cycles close to real data are generated.
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During a Markov process, the future state and the past state of the system are mutually
independent. The current state of the system is known, and the system state at any time is related with
the current state, but not with the past state [32]. Then the vehicle speed νk+1 at step k+1 of discrete
time is decided by the vehicle speed νk at step k of discrete time. Thus, the complete driving cycle can
be generated stepwise starting from the initial status ν1 = 0 km/h. The Markov status space consists of
the discrete vehicle speed and acceleration; let the discrete vehicle speed be νi (i = 1,2,Λ,p), the discrete
acceleration be aj (i = 1,2,Λ,q), and the acceleration at step k+1 be ak+1. Then starting from the current
state νk = νi, the conversion probability reaching the next state ak+1 = aj can be expressed as:

p(ak+1 = aj|vk = vi) = pij =
Nij

q
∑

j=1
Nij

(21)

where pij is the transition probability from the current vehicle speed νi to the acceleration aj of the
next state; Nij is the number of occurrences of the event where the current vehicle speed νi reaches the

acceleration aj of the next state;
q
∑

j=1
Nij is the total number of event occurrences of the current vehicle

speed νi reaching the acceleration of the any next state.
Then the target driving cycle from Changchun to Shenyang is analyzed. Using Google Map, the

driving cycle from Changchun to Shenyang can be generally divided into three segments: (1) from city
of Changchun to the highway junction: 5.4 km; (2) highway: 277 km; (3) from the highway junction
to the city of Shenyang: 12.6 km. Of them, (1) and (3) correspond to city conditions, while (2) is a
highway condition. Thus, the probability transition matrix should be divided into a city-matrix and a
highway-matrix, to separately calculate the data statistics and matrix generation, respectively. The city
road collected data, representing driving cycles such as FTP75 and ChinaCityBus are used to generate
the city-matrix; for the highway collected data, representative driving cycles such as US_SC03 and
Highway are used to generate the highway-matrix. The transition probability maps are shown in
Figures 6 and 7.

Energies 2018, 11, x FOR PEER REVIEW  10 of 26 

 

discrete acceleration be aj (i = 1,2,Λ,q), and the acceleration at step k+1 be ak+1. Then starting from the 
current state νk = νi, the conversion probability reaching the next state ak+1 = aj can be expressed as: 


=

+ ==== q

j
ij

ij
ijikjk

N

N
pvvaap

1

1 )|(  
(21)

where pij is the transition probability from the current vehicle speed νi to the acceleration aj of the next 
state; Nij is the number of occurrences of the event where the current vehicle speed νi reaches the 

acceleration aj of the next state; 
1

q

ij
j

N
=
  is the total number of event occurrences of the current vehicle 

speed νi reaching the acceleration of the any next state. 
Then the target driving cycle from Changchun to Shenyang is analyzed. Using Google Map, the 

driving cycle from Changchun to Shenyang can be generally divided into three segments: (1) from 
city of Changchun to the highway junction: 5.4 km; (2) highway: 277 km; (3) from the highway 
junction to the city of Shenyang: 12.6 km. Of them, (1) and (3) correspond to city conditions, while (2) 
is a highway condition. Thus, the probability transition matrix should be divided into a city-matrix 
and a highway-matrix, to separately calculate the data statistics and matrix generation, respectively. 
The city road collected data, representing driving cycles such as FTP75 and ChinaCityBus are used 
to generate the city-matrix; for the highway collected data, representative driving cycles such as 
US_SC03 and Highway are used to generate the highway-matrix. The transition probability maps are 
shown in Figures 6 and 7. 

 
Figure 6. Transition probability map of city conditionz. 

 

Figure 7. Transition probability map of highway conditions. 

Figure 6. Transition probability map of city conditionz.



Energies 2018, 11, 1805 11 of 26

Energies 2018, 11, x FOR PEER REVIEW  10 of 26 

 

discrete acceleration be aj (i = 1,2,Λ,q), and the acceleration at step k+1 be ak+1. Then starting from the 
current state νk = νi, the conversion probability reaching the next state ak+1 = aj can be expressed as: 


=

+ ==== q

j
ij

ij
ijikjk

N

N
pvvaap

1

1 )|(  
(21)

where pij is the transition probability from the current vehicle speed νi to the acceleration aj of the next 
state; Nij is the number of occurrences of the event where the current vehicle speed νi reaches the 

acceleration aj of the next state; 
1

q

ij
j

N
=
  is the total number of event occurrences of the current vehicle 

speed νi reaching the acceleration of the any next state. 
Then the target driving cycle from Changchun to Shenyang is analyzed. Using Google Map, the 

driving cycle from Changchun to Shenyang can be generally divided into three segments: (1) from 
city of Changchun to the highway junction: 5.4 km; (2) highway: 277 km; (3) from the highway 
junction to the city of Shenyang: 12.6 km. Of them, (1) and (3) correspond to city conditions, while (2) 
is a highway condition. Thus, the probability transition matrix should be divided into a city-matrix 
and a highway-matrix, to separately calculate the data statistics and matrix generation, respectively. 
The city road collected data, representing driving cycles such as FTP75 and ChinaCityBus are used 
to generate the city-matrix; for the highway collected data, representative driving cycles such as 
US_SC03 and Highway are used to generate the highway-matrix. The transition probability maps are 
shown in Figures 6 and 7. 

 
Figure 6. Transition probability map of city conditionz. 

 

Figure 7. Transition probability map of highway conditions. Figure 7. Transition probability map of highway conditions.

After the probability transition matrix is determined and under the known current vehicle speed,
the acceleration at the next state is determined according to sampling by probability, and the vehicle
speed at the next state is further determined:

vk+1 = vk + acck+1 · dt (22)

Taken together, the driving cycles are generated segment-wise by using the Markov probability
transition matrix. To simulate the variation of each driving distance during real driving, a random error
δ ∈ [0,5%] is introduced. When each segment of driving cycle is generated, the effect of random error
is considered. Based on the above conditions, in Figure 8, 10 simulated driving cycles (Cycle 01~10) are
formed and used to determine the energy management strategy parameters and validate the control
effect. The specific statistics of driving cycles and the solution results of PMP will be introduced in
Section 5, and the solving process of PMP will be illustrated in Section 6.
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5. Adaptive-ECMS

5.1. Co-State Map Generated for ECMS

ECMS is an extension of PMP and an instantaneous optimization algorithm that does not need
the information of whole driving cycles. Based on Equation (15), ECMS continually finds the optimal
solution at each single step k. The target functions at stage k can be expressed as:

J(k) =
be(u(k)) · u(k)

3600
+ λ(k) · S

.
OC(k) (23)

In the basic ECMS, the value of co-state is equivalent to the optimal initial value λ0 of the co-state,
and thus, this strategy is also called Constant-ECMS (C-ECMS). λ0 is mainly affected by the driving
distance, the initial value of SOC, and the working conditions [33]. In this study, since the driving
route is fixed, the effect of driving distance can be ignored.

The 10 as-generated driving cycles are used in PMP training; let the initial value of SOC be SOCinitial,
and the average vehicle speed νaverage is used to characterize the working condition. The maps of λ0

with SOCinitial and νaverage are plotted. During the generation of driving cycles, the error δ of each driving
distance is considered, which would affect the accuracy of the map. Thus, the smallest distance dmin of the
10 driving cycles is selected for equidistance processing; the data when the driving distance is dmin under
all driving cycles are used into PMP training. The information of PMP training under the 10 driving cycles
after equidistance are summarized in Table 3. The table is converted to 3D maps (Figure 9) for ECMS
interpolation to determine λ0. Due to the limitation of training driving cycles, the average vehicle speed
coverage is very narrow, so λ0 in the parts beyond the range is solved through outward interpolation.

Table 3. λ0 solving results by using the equal distance process.

Number
νaverage
(km/h)

SOCinitial

1.00 0.95 0.90 0.85 0.80 0.75

Cycle09 51.6853 −33.399 −34.5494 −35.4932 −36.2315 −36.9346 −37.7542
Cycle08 51.9578 −33.407 −34.5503 −35.4777 −36.229 −36.9626 −37.8124
Cycle01 53.2634 −33.413 −34.5773 −35.5221 −36.2579 −36.9967 −37.8462
Cycle03 54.8937 −33.522 −34.7074 −35.6664 −36.4219 −37.2319 −38.2886
Cycle10 55.0385 −33.496 −34.6745 −35.6334 −36.3932 −37.1821 −38.2179
Cycle05 58.8617 −33.530 −34.7165 −35.689 −36.429 −37.2883 −38.4523
Cycle04 59.6607 −33.559 −34.7494 −35.7163 −36.4997 −37.339 −38.4693
Cycle02 60.1133 −33.639 −34.8513 −35.8389 −36.6909 −37.6289 −38.9175
Cycle06 61.6337 −33.654 −34.9023 −35.9111 −36.7447 −37.7832 −39.0079
Cycle07 62.5894 −33.663 −34.888 −35.867 −36.6936 −37.6759 −38.949

Energies 2018, 11, x FOR PEER REVIEW  13 of 26 

 

Table 3. λ0 solving results by using the equal distance process. 

Number νaverage (km/h) 
SOCinitial 

1.00 0.95 0.90 0.85 0.80 0.75 

Cycle09 51.6853 −33.399 −34.5494 −35.4932 −36.2315 −36.9346 −37.7542 
Cycle08 51.9578 −33.407 −34.5503 −35.4777 −36.229 −36.9626 −37.8124 
Cycle01 53.2634 −33.413 −34.5773 −35.5221 −36.2579 −36.9967 −37.8462 
Cycle03 54.8937 −33.522 −34.7074 −35.6664 −36.4219 −37.2319 −38.2886 
Cycle10 55.0385 −33.496 −34.6745 −35.6334 −36.3932 −37.1821 −38.2179 
Cycle05 58.8617 −33.530 −34.7165 −35.689 −36.429 −37.2883 −38.4523 

Cycle04 59.6607 −33.559 −34.7494 −35.7163 −36.4997 −37.339 −38.4693 

Cycle02 60.1133 −33.639 −34.8513 −35.8389 −36.6909 −37.6289 −38.9175 
Cycle06 61.6337 −33.654 −34.9023 −35.9111 −36.7447 −37.7832 −39.0079 
Cycle07 62.5894 −33.663 −34.888 −35.867 −36.6936 −37.6759 −38.949 

 
Figure 9. λ0 map solving by equal distance process. 

5.2. A-ECMS and SOC Reference Curve 

Under the whole driving cycle, λ is constant and invariable during the solving process of C-
ECMS, but λ is continually updated according to Equation (20) during PMP training. This means 
SOCkmax ≠ SOCf = 0.3 may occur at the end of the cycle. When SOCkmax > SOCf, λ is small and the 
electricity is not completely used, leading to excessive fuel consumption; when SOCkmax < SOCf, λ is 
large and the electricity is excessively used, which affects the service life of batteries. Thus, Adaptive-
ECMS (A-ECMS) has been widely studied, so as to make SOCkmax at the end of working conditions 
close to the preset value. As for A-ECMS, the co-state λ is varying during the operation, and the 
adaptive λ as-designed can be expressed as: 







−=Δ

⋅Δ⋅+Δ⋅+= 
)()()(

)()()(
00

tSOCtSOCtSOC

dttSOCktSOCkt

ref

t

ipλλ  (24)

where kp and ki are the adjustment coefficients of the proportion step and the integral step, and SOCref 
is the SOC reference curve. By following the reference curve, the SOCkmax at the end of driving cycle 
is close to the preset value SOCf During the operation, the SOC is higher than the reference curve, 
indicating the electricity use is little and λ should be enlarged, so that the energy management 
strategy is leaning to electricity use; and vice versa. 

The commonly-used SOC reference curve is SOC-distance linear curve [34]. However, in real 
situations, the SOC-distance is not completely linear, and thus this reference curve is blind to some 

70

8033

34

initial SOC : %

65

35

36

37

9060

average Velocity : km/h

38

39

40

55
10050

Figure 9. λ0 map solving by equal distance process.
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5.2. A-ECMS and SOC Reference Curve

Under the whole driving cycle, λ is constant and invariable during the solving process of
C-ECMS, but λ is continually updated according to Equation (20) during PMP training. This means
SOCkmax 6= SOCf = 0.3 may occur at the end of the cycle. When SOCkmax > SOCf, λ is small and the
electricity is not completely used, leading to excessive fuel consumption; when SOCkmax < SOCf,
λ is large and the electricity is excessively used, which affects the service life of batteries.
Thus, Adaptive-ECMS (A-ECMS) has been widely studied, so as to make SOCkmax at the end of
working conditions close to the preset value. As for A-ECMS, the co-state λ is varying during the
operation, and the adaptive λ as-designed can be expressed as:{

λ(t) = λ0 + kp · ∆SOC(t) + ki ·
∫ t

0 ∆SOC(t) · dt
∆SOC(t) = SOC(t)− SOCre f (t)

(24)

where kp and ki are the adjustment coefficients of the proportion step and the integral step, and SOCref
is the SOC reference curve. By following the reference curve, the SOCkmax at the end of driving cycle
is close to the preset value SOCf During the operation, the SOC is higher than the reference curve,
indicating the electricity use is little and λ should be enlarged, so that the energy management strategy
is leaning to electricity use; and vice versa.

The commonly-used SOC reference curve is SOC-distance linear curve [34]. However, in real
situations, the SOC-distance is not completely linear, and thus this reference curve is blind to some
extent. A segmented SOC reference curve is designed according to the changing curves under different
initial SOCs of 10 cycles solved using PMP:

SOCref(t) =

{
SOCinitial · e−b·dnow(t) , i f SOCinitial ≥ 0.85
SOCinitial +

dnow(t)
D · (SOCf − SOCinitial) , i f SOCinitial < 0.85

(25)

b =
1
D
(ln(SOCinitial)− ln(SOCf)) (26)

dnow(t) =
∫ t

0
v(t)dt (27)

where D is the total driving distance (km), and dnow(t) is the driven distance (km).
With different initial SOCs, the optimal changing curves of the 10 driving cycles and the SOC

reference curves are determined (Figure 10). It should be noted during each solving process, the
10 whole driving cycles are used, rather than the cycles after equalizing them. The SOC changing
curve of the optimal solution is arc-shaped (Figure 10). When SOC is large, λ is large, and the energy
management strategy is leaning to electricity use, so the declining slope of SOC is very large. As the
driving distance increased, λ was updated according to Equation (20) and thus declined, so the energy
management strategy is leaning to oil use, and thus the declining slope of SOC gradually decrease.
Moreover, as the initial value of SOC decreased, the radian of SOC changing curve declined and
when SOCinitial is <0.85, it is close to a line. This is because the whole vehicle does not have enough
electricity, leading to the relatively small initial value λ0 of optimal co-state from the solving process.
The strategy is leaning to oil use compared to the case of large initial SOC, so the declining slope of
SOC at the early stage is small. Taking the above simulated data and the analysis together, for A-ECMS
with initial SOC ≥0.85 or <0.85, an exponential reference curve or a linear reference curve are used,
respectively. Together with Figure 10, it is clear that the segmented reference curve of SOC has very
good fitting results
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5.3. Average Velocity Obtained from Traffic Information

The adaptive co-state function (24) can be divided into a dynamic term and a constant term.
Specifically, the PI-adjusted part is the dynamic term and is variable during the driving process;
while the constant term λ0 can be determined from the interpolation of the map. Thus, the SOCinitial
and average vehicle speed νaverage are needed to determine λ0. In particular, the initial SOC can be
determined from the battery management system. The average vehicle speed can be determined by
statistically analyzing the information of the driving vehicle, with the use of ITS.

The route from Changchun to Shenyang is already divided as mentioned above. The three sections
from Changchun city to the highway junction, highway, and from the highway junction to Shenyang
city are marked as 1, 2 and 3, respectively. The distances of three sections are marked as d1, d2 and d3

with the total distance of D. To calculate the average vehicle speed νi ∈ {1, 2, 3} of section i, we have
to calculate the average of ITS-acquired vehicle data of section i:

vi =
1
N

N

∑
j=1

vi,j (28)

where N is the number of vehicles in section i, and νi,j is the vehicle speed of vehicle j in section i.
It should be noted since most of the vehicles recorded by the ITS are passenger vehicles and their
speeds may surpass that of the extended-range bus, the data disobeying the driving requirements of
the bus should be excluded. Furthermore, the average vehicle speed at each section is weight-averaged
to get the total average vehicle speed:

v =
3

∑
i=1

vi ·ωi (29)

{
ωi =

di
D

ω1 + ω2 + ω3 = 1
(30)

where ωi is the weight of section i, which reflects the effect of section distance on the total average
vehicle speed. Since the highway section is the longest, the total average vehicle speed is also very large.

5.4. Architecture of A-ECMS

As a summary of the above flowchart, the architecture of A-ECMS is shown in Figure 11.
Firstly, data of representative driving cycles and collected data are used to generate a city-highway
probability transition matrix, and with Markov chain, the target driving cycles are formed.
The equidistance driving cycles are solved by PMP, forming the optimal co-state initial values under
each driving cycles with different initial SOC, forming a map. In real-time operation, the ITS data are
weight-averaged, and together with the initial SOCs provided by the BMS system, λ0 is determined
from interpolation. A vehicle provides information of real-time driving distance, demanded power,
SOC and its changing rate. With the segmented SOC reference curve established from real-time
follow-up as the goal, the adaptive λ is adjusted through PI control. Within the range of constraint
conditions, the optimal working curve of APU is traversed so as to solve the minimum value of the
target function J. Finally, the optimal APU and the battery allocation power are determined, and
substituted into the whole-vehicle model for control.
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6. Validation and Discussion

6.1. Optimal Initial Value of Co-State Solved by PMP

With PMP, for the 10 driving cycles as-generated, the optimal initial values of co-state are solved
under different initial SOCs. With the solutions of equidistance driving cycles (Table 3), the map of
λ0 is plotted. In this Section, the complete information of driving cycles are utilized to compare PMP,
C-ECMS and A-ECMS. The initial co-state to be substituted into PMP is gradually adjusted via the
Shooting method until the difference between the final SOC and the preset value after the PMP meets
the required precision. The initial co-state from the final searching is selected as the optimal initial
value. With Cycle 10 for instance, the optimal initial co-state is solved at the initial SOC of 1.0, 0.95, 0.9,
0.85, 0.8 and 0.75 (Figure 12).
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Figure 12. The λ0 search process of Cycle 10 under different initial SOC.

The initial value for the first searching can be selected empirically, and the value selected closer to
the real value would make the searching faster. In this study, when the initial SOC is 1.0 or 0.95, the
initial value of the first searching is −33 kg; under other conditions, it is −36 kg. Similarly, the
optimal initial co-state under different initial values of SOC for the 10 driving cycles is solved
(Table 4). During the PMP solving process, the co-state continuously varied according to the updating
Equation (20). When the different initial SOCs under the 10 driving cycles are outputted, the co-state
changing curve under the optimal initial co-state is selected (Figure 13). Clearly, the co-state gradually
declined with time. The changing range of co-state in (a) is about −3.5 kg, but is −1.5 kg in (f),
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indicating with a smaller initial SOC, the changing amplitude of co-state decreases. At the initial stage
of (a), the changing rate of co-state is very large, but at the distance of 40–50 km, an evident turning
point appeared and the changing rate of co-state decreased. This is because the electricity consumption
led to the platform stage of SOC, as shown in the 20%–80% stage of SOC in Figure 2. At this moment,
the changing degree of voltage Uoc with SOC is smaller, or namely the k(SOC) of updating equation
and thereby the changing rate decreased.

Table 4. λ0 solving results and statistical data of 10 cycles.

Number
vaverage
(km/h)

d1
(km)

d2
(km)

d3
(km)

D
(km)

SOCinitial

1.00 0.95 0.90 0.85 0.80 0.75

Cycle01 53.1239 5.540 276.721 13.210 295.471 −33.413 −34.5654−35.5105−36.2576−36.9958−37.8421
Cycle02 58.0003 5.531 287.352 13.150 306.034 −33.753 −34.973 −35.9698−36.7981−37.7928−39.0112
Cycle03 53.7017 5.563 281.166 12.795 299.532 −33.5429−34.7343−35.6942−36.4505−37.2635−38.3308
Cycle04 58.0786 5.537 281.048 12.867 299.456 −33.5874−34.7864−35.7439−36.5218−37.3703−38.4551
Cycle05 58.0706 5.450 279.188 13.127 297.769 −33.5535−34.7432−35.7084−36.4677−37.3386−38.4484
Cycle06 54.8340 5.566 277.619 13.020 296.210 −33.6573−34.9013−35.9199−36.7521−37.7667−38.9854
Cycle07 58.3364 5.412 288.078 12.670 306.162 −33.7263−34.9399−35.9043−36.7436−37.7174−38.8759
Cycle08 55.0633 5.532 280.125 13.103 298.761 −33.4223−34.5745−35.494 −36.2516−36.9761−37.7948
Cycle09 56.6853 5.633 276.396 13.125 295.153 −33.3999−34.5601−35.4928−36.2384−36.9499−37.7511
Cycle10 53.3712 5.449 278.652 13.024 297.129 −33.5077−34.6928−35.648 −36.4061−37.1943−38.2107
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As the initial SOC decreased, the turning point moved forward, which is because the insufficiency
of initial electricity led to the earlier entrance to the SOC platform stage. There is no turning point in (e)
or (f), which is because SOC at the initial stage of the operation has already entered the platform stage.

6.2. Comparison of Different Energy Management Strategies

In this study, the global optimization algorithm PMP, and its derivative instantaneous algorithms
C-ECMS and A-ECMS are introduced. In this section, the three energy management strategies under
different initial SOCs and the 10 generated driving cycles are compared. As shown in Section 6.1,
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during the solving process of PMP, when the initial SOC is 1.00, the changing range of co-state is about
−3.5 kg; when the initial SOC decreases, the changing range of co-state becomes narrower; when the
initial SOC is 0.75, the changing range is about −1.5 kg. In C-ECMS, the co-state is always the initial
value. To illustrate the effect of the initial value of co-state on the effect of C-ECMS, we select two
initial values with the bias of −2 kg. In the adaptive co-state function, the proportionality factor kp is
0.2, and the integral coefficient ki is 0.004. For Cycle 10 for instance, the simulation map is shown in
Figure 14.

Clearly, the adjustment by PI makes the variation of SOC follow the SOC reference curve well,
and at the end of driving, the final SOC is very close to the pre-set value (0.3). The SOC changing
curves of A-ECMS and PMP are overlapped well, indicating the instantaneous optimization result
is very close to the global optimized result. When the initial SOC is <0.85, the degree of overlap
decreases slightly. This is because the reference curve of SOC is switched from an exponential function,
when the initial SOC is large, to a linear function, when the initial SOC is low. The middle stage of
the linear reference curves in Figure 10f,g are leaning to oil use, leading to the deviation of the SOC
curves of A-ECMS and PMP at the middle stage in Figure 14e,f. Generally, however, when the initial
SOC is low, the linear reference curve of SOC is closer to the SOC curve of PMP, which better ensures
the lower oil consumption. Neither of the two types of C-ECMS meets the condition of making the
final SOC close to the pre-set value. The co-state of unbiased C-ECMS is excessively large, leading to
excessive discharge from the batteries; the co-state of the C-ECMS with bias of −2 kg is too small, so
the electricity of batteries is not fully used.

The comparison of SOC changing curves of four energy management strategies show though the
bias of two types of C-ECMS is constantly −2 kg, the difference between the SOC changing curves
vary under different initial SOCs. Specifically, at very large initial SOC, the SOC changing curves of
these two types of C-ECMS are largely different; at very small initial SOC, the differences decreases.
It is indicated at very low initial SOC, the co-state determined from map interpolation is very small,
which largely limits the changing rate of SOC. At this moment, with further decrease of the initial
co-state, the effect of SOC on the whole driving cycle decreases.
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In addition, the effectiveness of the system is verified by the standard driving cycles WLTP and
US_US06. Due to the short simulation distance of these cycles, it is necessary to extend the distance
to the same distance as the target driving cycles (290–300 km). The simulation results are shown in
Figure 15. In the standard cycles, the A-ECMS can still make the final SOC converge to the pre-set
SOC, and ensure the electric energy is fully utilized and the solution of oil consumption is close to
that of PMP. In the US_US06 cycle, the results of A-ECMS and PMP are different in the first stage of
operation (<1.5 h), but the results of the latter stage are very close. However, in the operation of the
WLTP cycle, the SOC of A-ECMS is always greater than the SOC of PMP. This is because the difference
between the standard driving cycle WLTP and the target driving cycle of the paper is too large, so that
the SOC reference curve cannot be well adapted to this cycle. This shows that the A-ECMS can make
the final SOC reach the expected value in different driving cycles. As long as the reference curve is
adjusted according to the cycles, the result of the oil consumption solution can be close to the global
optimization result.
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The simulation results of Cycles 01~10 are statistically analyzed (Tables 5–10). As a global
optimization algorithm, PMP requires the information of whole driving cycles; though it does not
apply to real vehicle environments, it has good optimization effect and is a suitable benchmark
for comparison with other energy management strategies. As the initial SOC decreases, the oil
consumption increases since the set value is constantly 0.3. Statistics show the largest control deviation
of A-ECMS over the final SOC is 0.0076 and the control precision is within 2.33%, indicating it could
control SOC to reach the preset value regardless the initial SOC. At different initial conditions, the
largest oil consumption deviations of A-ECMS relative to PMP are 6.97%, 5.52%, 5.10%, 4.37%, 5.01%
and 5.07%, respectively, which are very close to the global optimization results. On the contrary,
C-ECMS could not balance well the relationship between the final SOC and oil consumption. Taken
together, A-ECMS as an instantaneous optimization algorithm can be applied into real vehicles, fully
utilize the electricity of batteries, and well improve the fuel economy while protecting the batteries.
When the initial SOCs differ, the control results are very close, indicating A-ECMS could adapt well.

Table 5. Comparison statistics with initial SOC = 1.00.

Number
Final SOC Fuel Consumption (kg)

C-ECMS C-ECMS(-2) A-ECMS PMP C-ECMS C-ECMS(-2) A-ECMS PMP

Cycle 01 0.1141 0.4121 0.2999 0.3004 17.9110 28.2983 25.5074 24.3694
Cycle 02 0.0788 0.3700 0.2975 0.3009 19.2109 29.2575 27.9867 26.8491
Cycle 03 0.1004 0.3957 0.2906 0.3008 18.2269 28.4817 26.5841 25.1481
Cycle 04 0.0969 0.3907 0.3019 0.3007 18.4140 28.6073 26.8725 25.4510
Cycle 05 0.1171 0.4060 0.3069 0.3004 18.8644 28.9469 25.9820 25.2288
Cycle 06 0.1128 0.3862 0.3022 0.2996 18.9374 28.458 27.1953 25.4218
Cycle 07 0.1047 0.3854 0.2963 0.3004 19.8999 29.6612 27.8810 26.6793
Cycle 08 0.1293 0.4268 0.3042 0.3000 18.1772 28.5881 25.6125 24.1148
Cycle 09 0.1273 0.4261 0.3044 0.3002 17.6741 28.1196 25.0490 23.6817
Cycle 10 0.1065 0.4010 0.3064 0.3006 17.9894 28.2285 26.1526 24.7016
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Table 6. Comparison statistics with initial SOC = 0.95.

Number
Final SOC Fuel Consumption (kg)

C-ECMS C-ECMS(-2) A-ECMS PMP C-ECMS C-ECMS(-2) A-ECMS PMP

Cycle 01 0.1211 0.4076 0.3035 0.2997 20.0642 30.0979 27.3669 26.2766
Cycle 02 0.0843 0.3643 0.2965 0.3007 21.3064 31.0145 30.3512 28.7851
Cycle 03 0.1064 0.3911 0.2919 0.3003 20.3453 30.2729 28.0594 27.0690
Cycle 04 0.1046 0.3859 0.2994 0.3008 20.5835 30.3917 28.7220 27.3925
Cycle 05 0.1262 0.4023 0.3022 0.3003 21.0894 30.7718 27.9162 27.1597
Cycle 06 0.1208 0.3795 0.3025 0.2993 21.1224 30.1799 28.7759 27.3507
Cycle 07 0.1121 0.3795 0.2962 0.3002 22.0665 31.4124 29.4395 28.6175
Cycle 08 0.1400 0.4210 0.3050 0.3008 20.4566 30.3412 27.4689 26.0750
Cycle 09 0.1408 0.4217 0.2988 0.3008 20.0433 29.9250 26.9613 25.6372
Cycle 10 0.1150 0.3966 0.3030 0.3005 20.1883 30.0272 28.1068 26.6365

Table 7. Comparison statistics with initial SOC = 0.90.

Number
Final SOC Fuel Consumption (kg)

C-ECMS C-ECMS(-2) A-ECMS PMP C-ECMS C-ECMS(-2) A-ECMS PMP

Cycle 01 0.1750 0.4099 0.3068 0.2996 23.7514 32.1257 29.5778 28.1679
Cycle 02 0.1379 0.3663 0.2968 0.3007 24.9463 33.0341 31.8291 30.6878
Cycle 03 0.1597 0.3939 0.2985 0.3001 23.9973 32.3222 30.4358 28.9580
Cycle 04 0.1575 0.3869 0.2984 0.3000 24.2220 32.3742 30.3386 29.2607
Cycle 05 0.1876 0.3992 0.3038 0.3001 25.0373 32.6126 30.1988 29.0491
Cycle 06 0.1734 0.3763 0.3020 0.3001 24.7708 32.0144 30.7227 29.2799
Cycle 07 0.1675 0.3782 0.2854 0.2994 25.8026 33.3165 30.9027 30.4900
Cycle 08 0.2006 0.4224 0.2998 0.3002 24.3828 32.3437 29.2079 27.9447
Cycle 09 0.2008 0.4232 0.3076 0.3001 23.9537 31.9299 28.2447 27.4992
Cycle 10 0.1696 0.3970 0.3046 0.3000 23.8905 31.9899 29.4823 28.5116

Table 8. Comparison statistics with initial SOC = 0.85.

Number
Final SOC Fuel Consumption (kg)

C-ECMS C-ECMS(-2) A-ECMS PMP C-ECMS C-ECMS(-2) A-ECMS PMP

Cycle 01 0.1910 0.3837 0.3024 0.2996 26.1578 33.0950 31.179 30.0414
Cycle 02 0.1532 0.3379 0.2921 0.3003 27.3240 33.9269 33.0170 32.5639
Cycle 03 0.1754 0.3673 0.2957 0.2998 26.3919 33.2790 31.5416 30.8269
Cycle 04 0.1734 0.3589 0.3017 0.2998 26.6208 33.2789 32.3868 31.1340
Cycle 05 0.1979 0.3666 0.3048 0.3004 27.2541 33.3523 32.0638 30.9375
Cycle 06 0.1844 0.3466 0.3043 0.3000 27.0162 32.8624 32.5282 31.1648
Cycle 07 0.1792 0.3478 0.2880 0.3000 28.0668 34.1402 33.2943 32.4012
Cycle 08 0.2144 0.3931 0.2987 0.3000 26.7266 33.2017 30.5049 29.8154
Cycle 09 0.2173 0.3945 0.3049 0.3005 26.3865 32.8099 30.3681 29.3865
Cycle 10 0.1825 0.3697 0.3009 0.3004 26.1897 32.9222 31.5386 30.4019
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Table 9. Comparison statistics with initial SOC = 0.80.

Number
Final SOC Fuel Consumption (kg)

C-ECMS C-ECMS(-2) A-ECMS PMP C-ECMS C-ECMS(-2) A-ECMS PMP

Cycle 01 0.2481 0.3638 0.3029 0.3000 30.0416 34.3067 32.9472 31.9411
Cycle 02 0.2046 0.3175 0.2947 0.3001 30.9870 35.1225 35.9526 34.4765
Cycle 03 0.2320 0.3457 0.2965 0.3002 30.2468 34.4266 34.3192 32.7390
Cycle 04 0.2271 0.3389 0.3007 0.3000 30.3779 34.4914 33.5825 33.0420
Cycle 05 0.2547 0.3467 0.3028 0.3007 31.1545 34.5756 34.1150 32.8512
Cycle 06 0.2317 0.3234 0.2980 0.3001 30.5680 33.9585 34.7231 33.0893
Cycle 07 0.2320 0.3281 0.2928 0.3003 31.8128 35.3712 35.1544 34.3285
Cycle 08 0.2734 0.3719 0.3062 0.2996 30.7096 34.3694 32.5991 31.6819
Cycle 09 0.2745 0.3742 0.3014 0.3003 30.3059 34.0108 32.8297 31.2640
Cycle 10 0.2392 0.3501 0.3065 0.2996 30.0533 34.1472 33.7634 32.2688

Table 10. Comparison statistics with initial SOC = 0.75.

Number
Final SOC Fuel Consumption (kg)

C-ECMS C-ECMS(-2) A-ECMS PMP C-ECMS C-ECMS(-2) A-ECMS PMP

Cycle 01 0.2764 0.3464 0.3012 0.3001 32.9633 35.6346 35.7002 33.8629
Cycle 02 0.2308 0.3024 0.2927 0.3002 33.8258 36.5494 37.0121 36.4756
Cycle 03 0.2600 0.3281 0.2924 0.3001 33.1545 35.7507 35.7310 34.6719
Cycle 04 0.2515 0.3223 0.3058 0.2997 33.1557 35.8551 36.1694 34.9837
Cycle 05 0.2724 0.3490 0.3031 0.2995 33.7165 36.6957 36.5232 34.7612
Cycle 06 0.2487 0.3211 0.2961 0.3002 33.0974 35.9002 36.5854 35.0874
Cycle 07 0.2506 0.3265 0.2953 0.3004 34.3992 37.3358 37.4909 36.3196
Cycle 08 0.2956 0.3675 0.3071 0.2990 33.4331 36.2207 34.8088 33.5721
Cycle 09 0.2977 0.3671 0.3072 0.2997 33.0643 35.7570 34.4008 33.1546
Cycle 10 0.2632 0.3335 0.3048 0.3000 32.8231 35.5104 35.2473 34.2196

7. Conclusions

To ensure the sufficient use of electric energy and reduce fuel consumption while ensuring the
performances of an extended-range electric bus, an adaptive-equivalent consumption minimum energy
management strategy is proposed based on target driving cycles generation:

(1) With the collected data and representative driving cycles, the target driving cycles are
generated by a Markov chain approach and used to train the optimal initial co-state map and validate
the simulations.

(2) The equidistant target driving cycles are solved via the PMP algorithm, forming the optimal
changing curves of SOC under different initial SOCs. Based on the solutions, a segmented SOC
reference curve is obtained: an exponential reference curve is used at SOC ≥0.85, and a linear reference
curve is adopted at SOC <0.85.

(3) An adaptive co-state function consisting of a fixed term and a dynamic term is established.
The vehicle information is acquired via ITS, and the weight-averaged vehicle speed is determined.
Together with the initial SOC data, the co-state map is interpolated, forming the optimal initial co-state,
which is used as the fixed term. The dynamic term is obtained using PI method to control the co-state
so as to follow the SOC reference curve.

(4) With the ten target driving cycles and different initial SOCs, the simulations of A-ECMS, PMP
and biased ECMS are validated. It is found A-ECMS could make the final SOC converge to the preset
SOC, and ensures the electric energy is fully utilized and the oil consumption solution is close to that
of PMP, while improving fuel economy.
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