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Abstract: Due to inherent randomness and fluctuation of wind speeds, it is very challenging to
develop an effective and practical model to achieve accurate wind speed forecasting, especially over
large forecasting horizons. This paper presents a new decomposition-optimization model created
by integrating Variational Mode Decomposition (VMD), Backtracking Search Algorithm (BSA), and
Regularized Extreme Learning Machine (RELM) to enhance forecasting accuracy. The observed
wind speed time series is firstly decomposed by VMD into several relative stable subsequences.
Then, an emerging optimization algorithm, BSA, is utilized to search the optimal parameters of
the RELM. Subsequently, the well-trained RELM is constructed to do multi-step (1-, 2-, 4-, and
6-step) wind speed forecasting. Experiments have been executed with the proposed method as well
as several benchmark models using several datasets from a widely-studied wind farm, Sotavento
Galicia in Spain. Additionally, the effects of decomposition and optimization methods on the final
forecasting results are analyzed quantitatively, whereby the importance of decomposition technique
is emphasized. Results reveal that the proposed VMD-BSA-RELM model achieves significantly better
performance than its rivals both on single- and multi-step forecasting with at least 50% average
improvement, which indicates it is a powerful tool for short-term wind speed forecasting.

Keywords: wind speed forecasting; hybrid forecasting model; signal decomposition techniques;
parameter optimization algorithms

1. Introduction

With the massive consumption of fossil fuel and the increasing pressure of environmental
protection, wind energy, one of the most major sustainable and clean energy sources, has been
attracting an increasing attention in the last decades due to its remarkable features, such as broad
distribution and abundant reserves [1]. Therefore, wind energy is a promising substitute in many
parts of the world. As the Global Wind Energy Council (GWEC) have reported, over 54 GW of
clean and sustainable wind power has been installed across the global market in 2016, which now
contains over 90 countries, including nine with over 10,000 MW installed, and 29 which have now
exceeded the 1000 MW mark. Cumulative capacity increased by 12.6% to reach a total of 486.8 GW [1].
However, affected by various factors (e.g., terrain, air pressure, temperature), wind energy is seriously
intermittent, random, highly non-linear, and non-stationary, which is not conducive to the large-scale
grid-connected operation of wind farms, and can bring a series of fatal problems for the safe and stable
operation of power systems. Fortunately, accurate and reliable wind speed forecasting can effectively
mitigate the negative impacts of wind energy on the power grid. Thus, many efforts have been done
in wind speed forecasting to achieve higher wind energy utilization rates, safe and stable operation of
power grids, and thereby gain more economic profits.
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At present, various forecasting models have been developed and applied in many fields [2–6].
Weron [3] provided a thorough review of the strengths, weaknesses, and future for the state-of-the-art
forecasting methods. Models used in wind speed/power forecasting can be divided into four main
types, including physical models, statistical models, machine learning (ML) models, and hybrid models.
The physical models are established according to hydrodynamic and thermodynamic equations.
They usually require various meteorological and geographic information, such as wind speed, wind
direction, temperature, humidity, barometric pressure, air density, elevation, among others. Therefore,
the input dimension of the physical models is extremely high and their implementation process are
very complex due to the large dimension of inputs. These two features limit the generalization of the
physical models in practical engineering applications.

Unlike physical models, statistical models are constructed using relative less historical data
through the analysis of the relevance between each point in the observed wind speed series.
Most commonly used statistical models are auto regressive (AR) model [7], autoregressive moving
average (ARMA) model [8], auto regressive integrated moving average (ARIMA) model [9], and
their variants. These models have simple structures, whereas they are often inefficient when handle
time series with high-nonlinear and non-stationary characteristics which are two essential features
of wind speed series. Therefore, machine learning (ML) models are exploited in this field due to
their remarkable abilities of nonlinear learning and generalization abilities. Cincotti et al. [6] has
demonstrated that the ARMA-Generalized AutoRegressive Conditional Heteroscedasticity (GARCH)
model is inferior to computational intelligence methods. Artificial neural networks (ANNs), the most
popular ML models, have been widely exploited over the last decades. Traditional ANNs mainly
include multi-layer perceptron (MLP) [6,10], back-propagation neural networks (BPNNs) [11–13],
generalized regression neural networks (GRNNs) [13], radial basis function neural networks
(RBFNNs) [13], and Elman neural networks (ENNs) [14,15]. Recently, the extreme learning machine
(ELM), a new single hidden layer feed-forward network (SLFN), has been developed [16]. Compared
with conventional ANNs, the most prominent characteristics of ELM are its simple structure, fast
learning rate, and strong generalization ability [16]. Unfortunately, the standard ELM is easy to over-fit
and sensitive to outliers, because it only takes the empirical risk minimization principle into account
during its implementation process [17–19]. Many researchers have applied their efforts to improving
the performance of ELM [17,18]. The most effective way is introducing regularization methods into
the basic ELM model to build the regularized ELM (RELM) model. Compared with the basic ELM,
the RELM can provide more accurate and stable results, which has been proved by [5,17,18].

With the rapid development of data mining and computational intelligence techniques, a number
of hybrid models with signal decomposition approaches and/or optimization algorithms have been
proposed/developed. The signal decomposition approaches are able to decompose the raw data into
a group of subseries which are smoother and easier to predict. Signal decomposition methods, such
as wavelet decomposition (WD) [20,21], empirical mode decomposition (EMD) [22–24], ensemble
empirical mode decomposition (EEMD), and variational mode decomposition (VMD) [25,26] are
widely used in recent years. Generally, the WD method depends heavily on the determination
of the mother wavelet functions, while, EMD has many drawbacks, including lack of an accurate
mathematical expression, interpolation method selection, and trapping into mode mixing problems.
Although EEMD is capable of solving the mode mixing issues of EMD, it still lacks a mathematical
theory, which may reduce its robustness. In contrast, the VMD method can adaptively decompose the
raw signal into several modes with specific sparsity properties and is also capable to overcoming the
problem of mode mixing [27].

On the other hand, optimization algorithms have become popular in constructing hybrid models
by tuning the parameters of ML models to further enhance forecasting accuracy. For example,
Ren et al. [11] applied the particle swarm optimization (PSO) algorithm to optimize the parameters of
BPNN so as to improve prediction accuracy of wind speed. Similarly, Gao et al. [28] used the firefly
algorithm (FA) instead of PSO to adjust the weights and thresholds of the BPNN, and then developed
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a new hybrid model. There are more examples of hybrid models based on optimization algorithms
in the wind speed/power forecasting, such as BPNN optimized by genetic algorithm (GA) [12],
ELM optimized by crisscross optimization algorithm [29], MLP optimized by GA [10], MLP optimized
by mind evolutionary algorithm (MEA) [10], SVM optimized by GA [21], least squares support vector
machine (LSSVM) optimized by gravitational search algorithm (GSA) [30], and adaptive neuro-fuzzy
inference system (ANFIS) optimized by an evolution PSO [31]. Though there are many examples of
successful applications for these optimization algorithms, the problems of premature convergence and
deficiencies in balancing global search and local mining still exist in these algorithms. Therefore, it is
worthwhile to find new efficient algorithms to solve wind speed forecasting problems. Recently, the
backtracking search algorithm (BSA), a novel stochastic search algorithm, has been proposed by [32].
Compared with the other stochastic population-based algorithms, BSA needs to set only one control
parameter and is easy to implement. Due to its simple structure and easy operation, BSA has been
applied to settle various complex nonlinear optimization problems [33–35], and therefore we attempt
to use it for solving wind speed forecasting problem in our work.

In this study, a novel decomposition-optimization model is proposed through combining RELM,
VMD, and BSA to achieve more accurate and reliable ultra-short-term wind speed forecasting. Firstly,
VMD is applied to decompose the original wind speed series into a group of relatively stable subseries
to reduce the distractions of the randomness and fluctuations of the original series on the prediction
accuracy. Then, RELM optimized by BSA is establish to forecast each subseries. Meanwhile, partial
autocorrelation function (PACF) is utilized to determine the optimal input vector. Finally, eventual
results can be obtained by the aggregation method. To demonstrate the effectiveness of the proposed
model, it has been thoroughly tested on several real wind speed datasets from the Sotavento Galicia
(SG) wind farm in Spain. Experimental results demonstrate that by using decomposition and
optimization techniques together, the forecasting performance of the proposed VMD-BSA-RELM
model is significantly better than that of the basic RELM model. Moreover, the decomposition method
VMD plays a more important role in the final improvement of the VMD-BSA-RELM model than the
optimization method BSA. This clearly shows how important it is to smooth time series to achieve a
desired prediction performance.

The main contributions of this study are listed as follows: (a) we first investigate the ability
of the combination of VMD, RELM, and BSA to forecast multi-step short-term wind speed; (b) the
proposed model can take full advantages of the signal decomposition approach, machine learning,
and optimization algorithm; (c) the positive effects of the decomposition and optimization approaches
on the final improvement are quantitatively analyzed.

The rest of the paper is organized as follows: the methods involved in the proposed model
including VMD, RELM, and BSA are briefly introduced in Section 2; the framework of the proposed
decomposition-optimization model is presented in Section 3; experiments and comprehensive analyses
to validate the proposed model are presented in Sections 4 and 5; and Section 6 concludes the paper.

2. Methodology

In this paper, the proposed hybrid model is integrated with three components, variational mode
decomposition (VMD), regularized ELM (RELM), and backtracking search algorithm (BSA). So, in this
section, separate theories of the VMD-BSA-RELM model will be described in detail.

2.1. Variational Mode Decomposition

Variational mode decomposition (VMD) developed by Dragomiretskiy and Zosso [27] is a novel
adaptive and non-recursive signal processing approach. The core of VMD is decomposing a signal
f (t) into a series of modes denoted as uk with specific sparsity characteristic [27]. The sparsity of each
mode is called its bandwidth in the spectral domain, which can be estimated using the following
steps: (1) Employ the Hilbert transform to each mode uk to produce a unilateral frequency spectrum,
(2) transform frequency spectrum of each mode to baseband regions by means of an exponential
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adjusted to the respective estimated frequency, and (3) estimate the bandwidth using the H1 Gaussian
smoothness of the demodulated signal, i.e., L2-norm of the gradient. Therefore, the process of
decomposition is implemented by settling the following optimization problem:

min
{uk},{ωk}

{
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}
, k = 1, 2, · · · , K

s.t. ∑
k

uk = f (t)
(1)

where uk and wk represent the set of all modes and their frequencies, respectively; f (t) denotes the
original signal; δ(t) denotes the Dirac distribution; and * is convolution operator.

Transform the above optimization problem into an unconstrained one by adding a quadratic
penalty term and Lagrangian multipliers, as follows:

L({uk}, {ωk}, λ) = α∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

+‖ f (t)−∑
k

uk ‖2

2
+

〈
λ(t), f (t)−∑

k
uk

〉 (2)

where α denotes the balancing factor of the data-fidelity constraint.
The above unconstrained optimization problem can be solved by means of the ADMM (alternate

direction method of multipliers), which can search the saddle point of the augmented Lagrangian in
a series of iterative sub-optimizations by updating un+1

k , ωn+1
k , and λn+1. un+1

k , ωn+1
k , and λn+1 are

updated by:

ûn+1
k =

f̂ (ω)− ∑
i 6=k

ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(4)

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂ (ω)−∑

i 6=k
ûn+1

k (ω)

)
(5)

where ûn+1
k , ûi(ω), f̂ (ω), and λ̂(ω) represent the Fourier transform of un+1

k , ui(t), f (t), and λ(t),
respectively; n denotes the number of iterations; τ is time-step of the dual ascent.

The termination condition of the VMD algorithm is presented as follows:

∑
k
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε (6)

where ε is tolerance of convergence criterion. The entire decomposition process for VMD can be
described as:

Step 1: Initialize parameters for VMD method including û1
k, ω1

k , and λ̂1, and set iteration number n = 1.
Step 2: Calculate ûn+1

k and ωn+1
k using the Equations (3) and (4).

Step 3: Update the Lagrangian multiplier in terms of Equation (5) and then set n = n + 1.
Step 4: Repeat the steps 2–4 until meeting the termination condition. Then, the final decomposed

modes can be obtained.

2.2. Regularized Extreme Learning Machine

An extreme learning machine (ELM) is a novel single-hidden-layer feed-forward neural network
developed by Huang et al. [16]. The significant feature of an ELM is that it randomly generates the
input weights and hidden biases, and then determines its output weights directly according to the
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Moore-Penrose generalized inverse matrix theory. Suppose there is a given set of training samples
(xt, yt) with M samples, the output of ELM with L hidden nodes can be estimated by:

ŷ =
L

∑
i=1

βigi(x) =
L

∑
i=1

βiG(wi · xt + bi) (7)

where gi(x) is the activation function of the ith hidden node; wi is the input weight vector; bi is the
hidden bias and βi is the output weight connecting the ith hidden node and the output node.

The above equation can be rewritten as:

Hβ = Y (8)

where β = [β1 · · · βL]
T , Y = [y1 · · · yM]T , and H is the hidden layer output matrix defined as :

H =

 h(x1)
...

h(xM)

 =

 G(ω1 · x1 + b1) · · · G(ωL · x1 + bL)
... · · ·

...
G(ω1 · xM + b1) · · · G(ωL · xM + bL)


M×L

(9)

The output weight can be calculated by means of the least squares method to find the optimal
solution of the following equation:

min
β

= ‖Hβ−Y‖2 (10)

The optimal solution can be written as:

β̂ = H†Y (11)

where H† is the Moore-Penrose generalized inverse matrix of H, which can be calculated by the
following orthogonal projection [16]:

H† =
[

HT H
]−1

HT (12)

Due to the numerical instability of the pseudo-inverse, the regularized ELM (RELM) is developed
through adding a positive value 1/C into the diagonal elements HT H when calculating the output
weights β. Hence, the estimated output weights β̂ of the RELM can be written as:

β̂ =

[
HT H +

I
C

]−1
HTY (13)

where I is the identity matrix. More information about RELM can be found in [18].

2.3. Backtracking Search Optimization Algorithm

The backtracking search optimization algorithm (BSA), put forward by Civicioglu [32], is a novel
stochastic search algorithm for real-valued numerical optimization problems. In contrast to other
population-based evolutionary algorithms, BSA has achieved good performance in both computation
speed and computation accuracy. The detailed structure of BSA is described as:

(1) Initialization. In this stage, the current population P is randomly generating in the search space by:

Pi,j = rand(0, 1) ∗ (upj − lowj) + lowj
i = 1, 2, · · · , N; j = 1, 2, · · · , D;

(14)

where N and D represent the population size and the individual dimensionality, respectively; rand(0, 1)
is a random generator to provide the number in range (0, 1) uniformly.
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(2) Selection I. The selection strategy is applied in this process to select the historical population
which will guide the search direction in the mutation step. The initial historical population OldP is
generated by:

oldPi,j = rand(0, 1) ∗ (upj − lowj) + lowj
i = 1, 2, · · · , N; j = 1, 2, · · · , D;

(15)

At the beginning of each iteration, the OldP is updated by:

oldP :=

{
P , a < b

permuting(oldP) , otherwise
(16)

where a and b are two random numbers distributed in the range (0, 1) uniformly; permuting(oldP)
means that the order of the individuals in oldP is randomly updated by a shuffling function.

(3) Mutation. In this step, the initial form of the trial population Mutant is defined as:

Mutant = P + F · (oldP− P)
F = 3 · rndn, rndn ∼ N(0, 1)

(17)

where (oldP− P) is the search-direction matrix; F is the mutation factor, which controls the amplitude
of (oldP− P).

(4) Crossover. In this step, the final form of the trial population T is generated. The crossover
operator contains a two-stage process. In the first step, a binary integer-valued matrix map of size
N×D is generated by:{

map(i, u(1 : mixrate ∗ rand ∗ D)) = 0, when c < d|c, d ∼ U(0, 1)

map(i, randi(D)) = 0, otherwise
(18)

where u = permuting(D) represents that the order 1, 2, · · · , D is changed by a random shuffle function;
mixrate is the only control parameter in BSA (called the mix rate parameter), which controls the number
of the individuals that will mutate in a trial.

In the second step, the trial population T is updated by:

Tij = Pij, when mapij = 1; i = 1, 2, · · · , N; j = 1, 2, · · · , D (19)

Note that, several individuals of the final trial population T may exceed the permissible search
space, hence boundary control strategy is quite necessary. The boundary control strategy is:

Tij = rnd ·
(
upj − lowj

)
+ lowj, Tij < lowj or Tij < upj (20)

(5) Selection II. A greedy selection is applied in this stage to update the population P, trial
individuals with better fitness value then are reserved. Steps 2–5 are repeated until the terminal
condition is reached.

3. The Proposed Decomposition-Optimization Model

The decomposition-optimization model developed in this study consists of variational
mode decomposition (VMD), regularized ELM (RELM), and backtracking search algorithm
(BSA). The proposed decomposition-optimization model is shorted as VMD-BSA-RELM. In the
VMD-BSA-RELM model, VMD is first used to smooth the wind speed data for preprocessing. RELM is
adopted as a predictor. Meanwhile, partial autocorrelation function (PACF) is executed to choose the
suitable input vector and BSA is applied to optimize the input weights and hidden thresholds of the
RELM model. The detailed procedures of the proposed hybrid VMD-BSA-RELM model are shown in
Figure 1.
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Due to the multi-step wind speed forecasting can provide more useful information for decision
makers, so the proposed VMD-BSA-RELM model is executed for multi-step wind speed forecasting.
The input-output combinations for different forecasting horizons are shown as:

ŷt+h = f (yt−1, yt−2, · · · , yt−d) (21)

where h is forecasting horizon; d is the suitable lag time which is determined by the PACF.
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4. Experimental Design

4.1. Data Collection

In this study, historical wind speed data were collected from the Sotavento Galicia (SG) wind
farm (original wind speed data from the SG wind farm can be found at: http://sotaventogalicia.
com/en/real-time-data/historical.). The SG wind farm is located in Galicia, in northwest Spain,
with latitude/longitude of 43.354377◦ N and 7.881213◦ W. Considering the influence of seasonal factors
on forecasting accuracy, four datasets, A, B, C, and D, from different seasons were selected to verify
the effectiveness of the proposed VMD-BSA-RELM method. Time periods of the four datasets are
15–21 January, 17–23 April, 13–19 July, and 3–9 October, respectively. Each dataset includes 1008 points
with 10 min interval. Based on our test results and [36–39], in each dataset, the first 75% data are
selected as training samples to build the prediction model while the remaining 25% are utilized to
test. The proposed model is applied to obtain 1-step, 2-step, 4-step, and 6-step (1 h) ahead wind speed

http://sotaventogalicia.com/en/real-time-data/historical
http://sotaventogalicia.com/en/real-time-data/historical
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forecasting. The raw wind speed data are shown in Figure 2, which indicates non-stationary and
nonlinear features of wind speed series.

The statistical information including average (Ave.) value, maximum (Max.) value, minimum
(Min.) value, standard deviation (Std.), the coefficient of variation (Cv) and the skewness coefficient
(Cs) of the four datasets are listed in Table 1. The standard deviations of all datasets are all above
1.49 (m/s), and the maximum/minimum values of Datasets A-D are 15.91/0.35 (m/s), 19.13/0.64 (m/s),
9.94/0.35 (m/s), and 9.08/0.74 (m/s). These results also indicate the non-stationary and nonlinear
features of the original wind speed series.
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Table 1. Statistical information for the four datasets.

Seasons Dataset Ave. (m/s) Std. (m/s) Cv. Cs. Max. (m/s) Min. (m/s) Numbers

Winter A 6.52 2.64 0.40 0.85 15.91 0.35 1008
Spring B 7.96 3.53 0.44 0.85 19.13 0.64 1008

Summer C 5.68 1.80 0.32 −0.43 9.94 0.35 1008
Autumn D 5.12 1.49 0.29 −0.46 9.08 0.74 1008

4.2. Data Decomposition and Parameters Settings

VMD is executed to decompose the raw wind speed series into several relatively stable modes
to make them easy to be predicted. Before the implementation of the decomposition using VMD,
the number of modes K needs to be preset. In this study, number of modes for each wind speed series
is searched in the range [3,14], respectively. Then, the suitable number of modes is determined by
the center pulsation of the decomposed modes [19]. After that, each mode will be forecasted by the
RELM optimized by BSA (BSA-RELM for short). The input vector of the BSA-RELM is determined by
the partial autocorrelation function (PACF). Take Dataset A as an example, the subseries generated
by VMD are shown in Figure 3 and the PACF values with 95% confidence interval are presented



Energies 2018, 11, 1752 9 of 27

in Figure 4. According to the partial autocorrelograms in Figure 4, the lagged variable with PACF
value over the confidence interval will be chosen to form the input vector of forecasting model.
The population size and the maximum iterations of BSA are set to 50 and 100, respectively. The input
selection approach PACF is exploited for all forecasting models involved in this study to guarantee fair
and effective comparisons.
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4.3. Evaluation Indices

To evaluate forecasting performance of all forecasting models, three commonly used error
evaluation metrics including mean absolute error (MAE), mean absolute percent error (MAPE), and
root mean square error (RMSE) are used in the study. They can be calculated by:
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MAE =
1
N

N

∑
i=1
|yi − ŷi| (24)

where yi and ŷi are the ith observed and predicted wind speed, respectively; N is the number
of samples.

To clearly view the improvement of a specific model, improved percentage metrics of RMSE,
MAE, and MAPE including PMAE, PRMSE, and PMAPE are calculated to exhibit the relative improvement
degree between two different models denoted as Model 1 and Model 2. PMAE, PRMSE, and PMAPE of
Model 2 relative to Mode 1 can be defined as:

PMAE = 100× (MAE1 −MAE2)/MAE1 (25)

PRMSE = 100× (RMSE1 − RMSE2)/RMSE1 (26)

PMAPE = 100× (MAPE1 −MAPE2)/MAPE1 (27)

5. Results and Discussions

Several experimental results are presented in this section to demonstrate the efficiency
and applicability of the proposed decomposition-optimization model (VMD-BSA-RELM).
These experiments are grouped into three subsections: one-step forecasting results, multi-step
forecasting results, and Diebold-Mariano tests and computational time.

5.1. One-Step Forecasting Results

This part focuses on presenting the one-step forecasting performance of the proposed
VMD-BSA-RELM forecasting model using four datasets from different seasons. ARIMA, RBF, GRNN,
RELM, VMD-RELM, and BSA-RELM are used as comparison models. Akaike’s Information Criteria
(AIC), which has widely used in model selections [40,41], is used to determine the appropriate
parameters of ARIMA. RMSE, MAE, and MAPE values provided by these seven forecasting models on
the testing data for all datasets are exhibited in Table 2, where the model with the lowest evaluation
indices values are highlighted in green. It can be seen that as for the three single neural network models
(RELM, GRNN, and RBF), RELM has the best performance and GRNN has the worst performance
for all datasets from different seasons. Meanwhile, forecasting results of ARIMA are closer to that
of RELM in some cases. Further, comparisons of RELM and VMD-RELM, RELM and BSA-RELM,
RELM and VMD-BSA-RELM suggest hybrid models outperform single model in all cases. This can
be directly and clearly seen in Table 3 and Figure 5. It is clear that both VMD and BSA have positive
effects on improving forecasting accuracy, while BSA has less contribution than VMD. Figure 5
visually indicates that the decomposition-optimization method can gain remarkable improvement of
forecasting accuracy compared with hybrid models based on either signal decomposition approach
or optimization algorithm. This clearly shows how important it is to incorporate VMD, BSA, and
RELM to achieve a desired prediction performance. Concretely, the average improved percentages of
RMSE, MAE, and MAPE between the VMD-BSA-RELM model and the single RELM model are 65.60%,
65.88%, and 66.21%, respectively, indicating a remarkable improvement. Figure 5 also shows that
PRMSE, PMAE, and PMAPE values between VMD-BSA-RELM and VMD-RELM are greater than those
between VMD-RELM and RELM. Similarly, PRMSE, PMAE, and PMAPE values between VMD-BSA-RELM
and BSA-RELM are greater than those between BSA-RELM and RELM. These results emphasize the
importance of the signal decomposition approach VMD, and the proposed models can take full
advantages of both decomposition and optimization techniques. Predicted and observed curves as
well as forecasting errors of all forecasting models are shown in Figure 6, where the predicted curves
of the VMD-BSA-RELM model are close to real curves and its forecasting errors are evenly distributed
around zero with a tiny range.
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Table 2. One-step forecasting results for different models.

Model
Winter (Dataset A) Spring (Dataset B)

RMSE (m/s) MAE (m/s) MAPE (%) RMSE (m/s) MAE (m/s) MAPE (%)

ARIMA 0.9089 0.6718 22.63 0.4943 0.3541 5.97
GRNN 1.1120 0.8674 38.15 0.5480 0.4080 7.01

RBF 0.7627 0.5808 24.09 0.5251 0.3923 6.71
RELM 0.7562 0.5515 17.97 0.4825 0.3531 6.02

VMD-RELM 0.4597 0.3583 15.30 0.2461 0.1817 3.05
BSA-RELM 0.6397 0.4866 17.16 0.4708 0.3279 5.47

VMD-BSA-RELM a 0.1821 0.1342 3.80 0.1940 0.1351 2.29

Model
Summer (Dataset C) Autumn (Dataset D)

RMSE (m/s) MAE (m/s) MAPE (%) RMSE (m/s) MAE (m/s) MAPE (%)

ARIMA 0.8448 0.6508 11.74 0.3663 0.2837 7.86
GRNN 0.8563 0.6653 12.10 0.7688 0.5976 19.03

RBF 0.8307 0.6481 11.73 0.6297 0.3884 13.68
RELM 0.8341 0.6469 11.67 0.3673 0.2767 7.48

VMD-RELM 0.5012 0.3829 7.09 0.1588 0.1128 3.42
BSA-RELM 0.8275 0.6533 11.79 0.3060 0.2231 6.50

VMD-BSA-RELM a 0.3204 0.2546 4.52 0.1291 0.0952 2.78
a The model with the lowest RMSE, MAE, and MAPE values are marked in green.
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Table 3. Percentage of improvement of different error indices under one-step forecasting.

Datasets Forecasting Models
Improved Percentage of Different Error Indices

PRMSE (%) PMAE (%) PMAPE (%)

Dataset A (Winter)

VMD-RELM vs. RELM 39.2 35.04 14.88
BSA-RELM vs. RELM 15.41 11.77 4.5
proposed vs. RELM 75.92 75.67 78.85

proposed vs. VMD-RELM 60.39 62.55 75.16
proposed vs. BSA-RELM 71.53 72.43 77.86

Dataset B (Spring)

VMD-RELM vs. RELM 48.99 48.54 49.29
BSA-RELM vs. RELM 2.43 7.13 9.15
proposed vs. RELM 59.79 61.75 61.97

proposed vs. VMD-RELM 21.16 25.66 25
proposed vs. BSA-RELM 58.79 58.81 58.14

Dataset C
(Summer)

VMD-RELM vs. RELM 40.3 40.66 39.08
BSA-RELM vs. RELM 1.42 1.25 1.3
proposed vs. RELM 61.83 60.55 61.12

proposed vs. VMD-RELM 36.06 33.52 36.18
proposed vs. BSA-RELM 61.28 61.03 61.62

Dataset D
(Autumn)

VMD-RELM vs. RELM 56.76 59.21 54.27
BSA-RELM vs. RELM 16.69 19.35 13.17
proposed vs. RELM 64.86 65.57 62.9

proposed vs. VMD-RELM 18.74 15.59 18.87
proposed vs. BSA-RELM 57.82 57.31 57.27

Average

VMD-RELM vs. RELM 46.31 45.86 39.38
BSA-RELM vs. RELM 8.99 9.88 7.03
proposed vs. RELM 65.60 65.88 66.21

proposed vs. VMD-RELM 34.09 34.33 38.80
proposed vs. BSA-RELM 62.36 62.40 63.72

5.2. Multi-Step Forecasting Results

This section is devoted to illustrate the efficacy of the proposed model on multi-step wind speed
forecasting. The RELM, VMD-RELM, and BSA-RELM which perform better among all competitors are
performed as benchmark models in this experiment. Table 4 displays the forecasting performance for
different seasons by these four models in 2-step, 4-step, and 6-step forecasting in terms of RMSE, MAE,
and MAPE values, where the lowest values among diverse models are emphasized in green. It can be
seen that although the forecasting performances deteriorate as the length of the forecasting horizons
increase, the proposed model can always outperform than other forecasting models in all cases and
horizons, followed by the VMD-RELM model, last the RELM. For instance, for the Dataset A (Winter),
the RMSE value of the proposed model (VMD-BSA-RELM) in 2-step, 4-step, and 6-step are 0.2462 m/s,
0.4286 m/s, and 0.7120 m/s, respectively, which are better than these of 0.604 m/s, 0.7544 m/s and
1.0633 m/s for VMD-RELM. Moreover, the performance of BSA-RELM is closer to or even worse than
that of the RELM along with the increase of the forecasting steps. More concretely, for the Dataset C,
the RMSE and MAE values of the BSA-RELM are 1.2911 m/s and 1.0298 m/s for 6-step forecasting,
which are slightly worse than these of 1.2893 m/s and 1.0286 m/s for the single RELM model.
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Table 4. Multi-step forecasting results for different models.

Datasets Models
2-Step 4-Step 6-Step

RMSE
(m/s)

MAE
(m/s) MAPE RMSE

(m/s)
MAE
(m/s) MAPE RMSE

(m/s)
MAE
(m/s) MAPE

A

RELM 0.9646 0.7208 0.2466 1.1927 0.9507 0.3319 1.3488 1.0901 0.3947
VMD-RELM 0.6040 0.4746 0.1943 0.7544 0.6105 0.2449 1.0663 0.8491 0.3378
BSA-RELM 0.9379 0.7083 0.2564 1.1868 0.9466 0.3385 1.3411 1.0854 0.4043
Proposed a 0.2462 0.1833 0.0563 0.4286 0.3172 0.0909 0.7120 0.5422 0.1703

B

RELM 0.7569 0.5361 0.0901 0.9993 0.7575 0.1301 1.1419 0.8928 0.1570
VMD-RELM 0.3230 0.2441 0.0414 0.4664 0.3543 0.0600 0.5915 0.4446 0.0746
BSA-RELM 0.6737 0.4665 0.0794 0.9389 0.7000 0.1203 1.1039 0.8708 0.1537
Proposed 0.2036 0.1482 0.0250 0.4174 0.3148 0.0540 0.4239 0.3228 0.0550

C

RELM 1.0677 0.8089 0.1528 1.2245 0.9533 0.1793 1.2893 1.0286 0.1915
VMD-RELM 0.6050 0.4562 0.0838 0.8118 0.6347 0.1177 0.8627 0.6578 0.1228
BSA-RELM 1.0538 0.8036 0.1499 1.2227 0.9342 0.1761 1.2911 1.0298 0.1899
Proposed 0.3809 0.2990 0.0542 0.6202 0.4626 0.0862 0.6618 0.4959 0.0919

D

RELM 0.4861 0.3660 0.1032 0.6650 0.4800 0.1454 0.8041 0.5616 0.1778
VMD-RELM 0.1935 0.1434 0.0425 0.3064 0.2287 0.0655 0.4344 0.3232 0.0927
BSA-RELM 0.4345 0.3241 0.0927 0.6336 0.4617 0.1394 0.7725 0.5434 0.1706
Proposed 0.1377 0.0995 0.0296 0.1957 0.1496 0.0432 0.3301 0.2528 0.0717

Average

RELM 0.8188 0.6080 0.1482 1.0204 0.7854 0.1966 1.1460 0.8933 0.2302
VMD-RELM 0.4314 0.3296 0.0905 0.5848 0.4570 0.1220 0.7387 0.5687 0.1570
BSA-RELM 0.7750 0.5756 0.1446 0.9955 0.7606 0.1936 1.1271 0.8823 0.2296
Proposed 0.2421 0.1825 0.0413 0.4155 0.3110 0.0686 0.5319 0.4034 0.0972

a The model with the lowest RMSE, MAE, and MAPE values are marked in green.

The 4-step and 6-step wind speed forecasting results as well as forecasting errors for different
models are presented in Figures 7–10, where the superiority of the VMD-BSA-RELM model is
confirmed. In these figures, the proposed VMD-BSA-RELM model always provides the smallest
forecasting error variation ranges than other models and can accurately capture the variation trend
of real wind speed, even for the 6-step forecasting. Additionally, forecasting errors increase along
with the growth of horizons, specifically in peak and valley parts. Overall, the proposed model
can maximize the advantages of the VMD and BSA methods to produce highly accurate results in
multi-step forecasting, which is consistent with the conclusion drawn from one-step forecasting results.
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The improved percentages of the proposed VMD-BSA-RELM model on the basis of RELM,
VMD-RELM, and BSA-RELM for multi-step forecasting results are tabulated in Table 5. To visually
view the improvements, the average improved percentages for different forecasting horizons in the
last three rows of Table 5 are exhibited in Figure 11, where remarkable improvements of the proposed
model over its competitors on all three metrics are revealed. The average improved ratios of all horizons
for RELM, VMD-RELM, and BSA-ELM are 62.9%, 33.74%, and 61.63%, respectively. In summary,
according to Tables 3 and 5, the proposed model produces a better result with a least 53.63% average
improved ratios over three competitors with better performance among all benchmark models (RELM,
VMD-RELM, and BSA-RELM) under all datasets and all horizons (1-, 2-, 4- and 6-step).
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Table 5. Improved percentage of different error indices under multi-step forecasting. 

Datasets Forecasting Models 

2-Step 4-Step 6-Step 
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proposed vs. VMD-RELM 36.96 39.28 39.51 10.52 11.15 9.97 28.34 27.39 26.36
proposed vs. BSA-RELM 69.77 68.23 68.48 55.55 55.03 55.08 61.60 62.93 64.25

C
proposed vs. RELM 64.32 63.04 64.52 49.35 51.47 51.94 48.67 51.79 52.03

proposed vs. VMD-RELM 37.04 34.46 35.32 23.61 27.11 26.82 23.29 24.61 25.21
proposed vs. BSA-RELM 63.85 62.79 63.83 49.28 50.48 51.06 48.74 51.84 51.63

D
proposed vs. RELM 71.67 72.81 71.37 70.57 68.84 70.27 58.95 54.99 59.66

proposed vs. VMD-RELM 28.83 30.58 30.46 36.12 34.60 33.98 24.01 21.79 22.67
proposed vs. BSA-RELM 68.30 69.29 68.13 69.11 67.61 69.00 57.27 53.47 57.96

Average
proposed vs. RELM 70.43 69.98 72.15 59.28 60.40 65.13 53.58 54.84 57.78

proposed vs. VMD-RELM 43.87 44.62 54.40 28.95 31.94 43.81 27.99 29.06 38.07
proposed vs. BSA-RELM 68.76 68.29 71.47 58.27 59.11 64.57 52.81 54.28 57.66
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5.3. Diebold-Mariano Tests and Computational Time

In this part, the Diebold-Mariano (DM) test [42] is applied to assess whether there are real
differences between the proposed model and its competitors. The DM test results calculated by the
square error loss function are tabulated in Table 6. It can be seen that the DM statistical values of the
RELM, VMD-RELM, and BSA-RELM are more than the threshold value of the 1% significance level
for all datasets and all forecasting horizons, which demonstrates the proposed model is superior to
its rivals.

The average values of computational times of various step-ahead wind speed forecasting, with
regard to Datasets A, B, C, and D, for all prediction models, are shown in Table 7. When compared
with the other forecasting models, the proposed VMD-BSA-RELM model has higher time consumption
due to the utilization of the optimization algorithm BSA, whereas its computational time is acceptable
in real engineering application. These results have proven that the VMD-BSA-RELM model can
provide more accurate wind speed forecasting results through sacrificing computational time within
an admissible degree.

Table 6. Results for the DM test.

Datasets Models 1-Step 2-Step 4-Step 6-Step

Dataset A
RELM 8.1298 * 8.4312 * 10.0726 * 9.7100 *

VMD-RELM 9.2155 * 10.0883 * 8.2967 * 8.1698 *

BSA-RELM 8.9351 * 8.7249 * 9.8394 * 9.7337 *

Dataset B
RELM 6.0173 * 6.7680 * 8.2621 * 9.8667 *

VMD-RELM 3.1415 * 6.1912 * 2.3712 * 6.1402 *

BSA-RELM 5.5741 * 5.9754 * 7.3984 * 9.5591 *

Dataset C
RELM 8.4329 * 7.7476 * 7.5300 * 8.7539 *

VMD-RELM 6.2086 * 5.6829 * 5.2505 * 6.9023 *

BSA-RELM 9.8363 * 8.4413 * 7.1543 * 8.8276 *

Dataset D
RELM 7.7681 * 8.0019 * 7.6635 * 7.0102 *

VMD-RELM 3.3893 * 5.9483 * 7.2428 * 6.9873 *

BSA-RELM 7.2513 * 8.0718 * 7.6262 * 6.8848 *

* indicates the 1% significance level.

Table 7. Computational time for different models. (unit: s).

Models Dataset A Dataset B Dataset C Dataset D Average

RELM 0.2498 0.269 0.245 0.2515 0.253825
VMD-RELM 0.5305 0.5395 0.5188 0.506 0.5237
BSA-RELM 13.2803 12.8073 11.9297 12.3155 12.5832

VMD-BSA-RELM 40.87 40.2485 40.7218 39.2548 40.273775

6. Conclusions

Wind speed forecasting is a crucial part of wind energy generation. However, due to its inherent
randomness, high non-linearity and non-stationarity, accurate wind speed forecasting is a very
challengeable task. In this study, a new decomposition-optimization method called VMD-BSA-RELM
is proposed for short-term wind speed forecasting. Original wind speed data is preprocessed by VMD
into a group of relative stationary modes where regressions by RELM are executed. Suitable parameters
of RELMs are determined by means of BSA. The efficacy of the VMD-BSA-RELM was tested against
several benchmark models using several datasets under different forecasting horizons. The results
indicate that the VMD-BSA-RELM model significantly outperforms the other models and sacrifices
computational time with an acceptable degree in real applications. Additionally, quantitative analyses
of the effects of decomposition and optimization techniques on the final improvement of forecasting
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accuracy show that the decomposition approach, VMD, contributes more than the optimization
method, BSA. The VMD-BSA-RELM combines VMD with BSA and thus take full advantages of
both two methods. In conclusion, the proposed method is a powerful tool in short-term wind speed
forecasting. Future work will focus on the investigation of the maximum forecasting horizons of the
VMD-BSA-RELM model and introducing error correct techniques to improve its accuracy in large
multi-step forecasting, especially in peak and valley parts.
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Nomenclature

uk All modes of VMD
wk Frequencies of all modes
f (t) Original signal
δ(t) Dirac distribution
α The balancing parameter of the data-fidelity constraint
ûn+1

k Fourier transform of un+1
k

ûi(ω) Fourier transform of ui(t)
f̂ (ω) Fourier transform of f (t)
λ̂(ω) Fourier transform of ui(t)
τ Time-step of the dual ascent
ε Tolerance of convergence criterion
gi(x) Activation function
wi The input weight vector
H The hidden layer output matrix
H† Moore-Penrose generalized inverse matrix of H
(xt, yt) Training samples
M Total number of training samples
L hidden nodes
N Population size
D Individual dimensionality
a, b Random numbers distributed uniformly from 0 to 1
OldP Historical population
T Trial population
P Current population
mixrate Mix rate parameter of BSA
h Forecasting horizon
d Suitable lag time
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