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Abstract: The paper presents an overview of the traditional methods to obtain wind parameters
such as wind speed, wind direction and air density. After analyzing wind turbines’ arrangements
and communication characteristics and the correlation of operation data between wind turbines,
the paper proposes a novel recombination-sensing method route of “measuring–correlating–sharing–
predicting–verifying” (MCSPV) and explores its feasibility. The analysis undertaken in the paper
shows that the wind speed and wind direction instrument fixed on the wind turbine nacelle is
simple and economical. However, it performs in-process measurement, which restricts the control
optimization of wind turbines. The light detection and ranging (LIDAR) technology which is accurate
and fast, ensures an early and super short-time sensing of wind speed and wind direction but it is
costly. The wind parameter predictive perception method can predict wind speed and wind power at
multiple time scales statistically, but it has limited significance for the control of the action of wind
turbines. None of the traditional wind parameter-sensing methods have ever succeeded in air density
sensing. The MCSPV recombination sensing method is feasible, both theoretically and in engineering,
for realizing the efficient and accurate sensing and obtaining of such parameters as wind speed, wind
direction and air density aimed at the control of wind turbines.

Keywords: wind turbine; wind parameter; measurement awareness; predictive perception;
recombination sensing; technology framework

1. Introduction

Owing to its huge reserves, renewability, wide distribution and environmental friendliness, wind
power has become the most valuable clean energy source [1,2]. With the continuing development
of wind power technology, the efficient utilization of wind power and intelligent operation of wind
turbines have become a research hotspot in the field of wind power generation [3]. The accurate
sensing of wind speed not only helps to track the maximum wind power in wind turbine power
generation but also provides reliable parameters for the pitch control of wind turbines, which is
significant in lowering the fatigue load and ultimate load of wind turbines [4–6]. Obtaining accurate
wind direction reduces the malfunction times of the yaw system of wind turbines, improves the wind
power capture efficiency, ensures the operation security of wind turbines and prolongs the turbine
life [7–9]. As a major factor determining the actual power curve of wind turbines, air density is of great
significance to the control performance optimization of the wind turbine power generation [10–12].
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Therefore, accurate, comprehensive, efficient and cost-effective wind parameter sensing not only
promotes the economic efficiency of the wind farm but also improves the operational security and
control performance of wind turbines.

The intrinsic nature of wind power, including its stochastic fluctuation, intermittency and vector
variability remains a major challenge for control optimization and grid connection in wind power
generation [13]. Theoretically, to predict wind speed, wind direction and air density in advance can
provide a technical solution to this problem. Wind parameter prediction not only lowers the risks of
the wind power generation system due to wind power uncertainty, but also increases the wind power
generation efficiency by enhancing wind power utilization and promotes the control performance
of wind turbines [14]. Wind parameter prediction on the scale of minutes can help to achieve yaw
anticipation, variable pitch and feedforward control over power generation. Wind parameter prediction
on the scale of hours or days can provide guidance for wind farm output power prediction and
grid connection scheduling. Apparently, accurate and efficient wind parameter sensing prediction
technology is of great significance and has engineering value for the intelligent control optimization
and grid connection scheduling of wind turbines.

The paper summarizes the current wind parameter sensing methods from two aspects which include
the measurement awareness and the predictive perception of wind parameters. The paper discusses
the features and limitations of the traditional wind parameter-sensing methods from the perspectives
of comprehensiveness, accuracy and economic efficiency. The paper proposes the technical approach of
a novel “measuring–correlating–sharing–predicting–verifying” (MCSPV) recombination-sensing method
of data-sharing wind turbine groups and treats some critical problems which need to be solved, providing
reference for the future development of wind parameter sensing technology.

2. Traditional Wind Parameters Sensing Methods Overview

There are various wind parameters involved in the operating process of wind farms, including
wind speed, wind direction, air density, temperature, atmospheric pressure, and altitude. Among them,
wind speed, wind direction and air density have direct influences on the wind power captured and
the economic efficiency of wind farms. Accurate wind parameter sensing is a research hotspot in the
field of wind power generation. There are currently two technical approaches: (i) the measurement
awareness; and (ii) the predictive perception. Measurement awareness approaches take two major
forms—measurement by wind speed and wind direction instruments, and light detection and ranging
(LIDAR) sensing.

2.1. Measurement Awareness Method of Wind Parameters

2.1.1. Measurement Awareness of Wind Parameters by Wind Speed and Wind Direction Instrument
Fixed on Wind Turbine Nacelle

In terms of the working principle, there are two types of wind speed and wind direction
instruments fixed on the wind turbine nacelle: the mechanical and ultrasonic. The mechanical type is
generally made up of a wind direction indicator and a wind-cup wind speed instrument, as shown
in Figure 1a. To measure the wind speed, a low-inertia wind cup is used as the sensing part and
when driven by horizontal wind, the wind cup starts to spin and the wind speed can be obtained
by a Howell magneto sensor [15]. To measure the wind direction, a low-inertia wind direction part
spins with the wind which drives the wind direction disk at the lower end of the spindle and real-time
wind direction can be determined by the signal generator. Simple in structure and low in price,
the mechanical spinning wind speed and wind direction instrument is currently a major tool used for
the measurement of wind speed and wind direction in wind farms. However, due to its relatively low
accuracy and inertial delay in mechanical structure, it does not work for a low wind speed (breeze)
and can only be used to measure high wind speeds. This type of instrument is susceptible to wear and
tear, sand wind, frost, rain and snow. Moreover, it has a short lifespan.
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(a) The ultrasonic type of instrument; (b) the mechanical type of instrument.

The ultrasonic wind speed and wind direction instrument measures wind speed by the ultrasonic
time-difference method. Ultrasonic waves in wind farms travel under the influence of wind speed,
so by monitoring the returned values of the ultrasonic wave from different angles, accurate wind
speed and wind direction can be obtained. The ultrasonic type is very accurate (its error being less
than 1 m/s), and it can be used to measure the instant fluctuating wind speed. This type of instrument
is spared the defects of the traditional mechanical type, but due to its high cost and vulnerability to
severe weather, it has only found partial applications in field use.

The wind parameter-sensing technology based on a wind speed and wind direction instrument
fixed on a wind turbine nacelle is simple and reliable, and provides real-time data regardless of the
complex wake effect between wind turbines inside the wind farm and the turbulence effect due to
complex terrain. However, due to its low accuracy and measurement delay, the wind speed and wind
direction instrument hinders further enhancement of the wind power generator in its pitch, power
generation, and yaw control performance. For the pitch control of wind turbines, a relatively large error
occurs in the pitch angle control due to the low accuracy in wind speed measuring, thus increasing
the fatigue load and limiting the load of wind turbines. For the power generation control of wind
turbines, measurement awareness technology by the wind speed and wind direction instrument fixed
on the wind turbine nacelle does not provide the air density parameter. Under the effect of measuring
accuracy of the wind speed, the wind power generation system cannot fulfill the maximum wind
power tracking and the wind power utilization remains to be raised. Besides, the accuracy and time
delay of the measured value of the wind direction cannot give accurate yaw guidance for the yaw
system, thus compromising the operating effectiveness of the yaw system and the operating security
of wind turbines.

2.1.2. Wind Parameter-Sensing Based on Light Detection and Ranging (LIDAR) Fixed on Wind
Turbine Nacelle

The traditional wind speed and wind direction instrument is not accurate enough and is susceptible
to sand, wind, rain and snow. It does not measure all parameters and cannot provide predictive
information in advance. To overcome these defects, many researchers in recent years have been trying
to apply LIDAR technology to wind parameter sensing of wind turbines [16–22]. It is a remote sensing
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technology of measuring wind speed and wind direction via the light wave signals of detecting laser
and detected object. The laser radar is installed on the wind turbine nacelle, aligned with the turbine
shaft, as shown in Figure 2.
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Figure 2. Wind measurement diagram of light detection and ranging (LIDAR) instrument fixed on wind
turbine nacelle. (a) Diagram of installation of the LIDAR; (b) wind measuring principle of the LIDAR.

As shown in Figure 2b when the turbine motor rotates, the LIDAR scans the upstream area
of a wind field on the rotator plane wedge with an angle of 15 degrees. The scanning occurs 50 to
100 m in front of the wind turbine vane, forming a half cone-shaped area with a 30-degree angle and
a radius of 2/3 the vane. Based on the fixed position and azimuthal angle of the LIDAR, the recorded
information of wind speed and wind direction is calculated by the rotating wedge-shaped scanner of
the LIDAR [17]. The technology has proved effective in wind parameter measuring and can provide
predictive data of wind speed (within 50 to 100 m ahead of the wind turbine) and wind direction
(no longer than 10 s) [18].

Due to its working principle, the LIDAR fixed on a wind turbine nacelle cannot be used to
measure air density. It has a high sensing accuracy, with its wind speed measuring error being no more
than 3% [16]. However, as a precision instrument, it is too costly and is not suitable for wider use in
large-scale wind farms. In terms of the time needed for wind parameter measuring, the LIDAR can
obtain the speed and direction of the coming wind at least 10 s in advance and provides predictive
parameters for wind power generation control within a short time. Numerous experts and scholars
have been engaged in exploring the field of feedforward control of wind power generation. The major
research results include [17] in which Johnson et al. input the wind speed and wind direction measured
by LIDAR into the power controller of a wind turbine. They were the pioneers in feedforward control
research of wind power generation. The wind turbine was kept at its best state of tip speed ratio and
the capacity factor (Cp) was realized to track of optimal wind power utilization. Through feedforward
control of the LIDAR, the wind power yield was raised by a 6% to 10%. Wang [18] was able to
predict strong turbulence effect and high wind speed with a prospective LIDAR 100 m ahead of the
wind turbine, effectively lowering the fatigue load and limit load of wind turbines by 16% to 25%,
and avoid vane chattering caused by local turbulence flow so that the controlled pitch angle can be
adjusted smoothly and thus the service life of the pitch blades could be prolonged. Based on the
turbulence freezing hypothesis, [19] measured the wind speed and wind direction by LIDAR to provide
feedforward control over the discrete time for wind power generation. This ensures better tracking
of the average wind speed of the generator rotor and provides control strategies for accelerating or
decelerating torque T of the wind turbine.

With its great advantages on super-short time prediction of wind speed and wind direction,
LIDAR has laid solid foundations for the feedforward control of wind power generation. However,
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as its feedforward wind parameter sensing is based on the turbulence freezing hypothesis, there is
insufficient consideration of the turbulence effect and wake effects ahead of the wind turbine [17–19].
Besides, the current LIDAR works better at low frequencies. When the radar observation signal goes
through low-pass filtering, the wind power generator controller responds only when the wind direction
of a wind farm varies in the low frequency range [18]. The hypothesis of the wind speed and wind
direction mutation is over-idealized and a correlation model of wind farms needs to be established [20].

2.2. Predictive Perception Method of Wind Parameter

Measurement awareness of wind parameters aims to obtain the wind speed and wind direction
parameters through advanced detecting technology. Based on statistical analysis of the operating data,
the predictive perception of wind parameters is done by a prediction model. It is another important
means of obtaining wind parameters. Literature retrieval shows that wind parameter prediction has
always been a research focus and hotspot for experts and scholars, with their major emphasis on
the prediction of wind speed and output power of wind farms [23–29]. According to the existing
literature on prediction methods, there are five layers of wind parameter prediction, i.e., the data layer,
the selecting layer, the model layer, the feedback layer and the output layer.

There are two technical approaches for the typical research methods of wind parameter predictive
perception: statistics [23–27] and the intelligent algorithm [28–34]. For the statistical approach,
a statistical analysis of the historical data is made with all types of regression techniques and
a mapping relation is established between the actual values and the predicted ones. The typical methods
include the least square method [23], the auto-regressive and moving average model (ARMA) [24,25],
the time-series method [26], and the wavelet analysis method [27]. For the intelligent algorithm
approach, it selects massive wind farm operating data as the research target and conducts a training
study of datasets by simulating biology or intelligent evolution to predict wind parameters. There are
generally artificial neural network (ANN) [28–31], support vector machine (SVM) [31–33] and Kalman
filtering method [34] approaches. In recent years, with the development of big data and data-mining
technology, the use of spatial correlation between wind farms in predicting wind speed and wind
direction has opened up a new route for wind parameter predictive perception [34–38]. The spatial
correlation method selects multiple sets of historical data from wind farms at different locations [36],
with all factors taken into consideration, including geographic space (wind turbine distribution
and topological structure, etc.), environmental conditions (atmospheric pressure, temperature, etc.),
and physical effects (wake effect, wind farm terrain, roughness, etc.). It determines the wind speed
correlation between wind turbines for different time delays, establishes a correlation prediction model
based on spatial correlation and predicts the wind speed [34,35].

By using the statistics method and the intelligent algorithm to predict wind parameters, it is
possible to obtain the wind speed and wind power parameters which satisfy the needs of wind power
generation optimization control and power grid scheduling. Therefore, the security and friendliness
of wind power grid connection can be effectively enhanced. The methods have worked well in wind
power grid connection scheduling and wind power prediction; nevertheless, they still have some
defects. Currently, wind parameter predictive perception is used mainly for predicting the wind speed
and wind power of wind turbines. Due to the random change of wind direction and the difficulty
of air density measuring, there are few studies on the prediction of wind direction and air density.
As the prediction model is low in accuracy, the wind parameter prediction error can be as large as
25–40% [31]. With the time scale of the prediction as super short term (0–4 h) and short term (3 days)
and the time resolution as 15 min [33], it has very limited significance for the intelligent control of
wind turbines. The intelligent algorithm also has certain weaknesses such as calculations that are
too much complex; difficulty in determining the optimum structure of the neural network; and the
overfitting problem, etc. It takes plenty of training time and memory, which affects the timeliness of
wind parameter prediction and the control performance of wind power generation.
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Current studies on the prediction methods focus mainly on the spatial correlation of wind speed
and wind power between adjacent wind farms. From the wind speed and wind power of the known
areas, the unknown wind parameters of the related location can be calculated and predicted. It can be
applied to a single wind farm to enhance the accuracy of wind power prediction. It can also be applied
in the study of the effect of wind power equivalent capacity on the reliability of the electric power
system [37] and in improving the security of large-scale wind power grid connection. Undoubtedly,
the spatial correlation prediction method is also subject to the transient change of wind speed and the
dynamic change of wind direction. In addition, when using the spatial correlation method, one should
also note the spatial features for different terrains and roughness degrees, the time characteristics in
different seasons and at different hours, and the external characteristics under different meteorological
conditions like the temperature and atmospheric pressure [38,39].

2.3. Discussion and Outlook

As mentioned previously, the accurate sensing and predicting of wind speed, wind direction
and air density parameters is of great significance in enhancing the wind power utilization, lowering
the fatigue load of wind turbines, and optimizing wind power control. Measurement awareness and
predictive perception are the two major technical approaches of the current wind parameter-sensing
technology. Table 1 shows the comparative analysis in terms of the comprehensiveness, accuracy,
economic efficiency, time-scale and application model of the wind parameter-sensing technology.

Table 1. Performance comparison of different wind parameter-sensing technologies.

Sensing Technology

Measurement Awareness
Based on Wind Speed
and Wind Direction
Instrument Fixed on

Wind Turbines

Measurement Awareness
Based on LIDAR Fixed

on Wind Turbines

Predictive Perception of
Wind Parameters

Performance
index

Comprehensiveness
Wind speed and wind
direction measurable; air
density unmeasurable.

Sensing of wind speed and
wind direction; air density
unmeasurable.

Mainly for prediction of
wind speed and wind
power; rarely used for
prediction of wind
direction and air density.

Accuracy

The mechanical type is low
in accuracy and does not
work for the low wind
speed interval. The
ultrasonic type is high in
accuracy and works for the
full wind speed interval.

High sensing accuracy and
not subject to the wind
speed interval.

Low in prediction
accuracy; the error
depends on the accuracy
of the prediction model.

Economic efficiency

The mechanical type is low
in price but high in failure
rate; the ultrasonic type is
high in price and needs
regular maintenance.

LIDAR is a precision
device with high cost.

Low investment in
hardware equipment;
good economic efficiency.

Time scale

The mechanical type has
an inertial delay of 2 to 3 s.
The ultrasonic type has
transient response and
measurement awareness.

LIDAR provides
prediction of wind speed
and wind direction 10 s in
advance.

Predict the parameter 0 to
4 h or even several days in
advance, with the
prediction time resolution
being 15 min.

Application model

Single-machine local
service; power generation
control, pitch control and
yaw feedback control.

Single-machine local
service; super short-time
power generation control
and pitch feedforward
control.

Wind power grid
connection scheduling
service; wind power
prediction and power
generation scheduling.

From comprehensive consideration the results of the literatures and Table 1, it could be concluded
that the traditional methods for wind parameter acquisition have characteristics and shortcomings
as follows:
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(i) Simple and practical, good in economic efficiency, the measurement awareness technology based
on wind speed and wind direction instrument fixed on wind turbines has found wide applications.
It remains the predominant wind parameter sensing method in terms of wind turbine control
at present. However, due to its low accuracy, it cannot provide prospective wind parameter
information for wind turbine control. High in accuracy, the LIDAR sensing technology, on the
other hand, can provide prospective information of wind speed and wind direction within the
coming 10 s and has laid the foundations for the feedforward control of wind power generation.
However, due to its high price and maintenance cost, it is now mainly used in verifying the wind
parameter and power curve of wind turbines and not yet technically or economically suitable to
be installed on every wind turbine. Besides, restricted by the performance parameter of LIDAR,
the sensing technology of LIDAR fixed on a wind turbine nacelle has limited optimizing effect
on the yaw control of wind turbines. The traditional measurement awareness technology fails
to provide wind speed and wind power parameters which can satisfy the needs of wind power
generation and grid connection scheduling in terms of time scale.

(ii) With small investment in hardware and good economic efficiency, the wind parameter predictive
perception technology can predict wind speed and wind power for wind power grid connection
scheduling and has become essential for secure grid connection of wind power. But the prediction
error is heavily susceptible to the model accuracy; therefore, it remains a major challenge to
enhance its prediction accuracy.

(iii) None of the traditional wind parameter-sensing methods has ever succeeded in air density sensing
which directly affects the wind power curve of wind turbines and the control optimization of
wind power generation; therefore, more importance must be attached to it. Under the influence
of the geographical condition and environment, there could be a fairly big difference in the
air density inside the wind farm area, which affects the power curve of wind turbines and the
output power. Theoretically, the real-time air density can be calculated from the temperature
and atmospheric pressure. However, the error amplification effect may cause a fairly large error
between the theoretical value and the actual value of the density, which makes it unsuitable for
practical applications. In engineering, standard air density is usually used for checking and there
will be a big difference between the actual power curve of the wind turbine and the standard air
density, causing the wind turbine to miss optimum control.

(iv) There are two major technical approaches of the wind parameter-sensing technology: real-time
observation and prediction. The use of only one wind measuring and sensing technology
means an information delay and a large error. Therefore, a combined application of multiple
wind measuring technologies is the trend of future wind parameter sensing. Theoretically,
the combination can help realize mutual verification and correction between the measured
and predicted wind parameters and output more accurate time series of wind parameters of
different time scales to perform different functions.

Based on the engineering application function of the wind parameters, the application of wind
parameter sensing includes the action control of wind turbines and grid connection scheduling of wind
farms. Different categories, accuracy degrees and time scales are needed for different applications.
There have been numerous studies and discussions on the development trends and key technologies
of wind speed and wind power sensing technology aimed at grid connection scheduling of wind
farms. However, discussions on the wind parameter sensing technology aimed at the action control
of wind turbines are few and far in between. With the rapid development of wind power and the
increasing expansion of installed capacity in wind power grid connection, the control optimization of
wind turbines and efficient utilization of wind power are becoming a research focus. The prediction
of wind speed, wind direction and air density provides accurate data for the control optimization
of wind turbines. Accurate data combined with advanced control technology is of great theoretical
significance and engineering value in improving the control performance of wind turbines and the
wind power utilization of wind farms. For example, the second-scale prediction of wind speed and air
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density parameters for power generation control can effectively boost the power-generating capacity of
wind turbines. The minute-scale prediction of wind speed and wind direction parameters for the yaw
control, together with the measured wind direction data, can be used to verify the yaw effectiveness
and enhance the wind power utilization. Reliable second-scale prediction of wind speed and wind
direction for pitch control can effectively lower the fatigue load of wind turbines. In view of this,
the following sections will focus on the discussion of and outlook for the wind parameter-sensing
technology aimed at the action control of wind turbines.

3. Measuring–Correlating–Sharing–Predicting–Verifying (MCSPV) Recombination-Sensing
Method Concept

3.1. MCSPV Recombination-Sensing Method Concept and Its Feasibility

The so called MCSPV recombination-sensing method refers to “measuring–correlating–sharing–
predicting–verifying”. Studies indicate that apart from the stochastic fluctuation, wind power also has
a spatial time-delay property on the travel path [30]. After wind passes through the wind rotor of wind
turbines, there will be a drop in its speed and a wake effect, which can be restored after a certain spatial
distance. In engineering, to reduce the wind power attenuation caused by wake effects (with cable
laying and land cost considered), in the main wind direction the typical spatial geographic distance
between wind turbines is 8 to 10 times the diameter of the wind turbine rotor [31], i.e., between 500 and
800 m. Statistics show that in actual wind farms, more than 90% of the time the wind speed is less than
12 m/s. So, for winds with a speed below 12 m/s, say, 10 m/s, Ti + 1 (the time it takes for the wind to
travel from one position to the next) will not be less than 50 s (corresponding to a travel distance of
500 m), which perfectly matches the response time of the yaw, pitch and power generation control of
wind turbines. Therefore, it is entirely feasible in the control optimization of wind turbines in terms of
the predictive perception time scale.

Furthermore, all wind turbines are installed with a wind speed and wind direction sensor, forming
an intensively distributed sensor array. Information exchange inside the sensor network can help
achieve wind parameter data sharing among wind turbines. Wind turbines in the wind farm are all
connected to the control center with optical fiber, forming the wind parameter networking, as shown
in Figure 3.

Based on optical fiber communications, the information exchange time between the control
room and wind turbines is in milliseconds which, compared with the travel time of the wind, can be
neglected. With good basic conditions, low investment cost and high economic efficiency, wind farm
networking and information sharing is feasible for both single-device on-site wind measuring and
multiple-device wind measuring in various locations and spaces.

Figure 4 shows the two-dimensional density function for wind speeds of two adjacent wind
turbines in the same direction. V and U in the horizontal axis indicate the wind speed normalized
variables of the two wind turbines, and the vertical axis indicates the probability density of different
wind speeds. From the diagram, it can be seen that the wind speed distribution is mainly gathered
around the 45◦ diagonal. A quantitative measurement analysis by the Pearson linear correlation
coefficient shows that the correlation coefficient of the two wind turbines is as high as 0.94.
As shown from the analysis, the wind speeds of adjacent turbines in the same wind direction are
remarkably correlated. Research results suggest that wind speed correlation based on the transmission
of wind power between wind turbines can effectively enhance the accuracy of wind parameter
prediction [32–34]. At present, the error of wind parameter prediction is usually between 25% and
40% [32]. Scholars have conducted research of wind turbine grouping and power prediction based on
wind condition correlation of wind turbines, with the prediction accuracy enhanced by over 10% [33].
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In addition, a literature review indicates that some scholars/researchers have raised concerns over
the wind direction correlation between wind turbines [34]. This paper makes a statistical analysis of
the wind direction correlation features between wind turbines which are strongly correlated. Figure 5
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is the wind direction two-dimensional frequency histogram in which the wind direction correlation
coefficient is as high as 0.86. The horizontal axis represents the wind direction distribution of the
two wind turbines. The vertical axis represents the frequency statistics of different wind directions.
Obviously, wind turbines with strong wind speed correlation tend to have strong correlation of
wind direction.
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Figure 5. Wind direction two-dimensional frequency histogram.

Therefore, wind parameter transmission displays a time-delay property in the time domain, which
satisfies the time scale requirement of pitch control, yaw control and power generation control during
wind power generation. In the geographical domain, sensors on wind turbines in the wind farm have
formed an intensively distributed wind parameter sensor array, which serves as a natural platform
for information exchange and sharing among wind turbines. In terms of communications, the optical
fiber communication network not only ensures the timely obtaining of wind parameters, but also
transmits large amounts of wind power data to the control center accurately. Big data analysis of the
wind parameters of wind turbines shows that there exists a marked wind speed and wind direction
correlation between geographically adjacent wind turbines in the same predominant wind direction.

3.2. Wind Parameter MCSPV Recombination-Sensing Method Overall framework

With the continuing development of big data and artificial intelligence in recent years, new
intelligent algorithms and prediction models are emerging, laying a solid theoretical foundation for
the accurate prediction of wind parameters. Obviously, efficient and accurate sensing of wind speed
and wind direction aimed at intelligent power generation and control optimization of wind turbines is
feasible. It is based on the wind farm network information exchange and sharing system, with the
wind speed and wind direction correlation taken into consideration. Using the correlation grouping
prediction model and following the guideline of “measurement for upstream turbine, prediction for
downstream turbine and in-process correction”, a wind parameter MCSPV recombination-sensing
method is shown in Figure 6.



Energies 2018, 11, 1747 11 of 23
Energies 2018, 11, x FOR PEER REVIEW  11 of 23 

 

historical data of wind speed 
and direction of turbine

current data of wind speed 
and direction of turbine

information of tower location, turbine 
distribution and geographical features

Share all information of 
wind speed, wind direction, 
and wind power among 
correlated turbine cluster

operating database 
of wind farm

prediction model and 
parameter optimization & 

correction

prediction model 
classification based on 

correlation feature

traditional 
prediction 

model

predicted value of wind 
parameters of target turbine

intelligent 
prediction 

model

target turbine to be 
predicted

measured wind speed and 
direction of target turbine

predicted value of wind 
parameters of turbine

use traditional prediction 
model

 wind parameters of target turbine output

Check and Verify

Measured data input

irrelevant

relevant

Prediction 
model matching

operating 
database of 
verification 
model 
parameters

Check and Verify

use intelligent 
model

Correlation analysis

geographical division of upstream and 
downstream turbines

wind speed and wind direction correlation 
statistics and analysis

turbine classification based on spatial and 
temporal features

dynamic grouping of upstream and 
downstream turbines based on degree of 

correlation

 

Figure 6. Framework for measuring–correlating–sharing–predicting–verifying (MCSPV) 

recombination sensing of wind parameter. 

The procedures are as follows: 

First Step Based on the historical operation data of the wind farm, establish a wind parameter 

database of wind turbines including wind speed and wind direction. For one, the 

wind parameter database provides a source for the network construction of sensors 

at the correlating–sharing stage. For another, using data statistics to analyze the 

correlation between wind turbines in terms of wind speed and wind direction 

provides a technical basis for wind turbine grouping. 

Second Step Use the wind speed and wind direction sensors installed on all wind turbines as 

sensing nodes for single wind parameters. Based on the topological structure of the 

geographical distribution of wind turbines and the communications transmission 

network of the entire farm, establish a wind parameter sensor network distributed in 

the entire wind farm so as to realize the sharing of wind parameters of each turbine 

with all other turbines and provide real-time wind parameter data for the subsequent 

prediction and verification. Besides, for wind parameter prediction under different 

application circumstances, one should not only consider the wind speed and wind 

direction parameters, but also note that the sharing and transmission of the wind 

parameters between wind turbines is a time-series event in an upstream–

downstream relationship. Therefore, when grouping the wind turbines, those with a 

stronger wind speed and wind direction correlation should be singled out according 

to their upstream and downstream geographical locations so that the wind turbines 

can be quickly identified and classified for dynamic grouping. 

Third Step Among the wind turbine groups that have gone through correlation analysis and 

grouping classification, set aside all the upstream wind turbines of the target turbine 

to be predicted and share all the historical wind parameter data of correlated 
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sensing of wind parameter.

The procedures are as follows:

First Step Based on the historical operation data of the wind farm, establish a wind parameter
database of wind turbines including wind speed and wind direction. For one, the wind
parameter database provides a source for the network construction of sensors at the
correlating–sharing stage. For another, using data statistics to analyze the correlation
between wind turbines in terms of wind speed and wind direction provides a technical
basis for wind turbine grouping.

Second Step Use the wind speed and wind direction sensors installed on all wind turbines as sensing
nodes for single wind parameters. Based on the topological structure of the geographical
distribution of wind turbines and the communications transmission network of the
entire farm, establish a wind parameter sensor network distributed in the entire wind
farm so as to realize the sharing of wind parameters of each turbine with all other
turbines and provide real-time wind parameter data for the subsequent prediction
and verification. Besides, for wind parameter prediction under different application
circumstances, one should not only consider the wind speed and wind direction
parameters, but also note that the sharing and transmission of the wind parameters
between wind turbines is a time-series event in an upstream–downstream relationship.
Therefore, when grouping the wind turbines, those with a stronger wind speed and wind
direction correlation should be singled out according to their upstream and downstream
geographical locations so that the wind turbines can be quickly identified and classified
for dynamic grouping.

Third Step Among the wind turbine groups that have gone through correlation analysis and
grouping classification, set aside all the upstream wind turbines of the target turbine to
be predicted and share all the historical wind parameter data of correlated upstream
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wind turbines for model training. Based on the prediction model after parameter
modification and the real-time data of the upstream wind turbines, the wind speed,
wind direction and arrival time of the target wind turbine at multiple time scales can
be predicted.

Fourth Step Under different application contexts, further verify and modify the measured wind
speed and wind direction data, complete the correlation sensing of wind parameters of
single wind turbines and provide accurate wind parameters of different time scales for
the wind power generation, yaw and pitch control of the wind turbine.

4. MCSPV Recombination-Sensing Method Courses for Different Wind Parameters

As mentioned above, the overall predictive framework for composite wind parameters of wind
farms is established. Considering the difference of wind speed, wind direction and air density of the
wind turbine in wind farms, the prediction of cognitive processes and steps for wind speed, wind
direction and air density proposed by the authors are discussed respectively below.

(i) wind speed recombination sensing course

Based on the wind parameter-sensing framework of “measuring–correlating–sharing–verifying”,
the wind speed correlation prediction can be done according to the spatial correlation of wind speed
between different wind turbines. The sensing diagram is shown in Figure 7.
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First, based on the wind farm’s actual operation data, conduct a multiple characteristic analysis of
the spatial correlation between wind turbines. From the spatial correlation of wind speed [35–37], it is
known that under different geographical conditions, time scales and meteorological conditions, there
can be big differences in the wind speed correlation. Spatially, the wind speed correlation decreases
as the roughness of mountains or the Earth’s surface increases. In terms of time characteristics,
there is a big difference in the wind speed correlation of different sspatial locations in different years,
seasons, months or days. Meteorologically, regions with mild wind speed change and flat terrain
have better wind direction consistency and better wind speed correlation. Therefore, characteristics
combinations can be made for different applications and layering of the wind power data by type can
be made successively according to the topological structure of upstream and downstream geographical
distribution, the calendric characteristics of wind turbines and the meteorological characteristics of the
wind direction.

Next, after data layering, calculate the wind speed correlation of wind turbines from different
application backgrounds, single out the wind turbines in upstream and downstream time-delay
relationships, and carry out dynamic grouping according to the intensity of the correlation. After that,
based on the timely measured data of wind turbines, share all the wind speed, wind direction and
meteorological information of all groups with correlated wind turbines which have been dynamically
grouped and decide whether the target wind turbine is a peripheral one. If it is, adopt the traditional
statistical prediction model. If not, adopt the intelligent algorithm model and perform optimizing
verification of the parameters of all prediction models by making use of the historical operation data
of the wind farm.

Finally, output the predicted wind speed values of all turbines and compare them with the
measured wind speed values at the target moment. On the one hand, check the prediction error of
the model, verify and optimize the model parameters and enhance the prediction accuracy of wind
speed for the next moment. On the other hand, adjust the control parameters of the target moment
and optimize the control performance of wind turbines.

This paper selects the actual operating data of a wind farm in Zhangbei (Hebei, China) for the case
analysis of wind speed forecasting. The time span of collected wind speed data is one year, and the
sampling interval is 15 min. In order to verify the effectiveness of the MCSPV architecture, based on the
Kalman filter algorithm [35], which is commonly used in the field of wind speed prediction, 400 sets of
wind speed sample data were selected for testing (100 h). The results are shown in Figure 8.
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Figure 8. Wind speed forecast case analysis results. (a) Traditional wind speed forecasting method;
(b) MCSPV wind speed forecasting method.

Figure 8a shows the traditional forecasting method, and Figure 8b is based on the wind speed
forecast result of the correlation between wind turbines and the information-sharing mechanism.
It can be seen from the comparison of the red circle that using the MCSPV method to screen multiple
correlated seed units with strong wind speed correlation can help improve the accuracy of wind speed
prediction, and the anti-jamming performance of the prediction results is also significantly enhanced.

(ii) wind direction recombination sensing course.

As an important parameter for the yaw and pitch control of wind turbines, wind direction
is random, mutational and vague, which accounts for the large error of the traditional predictive
perception method. Sharing prediction and measured verification make it possible to improve and
correct the action control. Figure 9 is a block diagram of wind direction recombination sensing.

First, based on the wind farm’s operating data, draw a rose diagram with the wind direction
information of all turbines. During particular time periods (different years, seasons, months, days,
hours, etc.), there can be a big difference in the wind direction correlation for wind turbines in
different terrains or at different spatial locations. Therefore, in the same wind direction zone, the wind
direction correlation of different spatial features or time characteristics shall be taken into consideration.
Moreover, due to the wind direction’s vector property, correlated wind turbines could have a difference
of 1 to 10 degrees in angle and the wind direction angle threshold value must be set.

Next, calculate the wind direction correlation between different wind turbines based on the division
of the wind direction angle threshold value and perform dynamic grouping of the wind turbines in
the same wind zone according to the correlation intensity. No wind direction prediction is needed for
wind turbines without obvious wind direction correlation. Then, collect the wind direction data of the
wind turbines and share them with the wind turbine to be predicted by an upstream-to-downstream
transmission method among the wind direction correlated turbine groups. Start the training and learning
of the artificial intelligent prediction model based on the historical data of wind direction series from
relevant wind turbines. Input the current wind direction information of the correlated wind turbine as
model data, and then the wind direction value of the target turbine can be obtained.
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Finally, to enhance the accuracy of wind direction prediction, adopt the probability interval
technique to cope with the wind direction error brought about by uncertain prediction, obtain the
fluctuation range of wind direction under the given confidence, and evaluate the prediction quality of
wind direction inside the current time window. After verifying the wind direction with the measured
values, output the predicted values at the target moment to provide yaw and pitch control of the
wind turbines.

On this basis, with the actual operation data of the wind farm selected in the previous section,
200 sets of sample data were selected for wind direction prediction. The result is shown in Figure 10.
Figure 10a is the traditional support vector machine wind direction prediction result. The average
percentage error of wind direction prediction in 0~35 h reaches 80%, and the error in the 35~50 prediction
time sequence is less than 10%. It can be seen that the prediction is unstable. Reliability and accuracy
cannot meet the requirements of fan yaw control. In contrast, the wind direction prediction results
of the MCSPV method shown in Figure 10b are significantly improved in accuracy and reliability of
prediction. The average absolute percentage error is 15%, and the absolute value of wind direction
error is controlled within 20◦. It can be used for the yaw control of wind power is of engineering
application value.
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Figure 10. Wind direction forecast case analysis results. (a) Traditional wind direction forecasting
method; (b) MCSPV wind direction forecasting method.

(iii) air density recombination sensing course

The air density changes with the air temperature, air pressure, humidity and other factors. In the
current wind turbine control strategy, most wind turbines determine the control strategy based only
on the annual average air density, and rarely consider the change of air density impact of wind turbine
output power. According to the Betz theory, the actual generating power P of a wind turbine is:

P =
1
2

ρAv3Cp =
1
2

ρπR2v3Cp (1)

where P stands for the captured wind power, A the area swept by the vane wheel, ρ the air density,
v the wind speed, Cp the wind power utilization coefficient, and it is related to the tip speed ratio β

and the pitch angle λ of the fan.
In the constant torque control phase, the power generation P of the wind turbine is proportional

to the torque T under the condition that the rotor speed is equal. Torque T is calculated as:

T =
ρπR5Cpωg

2

2G3λ3 (2)
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where ωg is the rotational speed of the generator, G is the rotational speed of the wind wheel and the
speed ratio of the gear box.

At wind speeds greater than the cut-in wind speed and less than the rated wind speed phase,
where G, Cp and are constant, the generator torque T is closely related to air density. In the current
control strategy, the air density is based on the local annual average, but the actual air density varies
with the season and climate, meaning torque T cannot be kept at the best torque. The output power
cannot maintain the optimal output power and the power generation efficiency is reduced.

Therefore, in the control of the fan, the actual air density should be adjusted and optimized for
the fan control strategy to correct the actual control torque of the generator so as to adjust the rotation
speed of the wind wheel so that the wind turbine is maintained at different air densities. Optimum
torque operation is necessary to ensure that the crew captures as much wind energy as possible.

Correlated wind turbines under the same wind conditions have strong similarity in the wind speed at
the hub and the real-time output power of wind turbines. Take one wind turbine as a sample, deduce the
instantaneous air density from wind power and wind speed and transmit it to the downstream correlated
wind turbine to achieve optimum control of power generation.

Figure 11 is a sketch map of air density sensing of wind turbines. Based on the idea of “equivalence
analogy and parameter interaction”, the principle of air density sensing is as follows:

First, the prediction of air density transmits between upstream and downstream wind turbines in
the same wind direction zone. Divide the wind turbines into 16 wind direction zones according to their
historical data. Then, in the same wind direction zone, make a statistical analysis of the wind speed
correlation between wind turbines based on their operating data and finish the correlation grouping
according to the topological structure of their geographical distribution.

Next, for the air density prediction of all target wind turbines in the correlated group, interactive
wind turbines need to be singled out for numerical inversion and air density parameter transmission.
It can be done by selecting the upstream wind turbine closest to the target one. Obtain the air density
time series parameters of all interactive wind turbines by the air density equation. Due to the difference
in the correlation between the interactive wind turbines and the target wind turbine, the dynamic
weight of air density parameter transmission of all interactive wind turbines can be determined by the
wind speed correlation coefficient. Then, the air density prediction value of the target wind turbine
can be obtained by the dynamic weight ratio of air density of the interactive wind turbines.

Finally, through constant alternation and selection of interactive wind turbines and constant
numerical inversion and iteration of air density parameters, the predictive perception of air density
for turbines of all correlated groups in the entire wind direction zone can be completed. Input the
predicted value of air density into the wind power output equation, compare it with the actual output
value at the target moment, and analyze the effect of air density prediction on wind power output.

To sum up, wind parameter MCSPV recombination sensing could provide a new technical
solution to obtaining comprehensive, reliable, accurate and economical wind parameters. Theoretically,
this method can achieve accurate and comprehensive sensing of such wind parameters as wind speed,
wind direction and air density. It can satisfy the needs of wind parameter prediction at different time
scales and has obvious advantages in the dynamic and accurate real-time sensing of small time scale
wind parameters aimed at the pitch, yaw and power generation optimization control of wind turbines.
It can effectively improve the wind power capture efficiency, lower the fatigue load of wind turbines,
and make the prejudgment of pitch and yaw control possible.
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5. Problems to Be Solved for Wind Parameter MCSPV Recombination-Sensing Method

The core of wind parameter recombination sensing is a combination of “sharing prediction”
and “multi-point measuring”. Under the framework shown in Figure 7, the application of the
recombination-sensing method needs to refer to the achievement made by the traditional predicting
method and relevant areas. Also, it should carry out research on such issues as the operating mechanism
and information interaction of the wind turbine network, data mining technology in wind parameter
sensing, automatic and quick identification and grouping of wind turbines, as well as wind parameter
prediction models and prediction algorithms.

(i) The operating mechanism and information interaction of a wind turbine network.

There is a difference and correlation in the wind speeds, wind directions and wind densities
of wind turbines due to their different locations in a wind farm. The sharing and interaction of
wind parameters between different turbines is the foundation for obtaining grouped wind parameters,
improving the wind power capture efficiency, and optimizing the control performance of wind turbines.
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In terms of the information interaction mode, there are the sharing and correlating, transmission and
interaction (global domain), grading and transmitting, and iteration and inversion (local domain),
which are important for different applications.

(ii) Data mining technology for wind parameter sensing.

Over a period of time, the historical operating data of wind speed, wind direction and output
power of wind turbines tend to display big data characteristics of huge quantity, diversified data type
and strong timeliness. Therefore, it is particularly important to undertake fast analysis of massive
wind parameter data to explore valuable ones and turn the irregular data source into a usable source
within a controlled time scale.

(iii) Automatic and fast identification and grouping of wind turbines.

As the wind farm operation develops from single-machine single-point control to multi-machine
regional clustering control, the clustering and grouping of wind turbines has become the foundation of
the clustering control of wind turbines. For wind parameter sensing, the fast clustering and grouping
is the precondition for the group obtaining of wind parameters. In addition, it is worth noting that
according to the different application needs of wind parameter sensing, attention not only needs to
be paid to the correlation between wind parameters but consideration of the timeliness and the up-
and down-stream relationship between wind turbines is also necessary. Due to the defects of the
traditional wind turbine grouping method, such as poor timeliness, high randomness and inadequate
consideration of the up- and down-stream relationship, there is an urgent need for an automatic
wind turbine clustering method capable of fast identification and grouping in view of space and time
series. Wind turbine correlation analysis based on big data offers a new method. By analyzing and
mining data from the historical database, it explores the correlation in wind speed and wind direction
between wind turbines of up- and down-stream geographical relationship and then, on the basis of
the correlation, achieves fast clustering and correlation grouping of wind turbines.

(iv) Wind parameter prediction model and algorithm.

Current models are usually used for the prediction of wind speed or wind power and there are
relatively fewer prediction models for the wind direction vector and air density. In terms of time
scale, they can hardly meet the needs of control optimization of power generation, yaw and pitch.
Therefore, a comprehensive, multiple time-scale and accurate prediction model is urgently needed.
For the prediction of different wind parameters, much can be done in the areas of prediction model
combination and prediction mode exploration. For wind speed prediction, improvements can be made
on the mature prediction model according to correlation analysis so as to satisfy the time margin
required by power generation control. For the prediction of wind direction, its vector property should
be fully considered, and the evaluation of confidence interval and credibility should be given in order
to achieve probability interval wind direction prediction. The study of air density is based on the
information transmission and interaction between strongly correlated wind turbines to achieve the
desired effects of correlation prediction.

6. Conclusions

Wind speed, wind direction and air density are important parameters for wind power generation
control. Wind parameter-sensing technology plays an essential role in wind power capture efficiency
and wind turbine control strategy of the wind power generation system. Based on an analysis and
combination of the development process and research results of the existing wind parameter perception
technology, the following conclusions can be drawn:

First, the traditional wind parameter acquisition technology mainly focuses on single-machine
wind speed and wind direction perception, and provides parameters for wind turbine control.
However, the impact of air density on power generation is not considered, and there are still limitations
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in the accuracy, comprehensiveness, economy, and forward-looking prediction of wind parameters,
which restricts the optimal control of space and wind energy utilization of wind turbines.

Secondly, based on the analysis of the topological and wind parameters propagation characteristics
of wind farms, this paper presents a “measuring–correlating–sharing–predicting–verifying” wind
parameter composite sensing method, and carries out detailed theoretical analysis and argumentation.
Based on the wind farm supervisory control and data acquisition system (SCADA) data, a case study
of wind parameters combined sensing prediction was carried out. The results show that this method
can achieve economical, comprehensive and accurate wind parameter sensing and acquisition of
parameters such as wind speed, wind direction and air density in wind farms. Efficient use of wind
energy opens up broad possibilities.

Thirdly, based on MCSPV wind parameter prediction method and platform, its potential
application value in the aspects of yawing and pitching feedforward feedback control of wind turbines,
cluster optimal operation of wind farms, and coordinated control of wind turbines are analyzed. The key
technologies and difficulties of MCSPV composite forecasting are discussed, including the wind power
big data mining technology, the recognition and rapid clustering of wind turbine-associated clusters,
the wind parameter information sharing platform, and the precise and comprehensive prediction
model algorithm.
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