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Abstract: Controlling the rapid growth of residential energy demand and enhancing energy efficiency
are key policy issues in Japan. Thus, this study aims to estimate a residential energy demand
function by conducting a stochastic frontier analysis and analyze the regional determinants of energy
efficiency. The results indicate that population density and electrification rate foster energy efficiency
and exert the same degree of impact. The study also highlights that population concentration
has a nonlinear effect on energy efficiency. In other words, when combined with population
concentration, the promotion of electrification policies can significantly contribute toward improving
energy efficiency in the residential sector and consequently, have a positive effect on Japan’s
regional economy.
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1. Introduction

Lifestyle changes and a growing rate of households have significantly increased energy
consumption in Japan’s residential sector. In fact, the sector reported a two-fold increase in its energy
consumption compared to that during the first oil crisis in FY 2010 [1]. Residential energy consumption
continues to increase even today owing to the diffusion of large-scale and diversified household
electrical appliances. Therefore, fostering energy efficiency to overcome the effect of household
appliance diffusion has become a crucial policy issue in Japan. Further, increasing energy efficiency in
the residential sector and reducing energy consumption will reduce carbon dioxide emissions, thus
contributing toward mitigating global warming.

Japan boasts of the highest level of energy consumption efficiency in the world [2]. Its energy
conservation policy is based on the Law of Rational Use of Energy (or Energy Conservation Law),
enacted in 1979 following the 1973 and 1979 oil crises. At the time, Japan feared a disruption in oil
supply, which led to the enactment of the Law Concerning the Rational Use of Energy to promote
efficient energy use. Since it implementation, the Law has been revised as per changing circumstances,
although it remains in effect till date. As part of its attempts to increase energy efficiency, Japan
adopted a top runner system in that the most efficient machinery or electrical appliances were set as
the threshold or energy-saving standard for the entire industry. The system was introduced following
an amendment to the Energy Conservation Law in 1998, which occurred after the Global Warming
Prevention Conference (COP 3) held in Kyoto in December 1997. In its Long-term Energy Supply and
Demand Outlook, the Ministry of Economy, Trade and Industry aims to reduce final energy demand
by 50.3 million kl in terms of crude oil by 2030 on the premise of 1.7% economic growth per year.

From the viewpoint of land policy, population agglomeration may be a possible solution. To
elaborate, energy efficiency in regions with spatially concentrated population receives more attention
than that in regions with a dispersed populous. In cities characterized by high population density,
most people live in multi-dwelling houses such as a condominium with more concrete structures,
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narrower rooms, and smaller windows than detached houses. In this case, energy use is more efficient
because the former has higher thermal insulation than the latter, which reduces energy waste. Such
cities also have greater opportunities for the shared use of lighting and power. In addition, there
is intense competition in the energy market (e.g., that between electricity and gas), which serves
as an incentive for efficient supply. These factors can collaboratively improve energy efficiency in
urbanized cities. In support of this view, Otsuka and Goto [3] empirically show that urban population
agglomeration is an important determinant of energy efficiency in Japan. Several other studies
empirically examine the relationship between urban structure and various sectoral energy uses across
countries [3–9]. However, a key issue with dense urban structures is the development of a heat island
wherein the temperature within a city rises because of population concentration and this in turn,
lowers energy efficiency. This problem has been further confirmed by pioneering research in Japan
and the US [10–12], indicating a trade-off between the effect of population concentration and energy
efficiency. Japan’s national land plan emphasizes the concept of a compact city from an environmental
and economic perspective. Against this backdrop, it is important to verify whether an urban policy
that aims to transform a decentralized city into a compact one will be effective in improving energy
efficiency in the residential sector.

It is also imperative to evaluate the effectiveness of electrification in the residential sector. Until
the mid-sixties, when Japan began reporting vigorous economic growth, coal served as a source of
energy for more than one-third of residential energy consumption. However, by 1973, coal accounted
for a mere 6% because it was replaced by kerosene. At the time, electricity accounted for one-third
of the market share. Nevertheless, the share of electric power significantly increased given the wide
adoption of new consumer electronic devices, which eventually became larger and multi-functional.
With a rise in the number of all-electric homes, the share of electric power reached 51.3% by
FY2012 [1]. This raised the need to verify whether energy conservation measures implemented
by the government (e.g., top runner system) increase the energy efficiency of energy-intensive devices
such as refrigerators, lights, televisions, and air conditioners, which account for 40% of electricity
consumption. Doing so will determine if electrification and its impact on efficiency will be prioritized
in future energy policies in Japan.

Given the problems discussed above, this study employs frontier methods to examine whether
population concentration and electrification contribute to energy efficiency improvements in
Japan’s residential sector. Energy consumption is mainly affected by energy intensity (or energy
consumption per capita) [1]. However, energy intensity is not suitable as an indicator of energy
efficiency [13–15] because it depends on various socioeconomic factors and this led to the development
of various energy efficiency indicators using frontier analyses. Frontier methods can be both
nonparametric and parametric [16,17]. The most representative example of the former approach
is a data envelopment analysis (DEA), in which the frontier (i.e., surface corresponding to the highest
efficiency) is estimated using linear programming without assuming a specific functional form for a
production function and the distribution of inefficiency. In addition, DEA can account for multiple
outputs and inputs, although it generally does not consider statistical noise in the specification for the
production frontier and is highly sensitive to the presence of outliers. To avoid such problems, this
study employs a parametric approach, stochastic frontier analysis (SFA) [18], to model energy demand.
While an SFA warrants assumptions on the functional form of a production frontier, it considers a
major portion of the outliers’ effect as a symmetrical error term and not a characteristic of efficiency,
thus producing less biased estimates than the DEA.

By applying a frontier estimated using SFA, it is possible to measure the efficiency of a
decision-making unit (DMU) by calculating the relative distance of the actual data points to the
frontier. Many researchers have conducted an SFA to measure energy efficiency levels in certain
industries and across various countries and regions [9,19–27]. For instance, Feijoo et al. [19]
and Aranda et al. [20] measure the energy efficiency of Spanish industries, while Buck and
Young [21] evaluate the energy efficiency of commercial buildings in Canada. Boyd [22] argues
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that the advantage of using SFA to measure energy efficiency is the ability to avoid problems in the
definition of energy intensity. Filippini and Hunt [23] measure energy efficiency in Organisation for
Economic Co-operation and Development countries and Filippini and Hunt [24] evaluate energy
consumption and efficiency in the US housing sector. Lin and Yang [25,26] estimate the energy
efficiency of the Chinese thermal power and steel industries. Filippini and Zhang [27] measure energy
efficiency in multiple Chinese provinces. SFA has also been widely applied in productivity analyses.
For example, Otsuka et al. [28] and Otsuka and Goto [29] conduct a comparative analysis using SFA
and DEA to analyze industrial agglomeration effects on productive efficiency. However, empirical
analyses that explicitly consider individual factors determining energy efficiency level remain scarce.
As exception is Otsuka [1], who analyzes residential energy efficiency in Japan using SFA with focus
on population density and electrification rate as determinants.

This study aims to extend and enrich three aspects of the existing literature. First, it adopts an
updated dataset that includes a longer time horizon. Second, to capture actual residential energy
demand, the stochastic frontier model considers demand per household instead of total demand.
Finally, it analyzes the determinants of electrification rate, which are yet to be elucidated. Further,
the analysis allows for the comparison of effects between household and total energy demand. These
contributions can offer findings with stronger and more detailed policy implications.

The remainder of this paper is organized as follows. Section 2 presents the framework for the
empirical analysis as well as the model and data. Section 3 discusses the analysis results. Section 4
outlines the conclusion and offers suggestions for future research.

2. Materials and Methods

2.1. Estimation Model for Energy Efficiency

This study assumes that energy demand per household in region j at time t, Ejt, is a function f of
several variables:

Ejt = f
(
Yjt, Pt, Njt, Ujt, CDDjt, HDDjt, EFjt

)
, (1)

where Y is household income in real terms, P is real energy price in the residential sector, N is the
number of household members, and U is urbanization rate. CDD and HDD are cooling and heating
degree days and reflect temperature. More specifically, cooling degree days are the sum of differences
between the average temperatures on days exceeding 22–24 ◦C. On the other hand, heating degree
days are the sum of differences between the average temperatures on days less than 14 ◦C. Simply
put, if the average temperature exceeds 22 ◦C, residents will turn on air conditioners; however, if it
is between 22 ◦C and 24 ◦C, residents may not turn on the air conditioner depending on regional
characteristics. Thus, the upper limit for cooling days is 24 ◦C. Conversely, residents will turn on their
heaters if the temperature drops to less than 14 ◦C. EF is the region’s energy efficiency level.

As mentioned earlier, this study conducts an SFA to estimate the energy demand function.
Energy efficiency, which is generally not directly observable, is estimated using Filippini and
Hunt’s [23,24,30] stochastic frontier demand approach. Given its numerous advantages, this study
applies an energy-based SFA to a prefecture-level dataset for Japan. Contingent on the output from a
given production activity, energy efficiency is measured as the difference between observed and frontier
energy demand. More specifically, the latter establishes the minimum level of energy required for a
given output level. That is, the estimated energy demand frontier function is a proxy for baseline energy
demand, which in turn, reflects the level of energy demand necessary to efficiently manage a production
process in a region. The frontier approach makes it possible to determine whether a region is on the
frontier (i.e., efficient). The distance from the frontier indicates part of the energy consumption exceeding
baseline demand, or the so-called “energy inefficiency.”

This study adopts Battese and Coelli’s [31] model because it examines firms’ mean inefficiency
using a single-stage regression with various explanatory variables for efficiency. This method can be
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applied to resolve inconsistencies in the traditional two-stage approach resulting from an assumption
for independent inefficiencies.

Following the standard practice for SFA, this study assumes that the overall level of energy
efficiency can be approximated using an error term. Accordingly, the following log-log functional form
of Equation (1) is considered:

ln Ejt = α + αY ln Yjt + αP ln Pt + αN ln Njt + αU ln Ujt
+αCDD ln CDDjt + αHDD ln HDDjt + vjt + ujt

, (2)

where α is the estimated parameter. The error term (vjt + ujt) comprises random noise vjt and
inefficiency-related error term ujt (reflecting energy efficiency level EF in Equation (1)). vjt is normally
distributed, N

(
0, σ2), and assumed to be independent of ujt and the explanatory variables, while ujt is

a non-negative stochastic variable with distribution N
(
µ, σ2

u
)
.

In addition to technical and organizational factors affecting energy demand, social innovations in
the production and consumption of energy services can improve energy efficiency. To capture these
aspects, energy inefficiency average µ is defined as

µjt = β0 + βD ln DENSjt + βE ln ERjt, (3)

where β is the estimated parameter, DENS is the population density of a densely inhabited district
(DID), and ER is electrification rate. DID is set for statistical purposes using data from Japan’s
population census (Statistics Bureau of the Ministry of Internal Affairs and Communications) and thus,
can better reflect a city’s population density. It is defined as a district with adjacent basic unit zones
characterized by a population density of 4000 people/km2 or more and a population of 5000 or more
in a municipality area. However, DID also includes basic unit zones with low population density but
strong urban flows supported by infrastructures such as airports, ports, industrial areas, and parks.
In sum, it is used as an index to distinguish between urban and rural areas and in a narrow sense,
identify the size of urban areas as cities. The coefficients for DENS can take both positive and negative
values: that is, if the heat island manifests with an increase in population density, the coefficient will
be positive and energy efficiency will deteriorate. On the other hand, if an increase in population
concentration renders the formation of a compact city advantageous, the coefficient will be negative
and energy efficiency will improve. ER is introduced to measure the degree of electrification in each
region and its coefficients are expected to be negative. In other words, waste use of energy is expected
in areas where electrification is inadequate and areas using coal and kerosene are likely to have higher
carbon dioxide emissions that those using electricity. Thus, promoting electrification may increase the
energy efficiency of the residential sector.

Considering the nonlinear effect of population density, this study estimates Equation (4) in
addition to Equation (3). If there is a threshold for the effect of population density, the regression
coefficient of the quadratic term should be statistically significant. We will verify this effect.

µjt = β0 + βD ln DENSjt + βDD ln DENS2
jt + βE ln ERjt, (4)

From Equation (2), level of energy efficiency EFjt is estimated using the conditional mean of
efficiency term E

(
ujt

∣∣ vjt + ujt
)
, as proposed by Jondrow et al. [32]. More specifically, EFjt is measured

by the ratio of observed energy demand Ejt to the estimated energy demand frontier EF
jt:

EFjt ≡ EF
jt/Ejt = e−ujt , 0 < EFjt ≤ 1.

This can be interpreted as the closer EF is to 1, the more efficient the region.
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2.2. Estimation Model for Electrification Rate

Since electrification is highly likely to impact improvements in each region’s energy efficiency, this
study quantitatively analyzes the effects of regional housing characteristics on regional electrification.
We consider the following equation:

ln ERjt = δN ln Njt + δA ln Ajt + δAG ln AGjt
+δCDD ln CDDjt + δHDD ln HDDjt + δj + ε jt

(5)

where j (j = 1, . . . , J) denotes region and t (t = 1, . . . , T) is time. ER is the electrification rate, N is
number of household members, A is residential floor area, and AG is rate of population aged over
65 years. CDD and HDD are cooling and heating degree days, δj is individual effects, and εjt is the
error term.

2.3. Data

This study uses 1990–2010 panel data for 47 Japanese prefectures (j = 1, . . . , 47). Final energy
consumption per household (E) and electrification rate (ER) are measured using data from Energy
Consumption Statistics by Prefecture published by the Ministry of Economy, Trade and Industry. Here,
final energy consumption comprises coal, coal products, oil and oil products, natural gas, town gas,
new and renewable energy, large-scale hydraulic, nuclear energy, electricity, and heat. Real household
income (Y) is obtained from the Annual Report on Prefectural Accounts by Japan’s Cabinet Office and
real energy price index (2005 = 100) (P) is retrieved from the International Energy Agency databases.
Number of household members (N) is obtained from the Basic Resident Register and residential floor
area (A) is from residential land statistics survey, both of which are compiled by the Statistics Bureau,
Ministry of Internal Affairs and Communications. Data for population aged over 65 years (AG) are
obtained from the population census conducted by the Statistics Bureau, Ministry of Internal Affairs
and Communications.

Urbanization rate (U) is defined as the ratio of DID to total population and is estimated using data
from the Basic Resident Register and on DID population (and its density), obtained from population
census administered by the Statistics Bureau of the Ministry of Internal Affairs and Communications.
Finally, cooling and heating degree days are measured using data by prefectural meteorological
observatories. Table 1 presents the descriptive statistics.

Table 2 presents the regional characteristics for Japan as of 2010. Residential energy consumption
per household appears to considerably differ among regions. Further, energy consumption is high in
cold areas such as Hokkaido and Tohoku, which can be attributed to the higher number of heating
days. Kyushu and Okinawa are temperate areas and largely report cooling days, whereas Tokyo and
Kansai are urbanized with high population density. While electrification is progressing in these areas,
energy demand remains low.
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Table 1. Descriptive Statistics.

Variable Mean Std. Dev. Minimum Maximum

Residential energy consumption per household (GJ) E 41.5 8.3 26.2 66.3
Household real income (million yen) Y 7.4 1.4 4.7 13.1

Real price of residential energy (2010 = 100) P 95.3 6.8 86.0 110.3
Number of household members N 2.8 0.3 2.0 3.7

Residential floor area (m2) A 101.1 19.6 56.8 152.9
Rate of population over 65 year (%) AG 19.1 4.2 8.5 29.0

Urbanization index (%) U 50.1 18.9 24.0 100.0
Cooling degree day CDD 367.0 175.6 0.0 1186.1
Heating degree day HDD 1106.3 470.9 0.2 2769.2

DID population density (person/km2) DENS 919.0 1640.2 106.6 9286.4
Electrification rate (%) ER 48.9 9.2 22.3 72.2

Sources: For residential energy consumption per household, see Energy Consumption Statistics by Prefecture
(Ministry of Economy, Trade and Industry: http://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/);
for household real income, see Annual Report on Prefectural Accounts (Cabinet Office: http://www.esri.cao.
go.jp/jp/sna/sonota/kenmin/kenmin_top.html); for real price of residential energy, see International Energy
Agency databases and for number of household members, see Basic Resident Register (Statistics Bureau, Ministry
of Internal Affairs and Communications: http://www.stat.go.jp/data/idou/index.html); for residential floor
area, see residential land statistics survey (Statistics Bureau, Ministry of Internal Affairs and Communications:
http://www.stat.go.jp/data/jyutaku/index.html); for rate of population over 65 years, see population census by
the Statistics Bureau of the Ministry of Internal Affairs and Communications: http://www.stat.go.jp/data/kokusei/
2015/index.html); for urbanization index and DID population density, see Population Census (Statistics Bureau
of the Ministry of Internal Affairs and Communications: http://www.stat.go.jp/data/kokusei/2015/index.html
and http://www.stat.go.jp/data/kokusei/2015/index.html); and for electrification rate, see Energy Consumption
Statistics by Prefecture (Ministry of Economy, Trade and Industry: http://www.enecho.meti.go.jp/statistics/
energy_consumption/ec002/).

Table 2. Characteristics of Japanese Regions, FY 2010.

Variables E Y N A AG U CDD HDD DENS ER

Hokkaido 50.8 5.39 2.08 80.8 24.6 73.8 124.0 2591.2 183.6 32.5
Tohoku 55.5 6.94 2.69 116.6 26.0 42.5 315.4 1907.7 212.1 39.0

Kita-Kanto 36.7 7.85 2.63 103.4 23.2 38.5 450.4 1407.0 304.9 61.2
Greater

Tokyo area 37.8 7.44 2.28 74.2 21.1 88.1 492.5 1060.9 4650.8 50.2

Chubu 40.6 7.92 2.62 107.9 23.9 50.8 511.0 1270.3 740.8 55.8
Hokuriku 49.5 8.31 2.80 136.0 25.0 43.0 476.2 1522.8 318.2 59.4

Kansai 37.8 6.97 2.43 92.3 23.6 68.4 556.5 1116.0 1963.5 59.8
Chugoku 36.9 6.60 2.47 103.1 26.4 43.4 539.2 1194.3 393.4 62.7
Shikoku 34.6 6.19 2.37 95.6 26.7 39.3 572.4 910.6 325.2 63.6
Kyushu 31.7 6.11 2.41 89.5 25.1 46.1 545.1 911.8 429.9 64.2

Okinawa 28.8 5.17 2.51 69.5 17.3 66.2 909.0 122.2 797.2 67.0

Notes: The regional classification is as follows: Hokkaido (Hokkaido), Tohoku (Aomori, Iwate, Miyagi, Akita,
Yamagata, Fukushima, and Niigata), Tokyo (Saitama, Chiba, Tokyo, Kanagawa, Ibaraki, Tochigi, Gunma, and
Yamanashi), Hokuriku (Toyama, Ishikawa, and Fukui), Chubu (Nagano, Gifu, Shizuoka, Aichi, and Mie),
Kansai (Shiga, Kyoto, Osaka, Hyogo, Nara, and Wakayama), Chugoku (Tottori, Shimane, Okayama, Hiroshima,
and Yamaguchi), Shikoku (Tokushima, Kagawa, Ehime, and Kochi), Kyushu (Fukuoka, Saga, Nagasaki, Kumamoto,
Oita, Miyazaki, and Kagoshima), and Okinawa (Okinawa).

3. Results and Discussion

Table 3 presents the estimation results for the energy demand frontier function. Model A is based
on Equations (2) and (3). The sign of the estimation coefficient is as expected and all the variables
are statistically significant. Since a log-log function has been considered, the estimated parameters
can be interpreted as elasticities. The estimated income elasticity (0.200) in Model A exceeds price
elasticity (0.157). Price and income elasticities are low, suggesting the importance of energy goods.
Meanwhile, household size elasticity is 0.163, indicating that if household size increases by 10%, energy
demand per household will increase by about 1.63%. The elasticity of the urbanization rate is also
comparatively large and statistically significant at 0.271; this means an increase of 10% in urbanization

http://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/
http://www.esri.cao.go.jp/jp/sna/sonota/kenmin/kenmin_top.html
http://www.esri.cao.go.jp/jp/sna/sonota/kenmin/kenmin_top.html
http://www.stat.go.jp/data/idou/index.html
http://www.stat.go.jp/data/jyutaku/index.html
http://www.stat.go.jp/data/kokusei/2015/index.html
http://www.stat.go.jp/data/kokusei/2015/index.html
http://www.stat.go.jp/data/kokusei/2015/index.html
http://www.stat.go.jp/data/kokusei/2015/index.html
http://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/
http://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/
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will raise energy demand per household by about 2.71%. Therefore, the impact of the number of
household members and urbanization on residential energy demand is considered to offset that of
economic drivers such as price and income. As for the temperature variables, cooling degree days
are not statistically significant, whereas heating degree days are significant with a large coefficient;
in other words, energy use for heating is relatively greater than that for cooling.

Table 3. Estimation Results.

Model A Model B

Coefficient Standard Error Coefficient Standard Error

Constant (α) −0.780 ** (0.045) −0.767 ** (0.039)
αY 0.200 ** (0.019) 0.185 ** (0.017)
αP −0.159 ** (0.016) −0.159 ** (0.014)
αN 0.163 ** (0.024) 0.167 ** (0.022)
αU 0.271 ** (0.036) 0.316 ** (0.032)

αCDD 0.028 (0.025) 0.008 (0.023)
αHDD 0.178 ** (0.019) 0.186 ** (0.020)

Constant (β) 0.329 ** (0.094) 0.299 ** (0.084)
βD −0.706 ** (0.099) −0.919 ** (0.085)
βDD - - −0.208 ** (0.027)
βE −0.622 ** (0.056) −0.652 ** (0.061)

Sigma-squared 0.407 ** (0.036) 0.437 ** (0.039)
Gamma 0.764 ** (0.055) 0.789 ** (0.043)

Log-likelihood −683.2 - −675.5 -

Note: ** and * indicate significance at the 1% and 5% levels.

As for the estimation of the energy efficiency equation, as expected, the signs for both population
density and electrification rate are negative, highlighting that the higher the population density,
the greater the improvement in energy efficiency. In Model A, the electrification rate coefficient
is the same as that for population density, suggesting that switching from gas to electricity and
increasing electrification rate, along with the introduction and spread of consumer electronic devices,
can effectively improve energy efficiency.

Model B verifies the effect of nonlinearity on population density. The analysis elucidates that
population density has a nonlinear effect on energy efficiency based on Equation (4). More specifically,
energy efficiency decreases with a rise in population density owing to the accelerated influence of the
heat island. However, when population density exceeds the threshold, the advantages of population
concentration exceed its disadvantages. These results imply that the merits of population concentration
are greater in areas with higher population agglomeration such as the Greater Tokyo Area.

Next, let us compare the results of Model A with those of Otsuka [1]. According to Otsuka, both
population density and electrification rate impact improvements in energy. The results of the present
study show a similar trend as that in Otsuka’s, and thus, can be considered robust. However, the results
for the impact on energy efficiency differ from those of Otsuka, who reports a small coefficient for both
population (−0.023) and electrification rate (−0.217). By contrast, this study shows a larger influence
for both factors and the influence of population density is similar to that of electrification rate. The
difference in this result can be attributed to this study’s focus on energy demand per household, not
total energy demand.

Table 4 shows the related fundamental statistics. An energy efficiency score of 1 indicates highest
efficiency and the lower the score, the lower the energy efficiency. The average energy efficiency score
is 0.556 and the median is 0.652. The highest score is 0.926 and the lowest is 0.039, indicating the
presence of major regional differences in energy efficiency levels.
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Table 4. Energy Efficiency Score.

Mean 0.556
Std. Dev. 0.261
Minimum 0.039
Maximum 0.926

Median 0.652

Note: The energy efficiency score is calculated using Model A’s estimation results.

Table 5 presents the average energy efficiency scores and rankings for each prefecture. The
region with the highest ranking is Tokyo, followed by Shiga, Fukuoka, Wakayama, Osaka, Kanagawa,
Oita, Kumamoto, and Hyogo. Except Tokyo and Kanagawa, all high-ranking regions are located in
the western area of the country, where electrification is advanced. By contrast, Hokkaido has the
lowest energy efficiency score. In addition, the scores are low in the Tohoku region, particularly Akita.
This is possibly because heating demand in these regions is mainly for coal, kerosene, and gas and
electrification is not advanced. As for Tokyo, since the entire region is densely inhabited, a high energy
efficiency score is attributable to population concentration.

Table 5. Average Energy Efficiency Scores and Ranking.

Prefecture Efficiency Score Rank

Tokyo 0.90 1
Shiga 0.84 2

Fukuoka 0.83 3
Wakayama 0.81 4

Osaka 0.80 5
Kanagawa 0.78 6

Oita 0.77 7
Kumamoto 0.76 8

Hyogo 0.76 9
Kyoto 0.75 10

Kagoshima 0.75 11
Saitama 0.75 12

Miyazaki 0.75 13
Hiroshima 0.74 14

Tochigi 0.72 15
Shizuoka 0.72 16

Ehime 0.72 17
Aichi 0.72 18

Nagasaki 0.71 19
Okinawa 0.70 20

Kochi 0.68 21
Yamanashi 0.66 22

Gifu 0.66 23
Ibaraki 0.65 24
Nara 0.65 25

Gunma 0.63 26
Okayama 0.62 27

Yamaguchi 0.60 28
Kagawa 0.60 29

Saga 0.59 30
Mie 0.59 31

Tokushima 0.56 32
Tottori 0.47 33

Nagano 0.46 34
Chiba 0.45 35

Shimane 0.42 36
Ishikawa 0.32 37



Energies 2018, 11, 1557 9 of 14

Table 5. Cont.

Prefecture Efficiency Score Rank

Toyama 0.24 38
Fukui 0.23 39

Miyagi 0.21 40
Fukushima 0.11 41
Yamagata 0.09 42

Niigata 0.09 43
Aomori 0.09 44
Iwate 0.08 45
Akita 0.07 46

Hokkaido 0.06 47

Note: The energy efficiency scores are calculated using Model A’s estimation results.

Table 6 lists the average energy efficiency scores for 1990–2010. Here, two findings can be
highlighted. First, regions with an improved average score include Hokkaido, Hokuriku, Kyushu,
and Okinawa. For example, greater improvements were observed in Ishikawa (0.032 points), followed
by Niigata (0.025 points), Toyama (0.004 points), and Fukui (0.005 points). Figure 1 illustrates growth
in optional supply provisions by region, suggesting the spread of all-electric homes in the Hokuriku
region. Second, energy efficiency declined in many other regions such as Tohoku, Chubu, Chugoku,
and Shikoku and this decrease was particularly significant in Kagawa and Tokushima.

Table 6. Average Energy Scores over Time.

Prefecture 1990–1999 2000–2010 Change in Score Rank

Okinawa 0.64 0.75 0.114 1
Ishikawa 0.30 0.33 0.032 2
Niigata 0.08 0.10 0.025 3

Hokkaido 0.05 0.07 0.019 4
Kagoshima 0.74 0.75 0.008 5

Tokyo 0.90 0.91 0.008 6
Miyazaki 0.74 0.75 0.006 7

Fukui 0.23 0.23 0.005 8
Toyama 0.24 0.24 0.004 9
Fukuoka 0.82 0.83 0.001 10

Kumamoto 0.76 0.76 −0.003 11
Nagano 0.46 0.46 −0.004 12

Oita 0.77 0.77 −0.005 13
Osaka 0.80 0.79 −0.011 14
Kyoto 0.76 0.74 −0.012 15

Aomori 0.10 0.08 −0.015 16
Kanagawa 0.79 0.77 −0.021 17
Hiroshima 0.75 0.73 −0.021 18

Saitama 0.76 0.74 −0.021 19
Yamagata 0.10 0.08 −0.022 20
Shizuoka 0.73 0.71 −0.022 21

Iwate 0.09 0.07 −0.022 22
Akita 0.09 0.06 −0.024 23

Fukushima 0.12 0.09 −0.031 24
Shiga 0.85 0.82 −0.033 25

Yamaguchi 0.62 0.58 −0.036 26
Chiba 0.47 0.43 −0.048 27

Miyagi 0.23 0.18 −0.052 28
Nagasaki 0.74 0.69 −0.055 29
Tochigi 0.76 0.69 −0.065 30
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Table 6. Cont.

Prefecture 1990–1999 2000–2010 Change in Score Rank

Okayama 0.65 0.59 −0.067 31
Ibaraki 0.69 0.62 −0.069 32

Wakayama 0.85 0.77 −0.079 33
Kochi 0.73 0.65 −0.080 34
Nara 0.69 0.61 −0.083 35

Gunma 0.67 0.59 −0.084 36
Aichi 0.76 0.68 −0.089 37
Mie 0.63 0.54 −0.089 38

Ehime 0.77 0.68 −0.090 39
Hyogo 0.81 0.71 −0.094 40
Tottori 0.53 0.43 −0.100 41

Shimane 0.48 0.37 −0.105 42
Yamanashi 0.71 0.61 −0.108 43

Saga 0.65 0.54 −0.109 44
Gifu 0.72 0.60 −0.123 45

Tokushima 0.63 0.49 −0.145 46
Kagawa 0.71 0.49 −0.223 47

Note: The energy efficiency scores are calculated using Model A’s estimation results.
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Figure 1. Changes in optional supply provision contracts by region. Source: Electricity Business
Handbook (Federation of Electric Power Companies). Notes: The regional classification is as follows:
Hokkaido (Hokkaido), Tohoku (Aomori, Iwate, Miyagi, Akita, Yamagata, Fukushima, and Niigata),
Tokyo (Saitama, Chiba, Tokyo, Kanagawa, Ibaraki, Tochigi, Gunma, and Yamanashi), Hokuriku
(Toyama, Ishikawa, and Fukui), Chubu (Nagano, Gifu, Shizuoka, Aichi, and Mie), Kansai (Shiga,
Kyoto, Osaka, Hyogo, Nara, and Wakayama), Chugoku (Tottori, Shimane, Okayama, Hiroshima,
and Yamaguchi), Shikoku (Tokushima, Kagawa, Ehime, and Kochi), Kyushu (Fukuoka, Saga, Nagasaki,
Kumamoto, Oita, Miyazaki, and Kagoshima), and Okinawa (Okinawa).

Figure 2 plots the electrification rates and average energy efficiency scores and clearly shows
an upward-sloping relationship. In other words, regions with advanced electrification exhibit high
energy efficiency levels. In the figure, for example, while western regions are located at the top right,
Hokkaido and Tohoku regions such as Aomori are located at the bottom left. Figure 3 outlines the
positive chronological relationship between electrification rates and energy efficiency. It clarifies that
advancements in electrification are likely to contribute to improvements in energy efficiency. In the
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Hokuriku region, electrification is advanced in Toyama, Fukui, and Ishikawa and show improvements
in energy efficiency. Niigata has the same electrification rate as that in Fukui but a larger margin of
energy efficiency improvement. Nonetheless, this result can be affected by population concentration
and other factors.Energies 2018, 11, x FOR PEER REVIEW  11 of 14 
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Finally, the results of the analysis can be used to identify determinants of electrification rate.
Table 7 presents the estimation results for Equation (5). First, the F-test rejects the null hypothesis that
there are no individual effects at the 1% significance level. In addition, the Hausman test rejects the
null that the individual effects are random at the 1% significance level. Accordingly, Table 7 reports the
estimation results for the fixed effects model.

Table 7. Panel Estimation Results.

Coefficient Standard Error

δN −1.148 ** (0.098)
δA −0.966 ** (0.101)
δAG −0.001 (0.040)
δCDD 0.001 (0.002)
δHDD −0.022 ** (0.005)

Adjusted R-squared 0.9664 -
F-test 316.32 ** [0.0000]

Hausman test 156.58 ** [0.0000]

Note: 1. ** and * indicate significance at the 1% and 5% levels, respectively. 2. p-values are presented in
square brackets.

The coefficient sign for number of household members is negative, suggesting that the
electrification rate increases with a decline in the number of household members. Similarly,
the coefficient sign for residential floor is negative: that is, the smaller the residential floor area,
the higher the electrification rate. The size of both coefficients is relatively large, and thus,
the corresponding variables have a major impact on electrification. Further, the number of household
members is generally lower for multi-dwelling houses, such as apartments and condominiums, than
detached houses, and the residential floor area tends to be smaller. Therefore, it can be inferred that
the electrification rate tends to be high in regions where multi-dwelling houses are widespread, that is,
in urbanized cities. The aging variable is not statistically significant. As for the temperature variables,
only heating is significant with a negative sign. This result suggests that electrification rates are lower
in regions that report high heating usage and thus, higher energy inefficiency. As previously described,
the heating demand in Hokkaido and Tohoku is mainly for coal and kerosene, while the utilization of
electricity remains low and thus, energy efficiency is considered to be low.

The above results highlight that in addition to population concentration, the type of house and
the manner in which they are built are closely related to the electrification rate and thus, can impact
energy efficiency. To further verify the impact of housing characteristics on energy efficiency, it is
necessary to analyze electricity utilization efficiency using residential electricity demand data. First
attempts in this direction are research by Otsuka [33] and Filippini et al. [34]. The former shows that
the number of people per household and residential floor area impact electricity utilization efficiency,
which is in line with the results of the present study.

4. Conclusions

This study estimates an energy demand frontier function to analyze residential energy efficiency
levels and their regional determinants. To the best of the author’s knowledge, this is the first study to
do so in the context of the Japanese economy at the prefectural level. By conducting a stochastic frontier
analysis, an energy efficiency index is derived after controlling for variables reflecting socioeconomic
structure such as income, prices, household size, urbanization, and climate. More specifically, this
study focuses on population concentration and electrification rate as possible regional drivers of energy
efficiency increase in the residential sector. The results are twofold.

First, the results confirm the importance of population concentration in improving energy
efficiency. Thus far, scholars have focused on the negative effect of urban agglomeration, that is,
the influence of a heat island. By contrast, this study shows that energy efficiency is high in areas with
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high population density and population agglomeration may even improve energy efficiency. Further,
population concentration has a nonlinear effect on energy efficiency, that is, if population density
exceeds the threshold, its advantages may exceed its disadvantages. This suggests that standard urban
policies aimed at fostering districts with high density and compact cities could become play a key
role in energy efficiency improvements. Second, the promotion of electrification, that is, the spread of
all-electric homes in the residential sector, and an increase in a region’s overall electrification rate seem
to translate into higher energy efficiency. The impact of electrification is similar to that of population
density, indicating that energy efficiency could significantly improve in regions with a sharply rising
electrification rate. In conclusion, population agglomerating in urbanized areas and the promotion
of electrification are effective tools to improve energy efficiency in the residential sector. Importantly,
electrification increases environmental efficiency by reducing CO2 emissions.

Despite this study’s contributions, it is not free from limitations. First, it is necessary to further
test the robustness of these results by verifying whether this trend can be confirmed in other countries
or states. Second, an investigation of electricity consumption efficiency in the residential sector is
warranted from diversified perspectives including power saving. Home appliances account for a
majority of the Japan’s electricity demand at more than 35%. The demand for home appliances
including refrigerators, lights, and televisions is high, whereas that for kitchen appliances, hot water
supply, and air conditioning is relatively low. In recent years, the demand for power has increased with
the proliferation of home appliances, rendering it important to explore effective ways to decrease this
energy demand. To this effect, the existence of electronic devices for consumers and ways to improve
their performance are important factors. Finally, this study was unable to control for the influence of
housing insulation because of data constraints. Thus, a quantitative assessment of these factors and
their impact is left for future analysis.
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