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Abstract: The implementation of demand response (DR) could contribute to significant economic
benefits meanwhile simultaneously enhancing the security of the concerned power system.
A well-designed carbon emission trading mechanism provides an efficient way to achieve emission
reduction targets. Given this background, a virtual power plant (VPP) including demand response
resources, gas turbines, wind power and photovoltaics with participation in carbon emission trading
is examined in this work, and an optimal dispatching model of the VPP presented. First, the carbon
emission trading mechanism is briefly described, and the framework of optimal dispatching in the
VPP discussed. Then, probabilistic models are utilized to address the uncertainties in the predicted
generation outputs of wind power and photovoltaics. Demand side management (DSM) is next
implemented by modeling flexible loads such as the chilled water thermal storage air conditioning
systems (CSACSs) and electric vehicles (EVs). On this basis, a mixed integer linear programming
(MILP) model for the optimal dispatching problem in the VPP is established, with an objective of
maximizing the total profit of the VPP considering the costs of power generation and carbon emission
trading as well as charging/discharging of EVs. Finally, the developed dispatching model is solved
by the commercial CPLEX solver based on the YALMIP/MATLAB (version 8.4) toolbox, and sample
examples are served for demonstrating the essential features of the proposed method.

Keywords: virtual power plant (VPP); demand response (DR); carbon trading mechanism;
uncertainty; electric vehicle (EV)

1. Introduction

Power generation dominated by fossil fuels would result in environmental pollution deterioration
and depletion of non-renewable resources. Clean renewable energy generation, which is typically
available as distributed energy resources (DERs) [1], has been more and more exploited to mitigate the
energy and environment crisis during the last two decades. Meanwhile, flexible loads have been widely
employed to relieve the pressure brought by ever-growing demand for electricity. The increasing
penetration of DERs and the growing diffusion of flexible loads are posing new challenges to the
secure and economic operation of the concerned power systems, such as power output intermittency
and fluctuations from weather-dependent distributed generators (DGs). In order to address the new
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challenges, the so-called virtual power plant (VPP) was proposed and has attracted much attention
since then [2–4].

A VPP is a virtual entity which is aggregated by physical devices such as gas turbines, renewable
energy units and flexible loads via advanced information technology and software systems [5],
participating in the operation of the power system and electricity market concerned [6–8]. In the
past few years, several VPP projects have been implemented worldwide, such as the European virtual
fuel cell power plant [9] and the FENIX VPP [10]. In China, a VPP demonstration project has come
into use in Yunnan Province, in southwest China [11].

Multiple kinds of benefits brought by a VPP have been addressed in some existing publications.
In a VPP, appropriate management of energy storage systems (ESSs) [12] and electric vehicles (EVs) [13]
could significantly contribute to the mitigation of the stochastic characteristics of DGs, thus enhancing
the reliability of the energy system concerned. In addition, considerable profits could be gained by
a VPP through participation in the well-established day-ahead electricity market [14,15], and the
economic advantages are further demonstrated in [16–18] by presenting operating strategies for VPPs
in day-ahead bidding and real-time multiple-period operation. Moreover, the demand response (DR)
programs could be implemented. Flexible loads in a VPP could adjust their electrical consumption
behaviors according to the electricity price and/or incentive mechanism. A DR program could not only
bring economic benefits to the VPP and consumers [19,20] but also improve the load curve profile [21],
while assuring meanwhile the required comfort levels of consumers [22].

On the other hand, renewable energy generating units and EVs aggregated by a VPP are beneficial
to carbon emission reduction due to their inherent environmentally friendly features. Several methods
are developed for addressing carbon emission problems in power system operation. The operating
characteristics of carbon capture power plants (CCPPs) are analyzed in [23], and carbon emission
constraints are integrated into the formulated dispatching optimization problem. The impacts
of different carbon emission policies on the operation strategy of CCPPs are investigated in [24].
An optimization model of a collaborative power dispatching system with carbon emission trading
included is developed in [25]. In [26], the effect of carbon emission trading on spinning reverse
requirement of a low-carbon power system is analyzed. However, in existing publications,
the environment benefits of a VPP have not yet been systematically examined, and will be examined in
this paper.

To the best of our knowledge, the optimal dispatching problem of a VPP considering DR
and participation in a carbon emission program under uncertain environment has not yet been
systematically examined in existing related publications, and is the research focus of this work.
The VPP aggregates gas turbines, wind power units, photovoltaic units, and flexible loads including
EVs and chilled water thermal storage air conditioning systems (CSACS). Probabilistic models are
employed to deal with uncertainties in the output predictions of intermittent renewable energy
generation units. Demand side management (DSM) is next implemented by modeling CSACS and
EVs. Then, a mixed integer linear programming (MILP) model for optimal dispatching considering
carbon emission costs is proposed. Finally, the proposed model is solved by the commercial CPLEX
solver based on the YALMIP toolbox in MATLAB, and the optimal operation problem of a VPP is
studied for demonstrating the essential features of the proposed method.

The main contributions of this work are: (a) the carbon emission trading mechanism is introduced
in the optimal dispatch problem of a VPP, whose low-carbon advantage is exploited; (b) economic and
secure benefits brought by DR are addressed, through optimal dispatch of CSACSs and EVs.

This paper is organized as follows: the carbon emission trading mechanism and the dispatching
framework of VPP are introduced in Section 2. The method used to address uncertainties of the
generation outputs from renewable energy generation units is described in Section 3. The optimal
dispatching problem of VPP and models of flexible loads are formulated in Section 4. Case studies and
simulation results are presented in Section 5, and conclusions given in Section 6.
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2. The Carbon Emission Trading Mechanism and Dispatching Framework

2.1. The Carbon Emission Trading Mechanism

A carbon emission trading mechanism represents a market-oriented measure for achieving the
goal of emission reduction. In 1997, three typical categories of carbon emission trading mechanism were
proposed in the well-known Kyoto Protocol [27]: (1) Joint Implementation (JI); (2) Clean Development
Mechanism (CDM); and (3) Emission Trading (ET). In CDM, the carbon emission credit of each
participant is assured individually and the real-time carbon emission amount monitored. If the
actual carbon emission amount in a specific time interval is lower than the credit, the participant
could make profits by selling the surplus credit to the carbon trading market, and vice versa. In JI
or ET, the total carbon emission amount is first determined, and then allocated to the participants.
The permitted carbon emission amount could be traded among participants. However, it is difficult
to appropriately determine the total carbon emission amount and the allocation method in JI/ET.
Moreover, at present, CDM is mainly involved in China since it is deemed the most matching category
with the developmental stage of domestic economy [28]. Thus, in this work CDM is assumed to be
employed. In CDM, carbon emission credits, which can be regarded as the benchmark of carbon
emissions, need to be pre-allocated to economic entities participating in the carbon trading.

In this work, each day is divided into 96 time periods with 15 min for each period/interval. It is
assumed that the parameters remain unchanged in each time interval. Thus, the parameter values
for a given time interval can be described by the ones at the beginning of the interval. The carbon
emission credit MD,t for a VPP could be calculated by:

MD,t =
N

∑
j=1

εPj,t (1)

where N is the total number of generators in the VPP; Pj,t is the generation output of generator j at
time t; ε is the carbon emission distribution coefficient per unit electrical energy of the VPP, which is
determined by the “National Grid Baseline Emission Factor” issued by National Development and
Reform Commission, China [28].

The carbon emission costs under carbon trading environment can be expressed as:

Cc
t = KC∆Mt (2)

∆Mt = MC,t −MD,t (3)

MC,t =
NG

∑
g=1

Pg,tQg (4)

where Cc
t represents the carbon emission cost of the VPP at time t; KC is the transaction price of the per

unit carbon emission; ∆Mt is the part of the emission with MC,t as the actual carbon emission of the
VPP at time t, and MD,t is the carbon emission credit at time t, while ∆Mt is the difference between
them. If MC,t is lower than MD,t, then the value of ∆Mt would be negative; NG is the number of gas
turbines in the VPP; Pg,t is the generation output of gas turbine g at time t; Qg is the per unit carbon
emission intensity of the generation output of gas turbine g [23]. Note that a negative value of Cc

t
means revenue from the carbon trading.

2.2. The Dispatching Framework of the VPP

An energy management system (EMS) is developed in each VPP to manage gas turbines,
wind power units, photovoltaic units, EVs and other flexible loads. Appropriate price subsidies
will be provided by the concerned agents in order to incentivize EV owners to register their EVs as
schedulable devices. Accordingly, EV owners need to plug EVs into the power system concerned and
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to follow the charging/discharging scheduling in given time periods. EVs in the VPP are managed by
a day-ahead submitting mechanism [29], in which EV owners submit the next-day usage information
of EVs according to their preference, including the plug-in time, the plug-out time, the expected
initial state of charge (SOC) and the target SOC when plugging out. The EMS receives the submitted
information and determines the charging/discharging schedules of EVs of the next day.

The general dispatch framework of the VPP is depicted in Figure 1. Based on the predicted results
of renewable energy generation outputs and load demands, day-ahead submitted information of EVs
and the prices of electricity and carbon trading, the EMS of the VPP determines generation outputs of
gas turbines at each time period of the next day, charging/discharging schedules of EVs, DR schedules
and carbon emission trading outcomes. The electrical demands in the VPP can be satisfied by the DGs
as well as the power supply from the connected distribution network. The VPP can gain economic
profits by transmitting redundant power to the distribution network, and buy/sell carbon emission
credits in the carbon trading market.
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3. Modeling of Uncertainties

Intermittent renewable energy generation units in the VPP, such as wind power and photovoltaic
units, result in uncertainties in VPP dispatching [30].

The generation output uncertainty of a wind generation unit is heavily related to the fluctuation
of the wind speed. Based on the analysis of numerous statistical data, it is found that wind velocity
follows the Weibull distribution [31] given by the following probability density function (PDF):

f (v) =
k
c
(

v
c
)

k−1
exp[−(v

c
)

k
] (5)

where v is the wind speed; c is the scale parameter; k is the shape parameter.
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The generation output of the wind turbine can be calculated by:

Pwind =


0 v < vin or v > vout

Pwind
rate

v3−v3
in

v3
rate−v3

in
vin ≤ v ≤ vrate

Pwind
rate vrate < v ≤ vout

(6)

where Pwind and Pwind
rate are respectively the actual and rated outputs of the wind turbine; vin, vrate and

vout represent the cut-in, rated and cut-out wind speeds of the wind turbine, respectively.
Similarly, the solar irradiance follows the Beta distribution [31] given by the following PDF:

f (r) =
Γ(a + b)
Γ(a)Γ(b)

(
r

rmax
)

a−1
(1− r

rmax
)

b−1
(7)

where Γ(·) represents the Gamma function; a and b are both distribution shape parameters; r and rmax

are the actual and maximum solar irradiances, respectively.
The output of the photovoltaics PPV can be expressed as:

PPV = rAηPV (8)

where A is the area of the photovoltaic panel; ηPV is the solar electric power conversion efficiency.
The outputs of the wind power and photovoltaics could be estimated within a range by the PDF

equations shown in (5) and (7) at a specified confidence level [32]. It is assumed that the error between
the estimated and actual outputs follows the normal distribution [33]. If the confidence level is α,
the relationship between the actual output and the range of the estimated value of a renewable energy
generation unit can be described as:

pR(P−k,t ≤ Pk,t ≤ P+
k,t) ≥ α (9)

where pR(•) represents the probability function; Pk,t is the actual output of renewable energy generation
unit k at time t; P−k,t and P+

k,t are respectively the minimum and maximum estimated values of Pk,t at
the confidence level α. Equation (9) expresses that the probability of Pk,t falling within the interval
[P−k,t,P

+
k,t] is not less than α.

If P−k,t is taken as the estimated value of Pk,t, the attained optimization result would be very
conservative because it is practically impossible that all outputs of renewable energy generation units
are less than their minimum estimated values. Thus, other methods should be considered to deal with
the uncertainties.

The mean value and standard deviation of Pk,t could be respectively expressed by:

µk,t =
1
2
(P−k,t + P+

k,t) (10)

σk,t =
P+

k,t − P−k,t

2φ−1( 1+α
2 )

(11)

where φ(•) represents the cumulative distribution function of the standard normal distribution.
Let Ωq be the set of all renewable energy generation units in the VPP. The total forecasted output

of generation units in Ωq could be approximately described by the normal distribution with the mean
value and standard deviation respectively expressed as:

µt = ∑
k∈Ωq

µk,t (12)
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σt = ( ∑
k∈Ωq

σ2
k,t)

1
2 (13)

Equations (14) and (15) are introduced as the constraints of the generation outputs of renewable
energy generating units:

∑
k∈Ωq

Pk,t ≤ µt + σtφ
−1(1− β) (14)

P−k,t ≤ Pk,t ≤ P+
k,t (15)

where β is the confidence level in the optimal dispatching of the VPP. In this way, the uncertainties are
modeled with the aforementioned over-conservatism problem avoided.

4. Problem Formulation

In this section, the mathematical models of flexible loads and the VPP will be presented.

4.1. Modeling of Flexible Loads

DR is implemented by utilizing flexible loads, including CSACSs and EVs.

4.1.1. Modeling of Temperature-controlled Devices

(1) Thermal Dynamic Equilibrium Equation in Buildings

The heat absorbed by a building could be calculated by:

CH = B(θout − θin) + Q (16)

where B is the heat transferring coefficient of the building; θout and θin respectively represent the
outdoor and indoor temperatures; Q is the instantaneous heat increments except for the heat transferred
from the temperature difference, which is related to solar radiation, heat dissipation of household
appliances, and others.

When the cold energy provided by refrigeration devices is equal to the heat absorbed by the
building, the indoor temperature would basically be maintained. Accordingly, the thermal dynamic
equilibrium equation in the building can be expressed as:

CaVρadθin = (CH − CD)dt (17)

where Ca is the specific heat capacity of the air; V is the indoor capacity; ρa represents the density of
the air; CD is the cold energy provided by refrigeration devices.

By solving Equation (17), the continuous expression of the indoor temperature can be attained,
and then be discretized as:

θin,t = θin,t−1e−B∆t/CaVρa + (1− e−B∆t/CaVρa)(
Qt − CD,t

B
+ θout,t) (18)

(2) Thermal Comfort

Some temperature-controlled demands can be scheduled based on electricity market price signals
without causing discomfort to the users, that is, the thermal comfort of consumers should be maintained
within an acceptable range in dispatching the VPP.

The predicted mean vote (PMV) method [34] can be used to evaluate the thermal comfort level.
The acceptable PMV range is between −0.5 and 0.5 [35]. Through appropriate simplification of the
environmental factors, the relationship between PMV and temperature is formulated as [36]:
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IPMV =

{
0.3895× (θ − 26) θ ≥ 26
0.4065× (−θ + 26) θ < 26

(19)

where IPMV is the PMV value in the building; θ represents the temperature.
According to Equation (19), the comfortable indoor temperature ranges between 24.8 ◦C and 27.3 ◦C.

(3) Modeling of CSACS

A CSACS can be utilized to reduce the peak electricity demand of a given building. The modeling
of a CSACS, including chillers, pumps, thermal storage tanks and other auxiliary equipment [37],
is addressed here. The cold energy could be produced by chillers and stored/released by thermal
storage tanks. Suppose that smart meters with the bi-direction communication capability are used
in the building [38], then the CSACS can be dispatched with electricity price changes considered.
The cold energy provided by a CSACS in each time interval can be expressed as:

CD,i,t = Cp,i,t − Cs,i,t + Cr,i,t (20)

where Cp,i,t, Cs,i,t and Cr,i,t represent the produced, stored and released cold energy of CSACS i at time
t, respectively.

The following operation constraint of each CSACS should be respected:

0 ≤ Is,i,t + Ir,i,t ≤ 1 (21)

0 ≤ Cp,i,t ≤ Cmax
p (22)

0 ≤ Cs,i,t ≤ Is,i,tCmax
s (23)

0 ≤ Cr,i,t ≤ Ir,i,tCmax
r (24)

0 ≤ Sc
i,t ≤ Sc,max (25)

Sc
i,t = Sc

i,t−1 + (Cs,i,tηs − Cr,i,t/ηr)∆t (26)

where Is,i,t and Ir,i,t are respectively the binary decision variables used to represent the storing and
releasing status of CSACS i at time t; Cmax

p , Cmax
s and Cmax

r are respectively the maximum produced,
stored and released cold energy in each time interval; Sc

i,t is the cold energy stored in CSACS i
at time t; Sc,max is the capacity of the storage tank; ηs and ηr represent the storing and releasing
efficiencies, respectively.

Equations (21)–(24) represent the constraints associated with the production, storage and release of
cold energy. The capacity limitation of the storage tank is demonstrated by Equation (25). Equation (26)
represents the cold energy conservation of the CSACS.

The power consumed by a CSACS at time t can be calculated by:

Pi,t =
Cp,i,t

µp
+ µsCs,i,t + µrCr,i,t (27)

where µp is the energy efficiency ratio [39] for describing the relationship between the cooling effect
and the electricity consumption of the chiller; µs and µr are the electric power conversion coefficients
of storing and releasing cold energy, respectively.

4.1.2. Modeling of EVs

EVs could act as flexible loads in a smart grid environment. The charging and discharging of EVs
can be scheduled with a certain degree of flexibility. Moreover, the energy stored in the batteries of
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EVs can be transmitted back to the power network concerned, i.e., the so-called vehicle-to-grid (V2G)
function. The following operation constraints of EVs should be respected:

pc
v,t = uc

v,t pc
v (28)

pd
v,t = ud

v,t pd
v (29)

uc
v,t + ud

v,t ≤ uin
v,t (30)

Sv,min ≤ Sv,t ≤ Sv,max (31)

Sv,ta
v = Sv,a (32)

Sv,d ≤ Sv,td
v
≤ Sv,max (33)

Sv,t = Sv,t−1 +
uc

v,t pc
v,tη

c
v

Emax ∆t−
ud

v,t pd
v,t

Emaxηd
v

∆t (34)

where uc
v,t and ud

v,t are the binary decision variables respectively used to represent the charging and
discharging status of EV v at time t; pc

v and pd
v respectively represent the rated charging and discharging

power of EV v; binary decision variable uin
v,t represents the dispatching status of EV v at time t; Sv,t is

SOC of EV v at time t; Sv,min and Sv,max respectively represent the minimum and maximum SOCs of
EV v; ta

v and td
v are respectively the arrival time and the departure time of EV v; Sv,a is the SOC of EV v

at the arrival time; Sv,d is the target SOC of EV v at the departure time; ηc
v and ηd

v are respectively the
charging and discharging efficiencies of EV v; Emax is the battery capacity.

Equations (28)–(30) represent the constraints of the charging and discharging behaviors of EVs.
The constraints of SOC are represented by Equations (31)–(33). The change of SOC of EVs over two
continuous periods is described by Equation (34).

4.2. Objective Function

The optimal dispatching problem is formulated with an objective of maximizing the profit.
The objective function includes two parts, i.e., the revenues from the electricity trading and the costs
associated with the power generation, carbon trading as well as the charging/discharging of EVs,
and can be formulated as:

max
T

∑
t=1

[λs
t Ps

t − (Cgas
t + Cc

t + CEV
t )] (35)

where T represents the number of time intervals in a day; λs
t is the electricity market price at time t; Ps

t is
the power exchanged between the VPP and the distribution network at time t, and takes a negative
value when the VPP purchases electricity from the distribution network; Cgas

t , Cc
t and CEV

t represent
the costs of the gas turbines, carbon trading and charging/discharging of EVs at time t, respectively.

The costs of gas turbines include the operation costs, modeled as a piecewise linear function [6],
and the start-up/shut-down costs:

Cgas
t =

NG

∑
g=1

[kg,0ug,t + (

nj

∑
j=1

kg,jPg,j,t) + CSU
g,t + CSD

g,t ] (36)

Pg,t =

nj

∑
j=1

Pg,j,t (37)

CSU
g,t = max

{
λSU

g (ug,t − ug,(t−1)), 0
}

(38)

CSD
g,t = max

{
λSD

g (ug,(t−1) − ug,t), 0
}

(39)
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where kg,0 is the fixed operation cost of gas turbine g; binary decision variable ug,t is the on/off status of
gas turbine g at time t; nj is the number of the pieces of the linearized operation cost function; kg,j is the
slope of the j-th piece; Pg,j,t is the power output from the j-th piece of gas turbine g at time t; CSU

g,t and
CSD

g,t respectively represent the start-up and shut-down costs of gas turbine g at time t, while λSU
g and

λSD
g are the corresponding costs for a single time. If gas turbine g starts up at time t, CSU

g,t and CSD
g,t are

λSU
g and 0, respectively. If gas turbine g shuts down at time t, CSU

g,t and CSD
g,t are 0 and λSD

g , respectively.
Otherwise, CSU

g,t and CSD
g,t are all equal to 0.

The carbon trading cost at time t can be calculated by Equation (2).
The charging/discharging costs of EVs at time t can be expressed as:

CEV
t =

Nv

∑
v=1

(λd
t pd

v,t − λc
t pc

v,t) (40)

where Nv is the number of EVs; pc
v,t and pd

v,t respectively represent the charging and discharging power
of EV v at time t, while λc

t and λd
t are the corresponding prices at time t.

4.3. Other Constraints

4.3.1. Constraints of Gas Turbines

(1) Power output constraints:

ug,tPmin
g ≤ Pg,t ≤ ug,tPmax

g (41)

where Pmin
g and Pmax

g are the minimum and maximum power outputs of gas turbine g.

(2) Ramping constraints:

− RD
g ∆t ≤ Pg,t − Pg,(t−1) ≤ RU

g ∆t (42)

where RU
g and RD

g are the ramping-up and ramping-down limits of gas turbine g.

4.3.2. Power Balance Constraint:

NG

∑
g=1

Pg,t +
Nq

∑
k=1

Pk,t +
Nv

∑
v=1

pd
v,t = Ps

t +
Nv

∑
v=1

pc
v,t +

Nc

∑
i=1

Pi,t + PR
t (43)

where Nq is the total number of renewable energy generating units; Nc is the number of CSACSs; PR
t is

the fixed/inflexible electrical demand at time t in the VPP.

4.4. Solving Method

The developed optimal dispatching model for a VPP includes Equations (18)–(43). The objective
function and all constraints are linear, but include some binary decision variables. Therefore,
the optimal dispatching model is a mixed integer linear planning (MILP) problem. The well-developed
commercial solver CPLEX in the YALMIP/MATLAB toolbox is employed to solve the MILP problem.

5. Case Studies

5.1. Parameter Setting

A VPP, with two gas turbines, one wind power unit, one photovoltaic unit and 50 intelligent energy
consumers included, is employed to demonstrate the developed method. Each intelligent energy
consumer is equipped with a CSACS and an EV, with both acting as dispatchable DR. The parameter
settings of the gas turbines are shown in Table A1 in the Appendix A. The actual power outputs
of the wind power unit and photovoltaic unit in a typical day, which are unknown in making the
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dispatching strategy and attained by sampling from probabilistic models, are shown in Figure A1.
The confidence levels, α and β, are both assumed to be 95% [33]. The model presented in Section 3
is employed to address the uncertainties of the forecast intervals and then included in the optimal
dispatch model. The initial SOCs of the EVs are random numbers uniformly distributed between
0.15 and 0.35. The departure and arrival time points of the EVs respectively follow the probability
density distributions described by (44) and (45) [29]:
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where µd = 8.92, σd = 3.24, µa = 17.47, σa = 3.41.
Other parameters of the EVs are described in Table A2 [40]. The charging and discharging prices

are shown in Figure A2. The parameters of the CSACS are described in Table A3. The instantaneous
heat increment of each intelligent energy consumer and the outdoor temperature in a typical summer
day are shown in Figure A3 [41]. In the case study, it is assumed that all consumers are of similar
thermal characteristics. Daily fixed/inflexible electrical demands of all intelligent energy consumers
are shown in Figure 2. The time-of-use (TOU) electricity prices are shown in Table 1 [40]. The carbon
emission price KC is assumed to be 0.25 $·kg−1.
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Figure 2. Daily total fixed/inflexible electrical demands of 50 intelligent energy consumers. 
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Figure 2. Daily total fixed/inflexible electrical demands of 50 intelligent energy consumers.

Table 1. Time-of-use (TOU) electricity prices.

Time Period TOU Price ($/kWh) Time Period TOU Price ($/kWh)

7:00–8:15 Mid-peak 0.103 18:00–18:45 Sub-peak 0.164
8:30–10:15 Sub-peak 0.164 19:00–20:45 On-peak 0.174

10:30–11:30 On-peak 0.174 21:00–22:45 Sub-peak 0.164
11:45–17:45 Mid-peak 0.103 23:00–6:45 Off-peak 0.041

5.2. Simulation Results

The dispatching results with and without DR are compared in Figure 3. It is found that flexible
loads automatically respond to the change of electricity prices and act in a way that mitigates the
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peak-valley difference, which has a positive influence on the operation of the VPP. In addition, the profit
of the VPP increases from $1967.74 to $2221.97 with the utilization of DR resources. Thus, the economic
effectiveness brought by DR is demonstrated. The performances of CSACSs, EVs and carbon trading
will be described in detail in the next three subsections.
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5.2.1. Performance of CSACSs

As described before, the cold energy of CSACSs could be provided by the electric-consuming
chillers and/or the thermal storage tank. The electric power and the cold energy storage curves of a
typical CSACS are depicted in Figure 4.
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Figure 4. Electrical power demand and cold energy storage of a typical CSACS.

As shown in the curves, the cold energy is produced and simultaneously stored in 23:00–6:45,
during which the electricity prices are the lowest. During 11:45–17:30, the cooling demand is satisfied
by chillers instead of the stored ones, for that the utilization of the stored energy in the upcoming
peak-price periods will bring more economic benefits. The thermal storage tank releases cold energy in
peak-price periods to maintain the thermal comfort level of the consumers, and thus to reduce the cost
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of electricity consumption by the chillers. Meanwhile, it can be found that the power of the CSACSs is
concentrated in the valley-load hours as known from the fixed/inflexible demand curve. Therefore,
the CSACSs also make a great contribution to the improvement of the load curve profile.

5.2.2. Performance of EVs

The charging/discharging power of EVs and the SOC variation of a typical EV in the dispatching
procedure are depicted in Figures 5 and 6, respectively.
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It is shown that EVs discharge on a large scale in 8:30–11:30 and 18:00–22:45, which are both
peak-price periods. In these two periods, EVs discharge to satisfy the demands, thus the VPP has
more redundant power sold to the distribution network. The charging power of EVs is concentrated
in 23:00–6:45 and 11:45–17:45, during which the electricity prices are lower, i.e., $0.041 and $0.103,
respectively. Similarly, the EV charging is typically concentrated in low electricity price periods and
discharging in high electricity price periods, as shown in Figure 6. Therefore, the significant economic
performances of EVs are demonstrated with respect to both a group of EVs and a single EV. It is also
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worth mentioning that centralized discharging of EVs is also carried out in the peak-load periods,
and vice versa. Thus, the EVs also play an important role in load-shifting.

Moreover, excessive electricity is produced by the wind power unit in 23:00–6:45, during which
the CSACSs and EVs consume large amount of power. Thus, both CSACSs and EVs are beneficial for
accommodating wind power generation.

5.2.3. Environmental Benefits of the VPP

The amount of carbon emission reduced from 4.68 t to 3.57 t due to the introduction of the carbon
emission trading. Given the electricity market environment, the generation outputs of the gas turbines
are heavily dependent on the carbon trading price KC.

Therefore, it is necessary to investigate the sensitivity of the generation outputs of the gas turbines
with respect to KC, with other parameters fixed. Figure 7 illustrates the generation output curves of
these two gas turbines under three different carbon emission prices. Compared with gas turbine 1,
gas turbine 2 has lower carbon emission intensity but higher operation cost.
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It is shown that the power output of the low-carbon generator (gas turbine 2) increases with the
rises of KC while the power output of gas turbine 1 decreases at the same time. As a result, the VPP
could gain more benefit from the carbon trading. Carbon emission amounts and VPP profits under
different values of KC are shown in Table 2. When KC rises from 0.25 $·kg−1 to 0.3 $·kg−1, by increasing
the generation output of low-carbon generator (gas turbine 2) as well as limiting the generation output
of gas turbine 1, the carbon emission amount is reduced and more profits attained at the same time.
When KC rises from 0.3 $·kg−1 to 0.35 $·kg−1, the reduction of carbon emission amount is no longer
evident, because the generation output of gas turbine 2 has almost reached its maximum level at all
time intervals, as shown in Figure 7. The amount of carbon emission will ultimately decrease to a fixed
value with the increasing of the carbon price.

Table 2. Carbon emission amount and VPP profits under three different carbon prices.

Carbon Price ($/kg) Carbon Emission Amount (t) VPP Profit ($)

0.25 3.5708 221.0914
0.3 3.0989 406.8923

0.35 3.0490 492.1817

In order to illustrate the environmental benefits of EVs, two scenarios are analyzed: (1) 50 EV
cars in the VPP; (2) 50 fuel-consuming cars in the VPP with CO2 emission 181 g/km for each car [42].
Simulation results show that the daily carbon emission amount of the VPP in Scenario 1 is less than
that in Scenario 2 by 1.08 t. Therefore, it is expected that wide employment of EVs, as substitutions
of conventional fossil fuel cars, could greatly contribute to environmental benefits as manifested by
carbon emission reduction.

6. Conclusions

In this paper, an optimal dispatching model of a VPP with gas turbines, wind power, photovoltaics
and flexible loads including CSACSs and EVs aggregated, is established. Uncertainties in generation
outputs of renewable energy generating units are modeled by probability distributions. DR is
implemented by coordinated utilization of flexible loads. Participation in carbon trading mechanism for
the VPP is considered to explore its eco-friendly characteristics. Based on the proposed methodological
architecture, a MILP optimization model with the objective of maximizing the VPP profit is developed,
and solved by YALMIP/CPLEX. The performance of the developed method is demonstrated through
case studies. The following conclusions are attained:

(a) If thermal storage is available, the power consumption of CSACSs should be scheduled to off-peak
price periods while the thermal comfort requirement of users should be taken into account.

(b) EVs exhibit good performance in cost-saving, load-shifting as well as carbon-reduction.
The redundant wind power can be well accommodated by CSACSs and EVs.

(c) A higher carbon emission price could promote the employment of low-carbon generation units
in the VPP.

(d) With the ever-worsen environment, low-carbon generation units should be more widely employed.
(e) Flexible loads should be explored to the greatest extent so as to promote the economics and

security of the VPP concerned.

A VPP could gain more benefits by appropriately participating in various kinds of markets,
but only the CDM is considered in this paper, and further extension of the research work is demanding.
The participation strategy of a VPP in various time-scale electricity markets, different kinds of ancillary
service markets and emission trading markets is an important issue to be addressed in our future
research efforts.
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Nomenclature

DR Demand response
VPP Virtual power plant
DSM Demand side management
CSACS Chilled water thermal storage air conditioning systems
EV Electric vehicle
MILP Mixed integer linear programming
CDM Clean development mechanism
EMS Energy management system
PMV Predicted mean vote
SOC State of charge
PDF Probability density function
MC,t Actual carbon emission of the VPP at time t (kg)
MD,t Carbon emission credit of the VPP at time t (kg)
KC Transaction price of the per unit carbon emission ($·kg−1)
Qg Per unit carbon emission intensity of gas turbine g (kg/kW)
ε Carbon emission distribution coefficient per unit electrical energy (kg/kWh)
Pwind Output of the wind turbine (kW)
Pwind

rate Rated output of the wind turbine (kW)
vin,vrate, vout Cut-in, rated, and cut-out wind speeds of the wind turbine
PPV Output of the photovaltaics (kW)
r Solar irradiance (kW/m2)
A Area of the photovoltaic panel (m2)
Pk,t Actual output of renewable energy generation unit k at time t (kW)
P+

k,t Maximum estimated value of Pk,t (kW)
P−k,t Minimum estimated value of Pk,t (kW)
θin,t Indoor temperature at time t (◦C)
θout,t Outdoor temperature at time t (◦C)
B Heat transferring coefficient of the building
Qt Instantaneous heat energy increments at time t (kWh)
Ca Specific heat capacity of the air (J/(kg·◦C))
ρa Density of the air (kg/m3)
V Indoor capacity of the building (m3)
IPMV PMV value in the building
Is,i,t Binary decision variable of the storing status of CSACS i at time t
Ir,i,t Binary decision variable of the releasing status of CSACS i at time t
CD,i,t Total provided cold energy of CSACS i at time t (kWh)
Cp,i,t Produced cold energy of CSACS i at time t (kWh)
Cs,i,t Stored cold energy of CSACS i at time t (kWh)
Cr,i,t Released cold energy of CSACS i at time t (kWh)
Pi,t Power consumed by CSACS i at time t (kW)
Sc

i,t Cold energy stored in CSACS i at time t (kWh)
ηr, ηs Releasing and storing efficiencies of the CSACS
µp Energy efficiency ratio of the CSACS
µr, µs Electric power conversion coefficients of releasing and storing cold energy
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uc
v,t Binary decision variable of charging status of EV v at time t

ud
v,t Binary decision variable of discharging status of EV v at time t

uin
v,t Binary decision variable of dispatching status of EV v at time t

pc
v,t Charging power of EV v at time t (kW)

pd
v,t Discharging power of EV v at time t (kW)

Sv,t SOC of EV v at time t
Sv,a SOC of EV v at the arrival time
Sv,d Target SOC of EV v at the departure time
Emax Battery capacity of each EV (kWh)
ηc

v Charging efficiency of EV v
ηd

v Discharging efficiency of EV v
ug,t On/off status of gas turbine g at time t
Ps

t Power exchanged between VPP and the distribution network at time t (kW)
Pg,t Output of gas turbine g at time t (kW)
RU

g Ramping-up limit of gas turbine g (kW)
RD

g Ramping-down limit of gas turbine g (kW)
λs

t Electricity market price at time t ($/kWh)
Cgas

t Costs of gas turbines at time t ($)
CSU

g,t Start-up costs of gas turbine g at time t ($)
CSD

g,t Shut-down costs of gas turbine g at time t ($)
CC

t Costs of carbon trading at time t ($)
CEV

t Costs of charging/discharging of EVs at time t ($)
NG Number of gas turbines
Nq Number of renewable energy generating units
Nv Number of EVs
Nc Number of CSACSs

Appendix A

Table A1. Parameters of gas turbines.

Gas Turbine (Maximum/Minimum
Output)/kW

(Ramping-Up/Down
Limits)/(kW/h)

Slope of Piece
I ($/kW)

Slope of Piece
II ($/kW)

Slope of Piece
III ($/kW)

Carbon Emission
Intensity [g·(kWh)−1]

1 200/10 200/200 0.026 0.031 0.036 736.0
2 200/10 200/200 0.076 0.081 0.086 359.2
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Figure A1. Daily active power output curves of the wind turbine and the PV generator. Figure A1. Daily active power output curves of the wind turbine and the PV generator.
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Table A2. Parameters of each EV.

Rated Charging/ Discharging Power (kW) Charging/Discharging Efficiency Battery Capacity (kWh) Target SOC

3/3 0.95/0.95 20 0.85
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