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Abstract: The accuracy of state-of-charge (SOC) estimation, one of the most important functions
of a battery management system (BMS), is the basis for the proper operation of an electric vehicle.
This study proposes a method for accurate SOC estimation. To achieve a balance between accuracy
and simplicity, a second-order resistor–capacitor equivalent circuit model is applied before the
algorithm is deduced, and the parameters of the established model are determined using a fitting
technique. Battery state space equations are then described. A strong tracking H-infinity filter (STHF)
is proposed based on an H-infinity filter (HF) and a strong tracking filter. By introducing a suboptimal
fading factor, the STHF approach can use the relevant information in the estimation residual sequence
to update the estimation results. To verify the robustness of this approach, battery test experiments
are performed at different temperatures on lithium-ion batteries. Finally, the SOC estimation results
obtained using the STHF suggest that the STHF method exhibits high robustness against the measured
noises and initial error. For comparison, the estimation results of the commonly used extended
Kalman filter (EKF) and HF methods are also displayed. It is suggested that the proposed STHF
approach obtains a more accurate SOC estimation.

Keywords: H-infinity filter; lithium-ion battery; state of charge estimation; strong tracking

1. Introduction

The electric vehicle (EV) industry has rapidly developed as global energy and environment issues
have been gradually aggravated. Among various types of batteries, lithium-ion batteries (LIBs) provide
several advantages (e.g., high power/energy density, long lifespan, no memory effect, high operating
voltage, and low self-discharge rate) [1] and are widely used in EVs. To ensure the normal operation of
the entire system, a battery management system (BMS) plays an important role in an EV [2]. The system
monitors and manages batteries by estimating battery states, such as the state of charge, state of energy,
and state of health [3]. Accurate knowledge of the state of charge (SOC) of a battery, which refers to
the residual capacity available in the battery, is a prerequisite for vehicle safety [4–7].

1.1. Definition of State of Charge

Technically, battery SOC can be defined as the ratio of the residual electricity to the nominal
capacity of the battery and is expressed as follows:

SOC(t) = SOC(t0)−
1

Cn

∫ t

t0

iL(τ)dτ (1)
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where SOC(t) and SOC(t0) represent the value of SOC at time t and initial time t0 respectively.
Cn denotes the nominal capacity of the battery that can be obtained from the manufacturer. iL denotes
the current flowing through the voltage source and is defined to be positive during discharge and
negative during charging.

Equation (1) can be rewritten in differential form:

•
SOC(t) = − iL(t)

Cn
(2)

1.2. Review of SOC Estimation Approaches

Different from voltage and current, the SOC of batteries cannot be measured directly by sensors.
Several approaches have been proposed and promoted to determine the SOC of a battery [8–10].
The open-circuit voltage (OCV) method (also referred to as the look-up table method) exhibits high
estimation accuracy; however, this technique requires a long rest time to obtain an accurate OCV,
rendering it unsuitable for practical applications [11]. Ampere-hour counting is commonly used when
the battery capacity is known and the load current can be obtained constantly. However, the estimation
accuracy of this method is affected by the initial error and allows errors to accumulate when current
measurement is inaccurate [10]. Several intelligent algorithms for SOC estimation of LIBs have recently
been introduced, such as neural network [12] and fuzzy logic [13]. These methods exhibit improved
robustness when batteries operate under unknown conditions. However, sizable data are required to
train the network model prior to estimation, which is time-consuming [14].

In comparison with the aforementioned approaches, model-based estimation techniques are
frequently studied because they can suppress unexpected disturbance and self-correct by using
additional battery parameters, such as voltage [15]. The most frequently used LIB models to describe
the working mechanism are the equivalent circuit model (ECM) and the electrochemical model.
When a battery model is established, the SOC can be estimated using the Kalman filter (KF) method
and its improved form (e.g., extended Kalman filter, unscented Kalman filter, and cubature Kalman
filter) [16–18], particle filter [19], and the sliding mode observer (SMO) [20], among others [21].
Among these techniques, KF-based methods have been widely studied and have obtained accurate
results. However, Kalman filtering operates under the assumption of zero-mean noise, which is
difficult to satisfy in reality.

HF-based methods have been proved to demonstrate relatively superior robustness in battery SOC
estimation. To obtain accurate estimation results, Yan et al., Zhang et al., Yan et al., and Chen et al. [22–24]
employed the H-infinity filter in battery SOC estimation. Additionally, Rui Xiong et al. of the Beijing
Institute of Technology recently provided an in-depth discussion on this approach; Lin et al. [25]
introduced the linear matrix inequality-based H-infinity observer technique and proposed a
multi-model probability battery SOC fusion estimation; Zhang et al. [26] applied the adaptive H-infinity
method to estimate the SOC and state of energy of batteries; experimental results indicate that the
adaptive H-infinity, filter-based estimator provides high estimation of battery states in real time.
In Chen et al. [27], a multiscale dual H-infinity filter was proposed to estimate battery SOC and capacity
in real time; the extended H-infinity filter was used in Alfi et al. [28], and the parameters required
were obtained using radial basis function networks. The H-infinity filter was also used to determine
the parameters of LIBs and thus improve estimation accuracy [29]. Meanwhile, the H-infinity-based
nonlinear observer method was introduced for battery SOC estimation [30,31].

1.3. Contribution of This Paper

Owing to its good robustness, the H-infinity algorithm has been extensively researched for its
application in battery SOC estimation, which can be derived using different analytic methods, such as
game theory and transfer function approaches. By introducing a cost function J, the H-infinity filter
based on game theory aims to minimize the estimation error in the worst-case scenario. Regardless,
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it is difficult to track the sudden state changes in the steady state. To alleviate this problem, the STHF
approach to SOC estimation is proposed in this study. Through the introduction of a suboptimal fading
factor to update the variance of the estimation error, the STHF algorithm obtains stronger robustness
against model uncertainties and sudden noise.

To verify the SOC estimation accuracy of the STHF approach, this study establishes a second-order
ECM to simulate the dynamic performance of LIBs. The parameters in the model are identified by curve
fitting. The HF and STHF methods used in battery SOC estimation are then analyzed. Battery tests
under different discharge conditions are performed at different temperatures. A comparison of the
estimation results based on STHF and other algorithms suggests that STHF-based methods exhibit
higher SOC estimation accuracy, compared with other algorithms.

1.4. Organization of This Paper

The remainder of this paper is outlined as follows: Section 2 introduces a second-order
resistor–capacitor (RC) network model for LIBs and identifies the parameters. In Section 3, the strong
tracking H-infinity filter algorithm is derived, and STHF-based SOC estimation is analyzed. Section 4
describes the battery test procedure in the New European Driving Cycle (NEDC), and the SOC
estimation accuracy of STHF is verified. Finally, Section 5 summarizes the study.

2. Battery Model and Parameter Identification

2.1. Equivalent Circuit Model of Lithium-Ion Batteries

To obtain the accuracy of SOC estimation results, an appropriate battery model should be selected
to describe the operating mechanism and external characteristics. ECMs can easily identify model
parameters and provide high accuracy that can satisfy the requirements of BMS [32,33]. By employing
the resistor, capacitor, and voltage source, ECMs can describe the dynamic, external characteristics
of LIBs. ECMs come in various types, including the first-order RC ECM [8,13,34], second-order RC
ECM [7,35], fractional-order RC ECM [20], and so on.

A higher-order ECM generally indicates higher accuracy to simulate battery characteristics;
regardless, the model can be more complex and requires a stricter criterion for the BMS hardware.
To strike a balance between accuracy and simplicity, a second-order ECM is used in the present study.

As shown in Figure 1, a typical second-order RC ECM is composed of two parallel RC circuits,
one resistor and one voltage source, which are connected in series. Uoc represents the OCV of the
battery, which varies nonlinearly with SOC, and the relationship between the OCV and SOC vary at
different temperatures. R0 is ohmic resistance, and Ut is the terminal voltage of the battery. The first
RC circuit is employed to simulate the electrochemical polarization of LIBs, and the second simulates
concentration polarization. U1 and U2 represent the polarization voltages of the two RC circuits.
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In accordance with Thevenin’s Theorem, the following equations can be established:{
U1
R1

+ C1
dU1
dt = iL(t)

U2
R2

+ C2
dU2
dt = iL(t)

(3)

Ut = Uoc −U1 −U2 − iL(t)R0 (4)

For convenience in applying the algorithm for SOC estimation, the aforementioned differential
equations can be rewritten as follows: 

•
U1 = iL(t)

C1
− U1

R1C1•
U2 = iL(t)

C2
− U2

R2C2

(5)

2.2. Model Parameter Identification

Once the battery model is determined, the parameters in the model need to be identified.
The parameters of the battery model change constantly as the battery ages. Online parameter
identification continuously updates the estimation values of these parameters to increase the accuracy
of SOC estimation. However, online methods require complexity and are beyond the scope of the
study. Thus, simple offline parameter identification methods, which predetermine the parameters,
are used in this study.

To calculate the model parameters, pulse discharge current experiments were conducted on a
Samsung ICR18650-22P LIB (Seoul, South Korea) at 0 ◦C, 20 ◦C, and 40 ◦C. Essential information on
this battery is listed in Table 1, and the procedure of the experiment is illustrated in Figure 2.

Table 1. Basic specifications of Samsung ICR18650-22P lithium-ion battery.

Typical capacity 2150 mAh
Nominal voltage 3.6 V

Charging cut-off voltage 4.2 ± 0.05 V
Discharge cut-off voltage 2.75 V

Max. charge current 2150 mA
Max. discharge current 10 A

By applying the commonly studied exponential-function fitting technique, the model components
at different temperatures can be identified, as listed in Table 2. The details regarding offline parameter
identification are discussed in Xia et al. [21] and thus are not provided in this study.

Table 2. Identification of battery model parameters at different temperatures.

T (◦C) R0 (Ω) R1 (Ω) R2 (Ω) C1 (F) C2 (F)

0 0.0763 0.0147 0.0060 4508.0 12,150
20 0.0395 0.0107 0.0031 4721.2 17,288
40 0.0292 0.0064 0.0013 3468.2 26,659

Another important task is the determination of the relationship between Uoc and SOC, which
varies with temperature. By means of the experiments shown in Figure 2, the OCV at different SOCs
can be determined. We obtained the approximate correspondence between SOC and Uoc by the fitting
function in MATLAB. To achieve a balance between accuracy and computation, a quartic polynomial
was applied. The SOC–OCV nonlinear relationship curves at 0 ◦C, 20 ◦C, and 40 ◦C are described in
Equations (6)–(8) and are shown in Figure 3.

UOC (0 ◦C) = −0.2955SOC4 + 0.129SOC3 − 0.6786SOC2 + 0.1678SOC + 3.4728 (6)
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UOC (20 ◦C) = −0.6195SOC4 + 1.0899SOC3 − 0.3539SOC2+0.6196SOC + 3.2354 (7)

UOC (40 ◦C) = −3.9843SOC4 + 9.0753SOC3 − 6.8357SOC2 + 2.6710SOC + 3.2354 (8)
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2.3. State–Space Equation

To employ the algorithm for estimating the SOC of LIBs, the state-space equation was formulated
according to Equations (2), (4) and (5). However, the equations needed to be discretized because the
sensors could not continuously generate the measured values. Differently stated, the sampling time T
exists. The ultimate battery model discrete state-space equation is written as SOC(k)

U1(k)
U2(k)

 =

 1 0 0
0 1− T

C1R1
0

0 0 1− T
C2R2


 SOC(k− 1)

U1(k− 1)
U2(k− 1)

+

 −
T

Cn
T
C1
T
C2

iL(k) (9)

The observed equation is expressed as

Ut(k) = UOC(k)−U1(k)−U2(k)− iL(k)R0 (10)

3. Strong Tracking H-Infinity Filter Algorithm for SOC Estimation

3.1. SOC Estimation Based on H-Infinity Filters

As discussed in previous sections, H-infinity filters exhibit high robustness and are widely studied
for state estimation. The estimation accuracy is mainly influenced by modeling errors and external
noise. At time k, the assumption is that the process noise of input uk and the measurement noise
of the observed value yk are wk and vk, respectively. xk denotes the system state at time k, and the
discrete-time system can be expressed as{

xk+1 = Axk + Buk + wk
yk = Ckxk + Duk + vk

(11)

In accordance with Equations (9) and (10),

A =


1 0 0
0 1− T

C1R1
0

0 0 1− T
C2R2

 (12)

B =


− T

Cn
T
C1
T
C2

 (13)

D = [−R0] (14)

However, the SOC and OCV exhibit a nonlinear relationship; thus, Equation (10) also shows a
nonlinear behavior. To solve this problem, Equation (10) can be determined according to Burgos et
al. [36] as follows:

Ck =

[
dUOC(SOC)

dSOC

∣∣∣
SOC=SÔCk

−1 −1
]

(15)

After the system equations were established, an approach based on game theory was applied and
the cost function was introduced, as follows [37]:

J =

N−1
∑

k=0
‖zk − ẑk‖2

Sk

‖x0 − x̂0‖2
P−1

0
+

N−1
∑

k=0

(
‖wk‖2

W−1
k

+ ‖vk‖2
V−1

k

) (16)

zk = Lkxk (17)
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where the tracked target zk denotes the SOC, and its estimated value is ẑk; x0 represents the initial SOC,
and x̂0 denotes the estimation of x0. Four weighting matrices Sk, P0, Wk and Vk in Equation (16) were
determined to be symmetric-positive and they were selected based on the specific problem.

‖s‖2
M denotes the norm of s, which can be calculated by

‖s‖2
M = sT Ms (18)

The cost function J can be viewed as a contest between nature and engineers. By introducing
errors (current error Wk, voltage noise Vk, and the initial error in the denominator), nature aims to
maximize the estimation error. However, appropriate methods in the numerator are preferred to
minimize the estimation error. This study aimed to achieve as small a value as possible for the function
J and thus obtain an accurate SOC. Nevertheless, J was difficult to be minimized directly; thus, a bound
value θ that can be easily satisfied was determined. That is, we wanted to find a value for ẑk to satisfy

J <
1
θ

(19)

Equations (16) and (19) can be integrated and rewritten as

J = −1
θ
‖x0 − x̂0‖2

P−1
0

+
N−1

∑
k=0

[
‖zk − ẑk‖2

Sk
− 1

θ

(
‖wk‖2

W−1
k

+ ‖vk‖2
V−1

k

)]
< 0 (20)

From Equations (6) and (14), the following can be derived:

vk = yk − Ckxk − Duk (21)

‖zk − ẑk‖2
Sk

= ‖xk − x̂k‖2
Sk

(22)

where Sk is defined as
Sk = LkSkLk (23)

Combining these results with Equation (15) derives

J = −1
θ
‖x0 − x̂0‖2

P−1
0

+
N−1

∑
k=0

[
‖xk − x̂k‖2

Sk
− 1

θ

(
‖wk‖2

W−1
k

+ ‖yk − Ckxk − Duk‖2
V−1

k

)]
(24)

Thus, the discrete H-infinity filter can be regarded as a minimax problem; that is,

J∗ = min
x̂k

max
x0,wk ,yk

J (25)

In Dan et al. [38], the author solved this problem in great detail from theory analysis to equation
deduction; as such, it is not discussed in the present study. By using the Lagrange multiplier
approach, x0, wk, x̂k and yk were determined when the function J had a maximum or a minimum.
The aforementioned analysis indicates that, to achieve the threshold in Equation (19), SOC estimation
based on the H-infinity filter is summarized in Table 3.

To ensure that the estimator can be solved, the following equation must be satisfied:

P−1
k − θSk + CT

k V−1
k Ck > 0 (26)
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Table 3. H-infinity (HF) filter algorithm for state of charge (SOC) estimation.

Input

Current uk, terminal voltage yk at each time, initial SOC x0
L = [1 0 0]
Weighting matrices: Sk, P0, Wk, Vk
k = 0

Estimation process

Step 1: Determine Sk
Sk = LT

k Sk Lk
Step 2: Linearization of Ck

Ck =
[

d UOC(SOC)
d SOC

∣∣∣
SOC=SÔC

−1 −1
]

Step 3: Find gain matrix Kk

Kk = APk

[
I − θSkPk + CT

k V−1
k CkPk

]−1
CT

k V−1
k

Step 4: Calculate estimation of yk
ŷk = UOC(x̂k,1)− x̂k,2 − x̂k,3 − Duk
Step 5: State estimation at time k + 1
x̂k+1 = Ax̂k + Buk + Kk(yk − ŷk)
Step 6: Update covariance matrix

Pk+1 = APk

[
I − θSkPk + CT

k V−1
k CkPk

]−1
AT + BQkBT

Step 7: Output SOC estimation at time k + 1
SÔCk+1 = Lk+1xk+1
Step 8: Update time
k = k + 1

Output SOC(k) = SÔC(k)

The aforementioned analysis shows that the H-infinity filter considered the worst conditions,
which hardly occur in reality. Thus, the H-infinity filter showed strong robustness, compared with
other algorithms. Regardless, the determination of the cost function parameters involved complexity
because they varied depending on the problem.

1. Threshold θ: To improve the accuracy of the estimator, 1/θ should be as small as possible.
However, if the boundary conditions are extremely high, the filter error tends to increase or
diverge. In consideration of the existence of battery modeling error, the threshold theta cannot
be too large to avoid divergence. Therefore, the value of theta can set to 1, 10−2, 10−3, 10−4 and
10−5 respectively, and the simulation results indicate that the estimation effect is optimal when
theta is 10−2. So, 1/θ is set to 100 in this paper.

2. Weighting matrices: Normally, the initial estimation error and measured noise statistics cannot
be predetermined in practical applications; thus, weighting matrices cannot be preset given such
information. For simplicity, Sk, Wk, and Vk were set as the identity matrices, and their dimensions
were determined using Equation (16). P0 was determined by the initial error.

3.2. Strong Tracking H-Infinity Filter Estimation

The fundamental theory of H-infinity was introduced in Section 3.1, and the parameters were
determined. However, the HF filter is not sensitive to sudden changes in state and model uncertainties.
To overcome these disadvantages, the STHF approach is proposed. In Zhou et al., He et al. and Bai
et al. [39–41], Zhou et al. originally proposed the STF approach based on the extended Kalman filter
(EKF) for nonlinear system state estimation. By employing a suboptimal fading factor, this method
uses the relevant information in the estimation residual sequence, which can provide high robustness
to alterations in process parameters. On the basis of the explanation in Zhou et al. [39], the suboptimal
fading factor can be calculated using the following equations:

Nk = E0,k − Rk − CkQkCT
k (27)
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Mk = Ck APT
k CT

k (28)

where E0,k denotes the residual sequence and is determined by

ek = yk − ŷk (29)

Eo,k = E
[
ekeT

k

]
=

{
e0eT

0 k = 0
ρE0,k−1+ekeT

k
1+ρ k ≥ 1

(30)

When the aforementioned variables are determined, the suboptimal fading factor λ at time k is
given by

λk =

{
λ0 λ0 > 1
1 λ0 ≤ 1

(31)

where

λ0 =
tr(Nk)

tr(Mk)
(32)

Note: In Equation (27), Qk is the current noise covariance, and Rk is the voltage noise covariance.
In Equation (30), ρ is the forgetting factor, which can be set to 0.95 in this study. In Equation (32) tr (·)
refers to the trace of a matrix.

The combination of the H-infinity filter and STF for SOC estimation is presented in Table 4.

Table 4. Strong tracking H-infinity filter (STHF) algorithm for SOC estimation.

Input

Current uk, terminal voltage yk at each time, initial SOC x0
L = [1 0 0]
Current noise covariance Qk and voltage noise covariance Rk
Weighting matrices: Sk, P0, Wk, Vk
k = 0

Estimation process

Step 1: Determination of Sk
Sk = LT

k Sk Lk
Step 2: Linearization of Ck

Ck =
[

d UOC(SOC)
d SOC

∣∣∣
SOC=SÔC

−1 −1
]

Step 3: Prior estimation
x̂−k = Ax̂+k−1 + Buk−1
ŷ−k = UOC(x̂−k,1)− x̂−k,2 − x̂−k,3 − Duk

Step 4: Calculation of the suboptimal fading factor λ by Equations (25)–(30)
Step 5: Updating of the estimation error covariance matrix Pk by STF
P−k = λkP+

k−1
Step 6: Finding the gain matrix Kk

Kk = AP−k
[

I − θSkP+
k + CT

k V−1
k CkP−k

]−1
CT

k V−1
k

Step 7: Posteriori estimation
x̂+k = x̂−k + Kk

(
yk − ŷ−k

)
Step 6: Update of the estimation error covariance matrix by HF

P+
k = AP−k

[
I − θSkP−k + CT

k V−1
k CkP−k

]−1
AT + BQkBT

Step 7: Output of SOC estimation at time k + 1
SÔCk = Lkx+k
Step 8: Evaluation of estimation timesIf no sampling data are given,
estimation is ended; else, go to Step 1.

Output SOC(k) = SÔC(k)
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4. Experimental Results and Discussion

4.1. Workbench

As shown in Figure 4, the experimental platform was established to verify the feasibility and
effectiveness of the proposed algorithms. The battery was placed in a thermal chamber that could
provide a steady-state temperature to prevent environmental effects. A 5HC Arbin flow battery testing
system with eight independent channels was employed to manage the charge/discharge process and
collect battery information, such as voltage, current, and resistance. The information was transmitted
to a computer and saved using the MITS Pro software.
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4.2. Estimation Results with White Gaussian Noises

To verify the performance of the proposed strong tracking H-infinity filter method, the New
Europe Driving Cycle (NEDC) test was conducted to simulate the typical operating condition of
batteries. The current profile of the NEDC test is shown in Figure 5. The current and voltage can be
measured and recorded using the workbench, which can be viewed as exact values. Once the precise
current and voltage are determined, the true value of the SOC can be obtained using the Ah counting
method. However, in the practical environment, the precise current and voltage could not be obtained
because of the precision of the sensors. Therefore, the common white Gaussian noise was added to the
measured data to simulate the practical reality. The variances of the zero-mean current and voltage
noises were 10−2 and 10−4, respectively.
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The estimation results obtained using the STHF method at different temperatures are shown
in Figure 6, and the estimation error is illustrated in Figure 7. The reference value of the SOC was
calculated using the Ah counting method. The estimation results obtained using the HF and EKF
are also shown in Figures 6 and 7 for comparison. The estimation procedure employed in the HF
method is summarized in Table 3. The EKF method for battery SOC estimation is widely studied,
and the process of this algorithm is introduced in Pérez et al., Hu et al., Xiong et al., Chiang et al.,
and Lee et al. [16,42–45]; thus, the details are not discussed in the current study. To achieve fairness,
the parameters of EKF and STHF are assigned identical values, as listed in Table 5.
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extended Kalman filter (EKF) with white Gaussian noises.



Energies 2018, 11, 1481 12 of 20

Energies 2018, 11, x FOR PEER REVIEW  12 of 20 

 

Figure 6. Estimation results of strong tracking H-infinity filter (STHF), H-infinity filter (HF), and 
extended Kalman filter (EKF) with white Gaussian noises. 

 

Figure 7. Estimation errors of STHF, HF, and EKF with white Gaussian noises. 

Table 5. Strong tracking H-infinity filter (STHF) and extended Kalman filter (EKF) parameters. 

Parameters Values 
P0 [0.001, 0, 0; 0, 0.001, 0; 0, 0, 0.001] 
Q [0.001, 0, 0; 0, 0.001, 0; 0, 0, 0.001] 
R 0.001 

Table 6. Mean absolute errors (MAEs) and maximal errors of STHF, HF and EKF. 

Temperature 0 °C 20 °C 40 °C 
Method STHF HF EKF STHF HF EKF STHF HF EKF 

MAE 0.027 0.02 0.031 0.011 0.008 0.013 0.008 0.006 0.013 
Maximal error 0.072 0.034 0.040 0.026 0.015 0.020 0.024 0.019 0.024 

4.3. Robustness against Biased Measured Noises 

The estimation accuracy obtained for white Gaussian noise by using the STHF method was 
discussed and compared with those values obtained using other algorithms in Section 4.2. However, 
the assumed zero-mean noise hardly occurred in the practical reality. Thus, the robustness of the 
STHF method against biased measurement noise was verified in this section.  

For this purpose, the 0.05 and 0.1 A current-biased noises were added to the data of the NEDC 
test, and the SOC was estimated using the STHF, HF, and EKF methods. Figure 8 shows the results 
of estimation with the 0.05 A current-biased noises, obtained using the three methods at different 
temperatures. Figure 9 shows the corresponding estimation error. Figures 10 and 11 present the 
estimation results and error with 0.1 A current-biased noises, respectively. The MAEs of the three 
methods are shown in Figures 12–14. 

The MAE of the STHF method slightly changed when the current-biased noises were present; 
however, the MAE of the HF and EKF methods increased rapidly. As shown in Figures 12–14, the 
estimation errors of HF and EKF tended to diverge, but the estimation results of the STHF still 
converged to the reference value. Thus, compared with the other methods, the STHF approach 
exhibited a stronger robustness against the biased measured noises, which was more in line with 
reality. 

Figure 7. Estimation errors of STHF, HF, and EKF with white Gaussian noises.

Table 5. Strong tracking H-infinity filter (STHF) and extended Kalman filter (EKF) parameters.

Parameters Values

P0 [0.001, 0, 0; 0, 0.001, 0; 0, 0, 0.001]
Q [0.001, 0, 0; 0, 0.001, 0; 0, 0, 0.001]
R 0.001

The mean absolute error (MAE) and the maximal error of the three methods at 0 ◦C, 20 ◦C,
and 40 ◦C are listed in Table 6. The aforementioned results suggest that the estimation error of the
STHF method was close to that of the HF method at 20 ◦C and 40 ◦C but was more accurate than that
of the EKF method. At 0 ◦C, the estimation results obtained using the STHF method were unstable
and were likely to exhibit fluctuation.

Table 6. Mean absolute errors (MAEs) and maximal errors of STHF, HF and EKF.

Temperature 0 ◦C 20 ◦C 40 ◦C

Method STHF HF EKF STHF HF EKF STHF HF EKF
MAE 0.027 0.02 0.031 0.011 0.008 0.013 0.008 0.006 0.013

Maximal error 0.072 0.034 0.040 0.026 0.015 0.020 0.024 0.019 0.024

4.3. Robustness against Biased Measured Noises

The estimation accuracy obtained for white Gaussian noise by using the STHF method was
discussed and compared with those values obtained using other algorithms in Section 4.2. However,
the assumed zero-mean noise hardly occurred in the practical reality. Thus, the robustness of the STHF
method against biased measurement noise was verified in this section.

For this purpose, the 0.05 and 0.1 A current-biased noises were added to the data of the NEDC
test, and the SOC was estimated using the STHF, HF, and EKF methods. Figure 8 shows the results
of estimation with the 0.05 A current-biased noises, obtained using the three methods at different
temperatures. Figure 9 shows the corresponding estimation error. Figures 10 and 11 present the
estimation results and error with 0.1 A current-biased noises, respectively. The MAEs of the three
methods are shown in Figures 12–14.
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The MAE of the STHF method slightly changed when the current-biased noises were present;
however, the MAE of the HF and EKF methods increased rapidly. As shown in Figures 12–14,
the estimation errors of HF and EKF tended to diverge, but the estimation results of the STHF
still converged to the reference value. Thus, compared with the other methods, the STHF approach
exhibited a stronger robustness against the biased measured noises, which was more in line with reality.
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4.4. Robustness against Initial Error

Another main reason for SOC inaccuracy was the initial error. In many cases, the accuracy of the
initial state cannot be predetermined. Thus, the robustness against the initial error is an important
criterion for evaluating the performance of the algorithms. In this section, the initial SOC was set to
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60% when the true value was 100%. Figure 15 illustrates the estimation results, and Figure 16 shows
the estimation errors of the three methods when the initial error was 40%.
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To compare the convergence rate, the time when the estimation error converged to less than
10% is marked in Figure 16. The convergence times obtained using the STHF method were 1423, 641,
and 461 s at 0 ◦C, 20 ◦C, and 40 ◦C, respectively. The convergence times of the HF and EKF methods
were considerably longer than that of the STHF approach.

4.5. Estimation Results of Additional Tests

To verify the performance of the STHF method more comprehensively, additional discharge tests
were conducted at 25 ◦C. The Dynamic Stress Test (DST), Urban Dynamometer Driving Schedule
(UDDS), and Federal Urban Driving Schedule (FUDS) represent three typical battery test profiles.
Figure 17 describes the relationship between discharging current and time. The estimation error of
the STHF method at 25 ◦C under the three test data is shown in Figure 18. The mean absolute error
and the maximal error are listed in Table 7. The STHF method clearly shows high estimation accuracy
under these battery tests.
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Table 7. MAEs and maximal errors of Dynamic Stress Test (DST), Urban Dynamometer Driving
Schedule (UDDS), and Federal Urban Driving Schedule (FUDS) tests.

Test DST UDDS FUDS

MAE 0.008 0.006 0.002
Maximal error 0.012 0.012 0.005
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4.6. Computational Cost Comparison

Except for the estimation accuracy, the complexity assessment is also important for an algorithm
because high computation can affect the hardware cost of BMS and timeliness of estimation results.
In this section, the computational time of STHF, HF, and EKF methods are compared under different
test profiles. To reduce the error, the algorithms ran three times under each profile and the average
results of the three times are shown in Table 8.

Table 8. The running time of STHF, HF, and EKF under different test profiles.

Test NEDC DST UDDS FUDS

STHF 0.556 0.175 0.500 0.249
HF 0.523 0.158 0.428 0.226

EKF 0.481 0.145 0.383 0.207

Through the data analysis in Table 8, it is obvious that the STHF method required higher
computational cost than HF and EKF. But the differences were not enormous, so it can be ignored as
the hardware performance improvement in BMS.

5. Conclusions

This work aimed to obtain the accurate SOC of LIBs. To reach this purpose, a novel method was
proposed in this paper based on a strong tracking H-infinity filter. First, a commonly used second-order
RC equivalent circuit battery model was used, and the parameters of the model were determined by
exponential-function fitting. On this basis, the H-infinity filter algorithm was derived based on game
theory. The STHF algorithm was then proposed to enhance the robustness of HF. The workbench on
which the battery discharging tests were conducted was established. Finally, the battery SOC was
estimated using STHF, and the estimation results of HF and EKF were presented for comparison.

The results suggest that the STHF method has higher robustness to measured noise and initial
error: (1) if the measured noise is colored noise, estimation using the STHF can obtain high accuracy;
(2) when the initial error exists, estimation using STHF can achieve the precise value faster. In summary,
owing to its high robustness, the STHF approach is more practical for SOC estimation, particularly
under large-noise conditions or in harsh situations.

However, numerous issues can be addressed in future studies. The strong tracking H-infinity filter
approach estimates the state of the battery on the basis of the measured voltage; thus, the precision
of voltage measurement largely affects the estimation accuracy. In addition, battery experiments are
conducted based on a single cell in this study. The effectiveness of the STHF method on the battery
module or battery pack of the EV needs to be investigated.
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