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Abstract: One significant factor influencing geothermal energy exploitation is the variation of
the mechanical properties of rock in high temperature environments. Since rock is typically a
heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient
temperature changes, which can greatly influence the geothermal energy exploitation. A numerical
method based on the numerical manifold method (NMM) is developed in this study to simulate the
thermo-elastic fracturing of rocklike granular materials. The Voronoi tessellation is incorporated
into the pre-processor of NMM to represent the grain structure. A contact-based heat transfer model
is developed to reflect heat interaction among grains. Based on the model, the transient thermal
conduction algorithm for granular materials is established. To simulate the cohesion effects among
grains and the fracturing process between grains, a damage-based contact fracture model is developed
to improve the contact algorithm of NMM. In the developed numerical method, the heat interaction
among grains as well as the heat transfer inside each solid grain are both simulated. Additionally,
as damage evolution and fracturing at grain interfaces are also considered, the developed numerical
method is applicable to simulate the geothermal-related thermal fracturing process.

Keywords: numerical manifold method; thermo-elastic fracturing; Voronoi tessellation; contact
heat transfer

1. Introduction

Geothermal energy is one of the most abundant renewable energies on the Earth. Its environmental
friendliness and reliable features compared with the conventional fossil fuels greatly encourage
further exploration and exploitation of geothermal energy. One significant factor that influences
the exploitation of geothermal energy is the variation of the mechanical properties of rock in high
temperature environments [1–3]. Therefore, investigating the thermo-mechanical mechanism of rock
behavior under different thermal circumstances is attracting more and more attention nowadays. As a
powerful and fundamental research approach, a great deal of laboratory tests have been conducted
to investigate the thermo-mechanical mechanisms of rock. Based on laboratory tests, scholars have
found that rocks are typical heterogeneous granular materials and the heterogeneity of rocks are
mainly attributed to their random shaped mineral grains, cemented interfaces as well as microdefects
(Figure 1a) [4–6]. The heterogeneity of rock can dramatically influence the thermal and mechanical
properties of rocks. Under thermal circumstances, the random shaped grain structure of rock can
bring about high temperature gradients, uncoordinated thermal stresses and strains [7]. Consequently,
thermal fracturing of rocks occurs frequently (Figure 1b), which is an important factor that should be
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considered during geothermal energy exploitation. Thus, investigating the thermal fracturing process
of rocklike granular material is of great importance for revealing the thermo-mechanical mechanism of
the rock and improving the geothermal exploitation technologies. Indeed, considerable achievements
have been attained based on laboratory tests. However, carrying out large numbers of laboratory
tests is time-wasting and costly. Additionally, it is still difficult to completely monitor the micro
failure process of materials in laboratory tests. Since rock are typical heterogeneous granular materials,
developing numerical methods to investigate the thermal fracture effects of the rocklike granular
materials is of great significance.
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 The first law of thermodynamics 

Figure 1. Optical microscope observations of rock [6] (a) undamaged microstructure (b) thermal
fractured microstructure. The microstructures are enlarged by 25 times.

To date, numerous kinds of numerical simulations have been conducted to investigate the thermal
fracture effects of different kinds of materials. Via incorporating fracture mechanics, many numerical
simulations focus on evaluating the thermal stress intensity factors of originally existing fractures,
which is essential for predicting the thermal induced fracture propagation. During these numerical
investigations, the continuum-based numerical methods, i.e., the finite element method (FEM) [8],
the extended finite element method (XFEM) [9], the meshless methods (MMs) [10] and the boundary
element methods (BEMs) [11], are generally adopted. However, due to the limited capacities of the
continuum-based numerical methods in simulating complex discontinuous geometries as well as the
fracture mechanics on treating complex fracture patterns, only simple macroscale thermal fracture
problems are studied in these numerical simulations.

Since the thermal fracturing of rocklike materials are greatly affected by their microstructure,
continuum-based microscale thermo-mechanical coupling numerical algorithms are also developed
to investigate the thermal fracturing process of granular materials. One typical example is the
RFPA-thermal software developed by the Tang’s group [12], which is also an extension of the FEM.
The RFPA-thermal represents the micro structure of rock with square finite elements. Through the
incorporation of the statistically distributed material parameters and the thermo-elastic damage
constitutive law, complex thermal fracturing from microscale to macroscale can be simulated by
the RFPA-thermal method. However, since the displacements at the square grain boundaries are
continuously simulated, the fracture paths are not explicitly represented in the RFPA-thermal.

Since the continuous numerical methods run into difficulties when simulating thermal fracturing
of granular materials, the discontinuous numerical methods are also widely adopted to deal with
such problems [13–16]. One widely used discontinuous numerical method for thermal fracturing
is the particle flow code (PFC), in which the micrograins are represented by circular or spherical
elements [13]. Incorporating the grain-based model and cluster model, which bond the same types
of circular or spherical elements together, the PFC can realistically represent the grain structures of
the rock [4]. Thus, complex thermal fracturing processes that consider the micro structure of rock are
simulated [3,14,17]. As alternatives to the circle or sphere assembly-based numerical methods described
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above, polygon assembly-based simulations, such as the Voronoi polygon assembly-based simulations
of Universal Distinct Element Code (UDEC) [18] and the triangular block assembly-based simulations
of Discontinuous Deformation Analysis (DDA), are also extensively adopted in thermo-mechanical
coupling problems [15]. By incorporating a contact-based fracture criterion, complex thermal fracturing
of rock can also be successfully simulated by the polygon assembly-based numerical methods. In the
above discontinuous particle assembly numerical methods, one temperature degree of freedom is
assigned to each grain to simulate the heat transfer process. The heat transfer of the material are
then approximated by the heat transfer among blocks and the heat transfer inside each polygonal
grain is generally ignored [15,18]. Therefore, to obtain accurate temperature results, fine grain size,
which means more temperature degrees of freedom, is generally necessary in these numerical methods.
Additionally, the discontinuous numerical methods also run into difficulties in capturing the complex
deformation field inside solid grains.

Since both the continuous and discontinuous numerical methods suffer limitations, combined
continuous-discontinuous numerical methods have been developed during the past two decades. One
of the most popular combined numerical methods is the numerical manifold method (NMM) [19].
The NMM inherits the contact theory of the DDA and adopts dual cover systems, i.e., the mathematical
cover (MC) and the physical cover (PC), thus providing unique advantages for modelling continuous
and discontinuous problems on a unified numerical platform. Therefore, the NMM has been widely
applied to simulate both continuous and discontinuous problems [20–37]. Nowadays, the NMM
has also been extended to model thermo-mechanical fracture problems by Zhang [38,39]. However,
only thermal fracture stress intensity factors were investigated in Zhang’s study.

Considering the advantages of the NMM in simulating both continuous and discontinuous
problems, the NMM is extended to analyze the thermal fracturing of the rocklike granular materials.
Since laboratory experiments have revealed that the microstructure of rocklike granular materials
appear more like random polygons [40], in this study random Voronoi polygon assemblies are
constructed to approximate the microstructure of the granular materials. Basically, two separate heat
transfer processes should be considered, i.e., the heat transfer in solid grains and the heat interactions
among grains. To more realistically simulate the heat interactions among grains, a contact-based heat
transfer model is developed based on the contact algorithm of NMM. Then the transient heat transfer
algorithm is discretized and incorporated into the NMM platform. Additionally, a damage-based
contact fracture model is developed to reflect the bonding-cracking mechanism of grain boundaries.
Since both the heat transfer in the solid grain and the heat interactions among grains are considered,
the developed numerical method can better simulate the heterogeneous heat transfer process of
rocklike granular materials. Additionally, as damage evolution and fracturing at grain interfaces is also
considered, the developed numerical method is applicable to simulate the geothermal-related thermal
fracturing process. Two simple examples are simulated to validate the developed NMM algorithm.
Then, the extended NMM algorithm is applied to investigate the thermal fracturing processes induced
by elevated temperature and cooling respectively.

2. Methods and Backgrounds

2.1. Basic Concept of NMM

2.1.1. Cover System

The most distinctive feature of the NMM is its dual coverage system, i.e., the mathematical cover
and the physical cover, which have already been elaborated in many references [22]. Attributed to the
dual cover system, the NMM is capable of handling problems with complex physical meshes, such as
cracks, holes, material interfaces, etc. The mathematical cover of NMM is a collection of small patches
which can be of arbitrary shape and in theory it does not need to be consistent with the physical
meshes. Thus, it is convenient to construct a numerical model with complex physical meshes in the
NMM. Generally, the mathematical cover patches may partly overlap with each other and should cover
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the whole problem domain. In addition, the mathematical cover might intersect with the physical
meshes. The subdivisions of the mathematical cover by the physical meshes are termed as the physical
cover in NMM. The intersection of different physical covers is the manifold elements (ME) of NMM.

To clarify, a simple example is presented to illustrate the process of constructing the NMM cover
system. Figure 2a shows a problem domain Ω is subdivided into three separate blocks, i.e., Ω1, Ω2

and Ω3, by its physical meshes. To discretize Ω, two MCs, i.e., M1 and M2 in Figure 2b, are generated
to completely cover Ω. Then, M1 is subdivided into three PCs, termed as P1

1 , P2
1 and P3

1 (Figure 3a),
whereas M2 is subdivided into three PCs, termed as P1

2 , P2
2 and P3

2 (Figure 3b), by the physical meshes.
The six PCs partly overlap each other and cut Ω into seven MEs, as shown in Figure 4.
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Following generating the cover system, a partition of unity function (weight function) ωi(x) and
a polynomial local field function are constructed for each PC [41]. Then, the global approximation of
the field function in consideration is established by weight averaging the local field functions:

X(x) =
N

∑
i=1

ωi(x)PTa (1)
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where x is the position vector, N is the total number of the PC; PT represents the polynomial basis vector
and a is the corresponding degree of freedom vector of the PC. In this study, the 0th-order polynomial
local function is adopted to approximate the local field function. Thus, the global displacement field is
written as:

uh(x) =
N

∑
i=1

ωi(x)

[
1 0
0 1

]
d = Nud (2)

where d is the displacement degree of freedom vector and Nu is the displacement shape function.
Similarly, the global temperature field can be written as:

θh(x) =
N

∑
i=1

ωi(x)θ = Nθθ (3)

where θ is the temperature degree of freedom vector and Nθ is the temperature shape function.

2.1.2. Contact Theory

The NMM inherits the contact theory from DDA to deal with block movements and block
interactions [19]. To avoid large displacements in a single time step, a maximum permissible
displacement d0 is prescribed in the NMM. Generally, the contact detection process of the NMM
can be divided into two separate steps. The first step is detecting the possible contact pairs. The block
pair is considered as a possible contact pair if the minimum distance between two blocks is no more
than 2d0. Basically, three types of contact are defined in the NMM after possible contact detection,
i.e., the angle-to-edge contact, the edge-to-edge contact and the angle-to-angle contact, as shown in
Figure 5a–c, respectively.
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The second step is the invasion judgement of the possible contact pairs. Figure 6 shows
when invasion exists in a possible contact pair, one or two point-edge pair are used to completely
represent the invasion status of the possible contact pair. To be specific, for angle-to-edge contact and
angle-to-angle contact, one point-edge pair can be found, e.g., V1-V2V3 in Figure 6a,c. However, for
edge-to-edge contact, two point-edge pairs should be specified to completely represent invasion status,
e.g., the V1-V3V4 and V2-V3V4 in Figure 6b. After determining the invasion status of each possible
contact pair, the normal invasion displacement ∆o and the tangential invasion displacement ∆s can
be calculated according to the relative position of the corresponding point-edge pair. In NMM, linear
elastic contact force–invasion displacement relationships are adopted. Thus the normal contact force
and tangential contact force are calculated according to following equations [19]:

Fn = kn∆o ∆o < 0 (4){
Fs = ks∆s Fs ≤ Fn tan ϕ

Fs = Fn tan ϕ Fs > Fn tan ϕ
(5)



Energies 2018, 11, 1380 6 of 21

where Fn and Fs are the normal contact force and the tangential contact force, respectively. kn and ks are
the corresponding normal contact stiffness and tangential contact stiffness, respectively. The selection
of normal and tangential stiffness can greatly influence the output of the numerical model. According
to Shi’s suggestion, the ratio of the contact stiffness to the elastic modulus of the block is preferably
between 20 and 100 [19].
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2.2. Thermal Conduction of Granular Materials

2.2.1. Representation of the Micro Structure of Granular Materials

To more realistically model the thermo-elastic fracturing of the rocklike granular materials, the
microstructure of these materials should be considered. The microstructure of the rocklike granular
materials appear much like random polygons, as shown in Figure 7a [40]. The Voronoi tessellation is
introduced into the pre-processor of the NMM to represent the randomness of the microstructure of
granular materials [42]. The Voronoi tessellation begins with generating a set of random points. These
random points can be moved step-by-step through an iteration procedure to make the space between
the points more uniform. Then triangulation is carried out based on these random points. Following
that, the Voronoi polygons are generated by constructing the perpendicular bisectors of all the triangle
edges. Finally, by truncating the Voronoi polygons at the boundaries, the random microstructure of
granular material is established (Figure 7b). The random microstructure is then treated as the physical
meshes of the NMM pre-processor, and the NMM model for granular material finally is constructed by
the pre-processor of the NMM (Figure 7c).
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 The first law of thermodynamics 
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2.2.2. Basic Formulas

Basically, the thermal conduction of granular materials can be divided into two separate processes,
i.e., the heat conduction of solid grains and the heat interactives among bonded grains [7]. The authors
consider, without loss of generality, the simple example shown in Figure 8, in which the schematic of
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the thermal conduction of a granular material consists of two separate grains, Ω1 and Ω2, are presented.
Figure 8 shows that except for the heat conduction in Ω1 and Ω2, respectively, the heat transferred
through the cemented interface Γc can also dramatically influence the temperature field of the granular
material. Thus, apart from the prescribed temperature boundary condition on Γθ and the prescribed
heat flux boundary condition on Γq, the interface heat interactive condition at Γc should also be
satisfied. Considering this, the basic formulas for thermal conduction of granular materials are given
as follows:

• The first law of thermodynamics

∇q(x, t) + ρcθ
∂θh(x, t)

∂t
= Q (6)

• Fourier’s law
q(x, t) = −k∇θh(x, t) (7)

where ρ is the mass density, q(x, t) is the heat flux, cθ is the specific heat, Q is the heat source
per unit area, k is the thermal conductivity of the solid grains, ∇ is the gradient operator.
Correspondently, the boundary and initial conditions for thermal conduction are given as follows:

• Boundary conditions
θh(x, t) = θ(x, t) on Γθ (8)

q(x, t) · n = q(x, t) on Γq (9)

• Initial conditions
θh(x, 0) = θ0 (10)

where n is the outside unit normal vector. Γθ , Γq are the boundaries with prescribed temperature
θ and prescribed heat flux q, respectively. θ0 represents initial temperature of the problem
domain. Moreover, the solution of temperature field should also satisfy the interface heat
interactive conditions:

q(x, t) · n+ = q+c on Γ+
c (11)

q(x, t) · n− = q−c on Γ−c (12)

where n+ and n− denote the corresponding outside unit normal vector of the upper boundary
Γ+

c and lower boundary Γ−c , respectively. q+c and q−c represent the amount of heat flux across the
boundary Γ+

c and Γ−c , respectively.
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2.2.3. Contact Based Heat Transfer Model 

To obtain the temperature field of the granular material from the basic formulas presented 
above, the amount of the heat flux transferred through the cemented interfaces should be prescribed 
first. Inspired from the fact that the NMM adopts contact algorithm to deal with the interactions 
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2.2.3. Contact Based Heat Transfer Model

To obtain the temperature field of the granular material from the basic formulas presented above,
the amount of the heat flux transferred through the cemented interfaces should be prescribed first.
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Inspired from the fact that the NMM adopts contact algorithm to deal with the interactions between
blocks, a contact based heat transfer model is developed to simulate the heat interactive among
grains in this study. The heat interactive between the two grains are considered only when the
two grains are cemented together or contact each other. Since the contact status of a possible contact
can be completely represented by the geometric relation of corresponding point-edge relations, the
contact-based heat transfer model in this study is also based on the point-edge relations. Additionally,
according to Fourier’s law, the amount of the heat flux transferred across the interface depends on the
heat conduction capacity of the interface. Thus, in the rest of this article, a contact thermal conductivity
kc is defined to represent the heat conduction capacity of the interface. The physical meaning of kc

is the amount of heat flux transferred across unit length of interface per unit time in case of unit
temperature difference. The heat conduction capacity of the cemented interfaces might be related
to many factors, such as the contact force, the roughness of the interface and the hardness of the
material [43,44]. However, this is not the main research objective of this work.

To explain the contact-based heat transfer model in detail, a representative example is shown in
Figure 9, in which block B(1) contacts block B(2) at point V1 of B(1) and point V0 of B(2) respectively.
The contact status of this contact pair is represented with the point-edge relation V1-V4V5. The heat
interactive between B(1) and B(2) is then approximated by the heat interactive between boundary V4V5

and point V1.
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As the thickness and the volume of the interfaces are not explicitly represented in the NMM.
The cemented interfaces are assumed to be with zero thickness and zero volume. Based on this kind of
treatment, it is supposed that the cemented interface between blocks have no heat storage capacity
and ignoring the frictional heat. Thus, the following balance equation of the heat flux at the interface is
thus obtained:

q+c = −q−c = qc (13)

According to Fourier’s law, the amount of heat flux transferred through the interface is related to
the contact thermal conductivity, the interface temperature difference as well as the contact area. Thus,
the amount of interface heat flux can be written as:

qc(x, t) = −kcl∆θc(x, t) (14)

with l representing the contact area as shown in Figure 9:

l =
1
2
(‖x1 − x2‖+ ‖x1 − x3‖) (15)

where x1, x2 and x3 are the position vectors of V1, V2 and V3 respectively. ∆θc in Equation (14) represents
the temperature difference between V4V5 and V1, which is approximated by the temperature difference
between V1 and the projection point V0 as shown in Figure 9:
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∆θc = θ+c − θ−c (16)

where θ+c and θ−c represent the temperatures at point V1 and V0, respectively, which can be
approximated by the linear interpolation of the corresponding PC temperatures:

θ
j
c =

[
N j

1 N j
2 N j

3

]
θ

j
1

θ
j
2

θ
j
3

 = Nj
θθ, j = + or− (17)

Thus, Equation (16) can be shortened as:

∆θc =
[

N+
θ −N−θ

]
· θ = Nc

θθ (18)

2.2.4. Discretization and Solution

To obtain the temperature field of the granular material, the governing equation should be
established by discretizing the basic formulas described in Section 2.2.2 and the contact-based heat
transfer model in Section 2.2.3. In this section, the weight residual method is adopted to establish the
governing equation [41]. The weak form of the governing equation can be expressed as:∫

Ω δθh · ρcθ
∂θh

∂t dΩ +
∫

Ω
1
k

[
qx

(
δθh
)

qx

(
θh
)
+ qy

(
δθh
)

qy

(
θh
)]

dΩ

+
∫

Γθ
δθh · λT

(
θh − θ

)
dΓ =

∫
Γq

δθh · qdΓ + ∪
contact

(δθ+q+c + δθ−q−c )
(19)

where δθh is the first order variation of θh(x, t) and λT is the penalty number to enforce the prescribed
temperature boundary condition. The last term in Equation (19) is the contact heat transfer terms which
have to satisfy the heat flux continuity condition given in Equation (13) and the temperature condition
given in Equation (16). By substituting Equation (14) and (18) into Equation (19), the discretized
governing equation for transient heat conduction with contact heat transfer among cemented grains
can be established:

Cθ

.
θ+ Kθθ = Fθ (20)

where:
Cθ = ρcθ

∫
Ω

NT
θ NθdΩ (21)

Kθ =
∫

Ω

[
k
(

∂Nθ
∂x

)T( ∂Nθ
∂x

)
+ k
(

∂Nθ
∂y

)T( ∂Nθ
∂y

)]
dΩ

+ λT
∫

Γθ
NT

θ NθdΓθ + ∪
contact

(
Nc

θ

)T · kcl ·Nc
θ

(22)

Fθ = λT

∫
Γθ

NT
θ θdΓθ −

∫
Γq

NT
θ qdΓq (23)

Equation (20) is a first-order time dependent differential equation, which can be solved by the
time integration scheme [45]. Generally, the time integration scheme for transient heat conduction can
be uniformly written as: θk+1 = θk +

[
(1− β)

.
θ

k
+ β

.
θ

k+1
]

∆tk+1

Cθ
θk+1−θk

∆tk+1 + Kθ

[
(1− β)θk + βθk+1

]
= (1− β)Fk

θ + βFk+1
θ

(24)

in which, k is the serial number of the time step, ∆tk+1 = tk+1 − tk is the time interval of the k + 1
time step, θk and θk+1 are the temperature degree of freedom vectors of the k time step and the k + 1
time step respectively. The parameter β is adopted to choose the specific time integration scheme.
Regarding 1/2 ≤ β ≤ 1, the time integration scheme is unconditionally stable [45]. In this study, β = 1
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is adopted to solve the governing equation as it is unconditionally stable and relatively easy to be
implemented into NMM. Thus, Equation (32) can be simplified as:(

Kθ +
Cθ

∆tk+1

)
θk+1 = Fk+1

θ +
Cθ

∆tk+1θ
k (25)

2.3. Thermo-Elastic Fracture Analysis

2.3.1. Thermo-Mechanical Coupling

The variation of temperature can lead to thermal expansion or thermal shrinkage of materials.
As materials are generally under different external constrains, the thermal expansion or shrinkage of
the materials cannot occur freely in all directions. Subsequently, thermal stresses and even thermal
fractures usually appears in the materials. The thermal induced stress can be written as:

σθ = −Dεθ = −D · α∆θhI (26)

where σθ and εθ are the thermal induced stress and strain vector respectively, ∆θh is the amount of
temperature variation, α represents the thermal expansion coefficient, D is the linear elastic constitutive
matrix and I is the second order identity tensor. The thermal induced stress can be easily incorporated
into the NMM by treating σθ as the initial stress of the NMM [38].

2.3.2. A Damage Based Contact Fracture Model

The micrograins of granular materials in Nature are bonded together by the cemented interface.
However, the cohesion effects among blocks are neglected in the original contact algorithm of the
NMM. Additionally, under thermal circumstances, the thermal induced stresses could result in fracture
evolution in the granular materials. Thus, the contact algorithm of the NMM should be improved to
successfully simulate the cohesion effects and the thermal fracture evolution of the granular materials.
To achieve this goal, a damage-based contact fracture model is incorporated into the NMM in this
study [46].

As mentioned in Section 2.1.2, after the invasion judgement, the invasion status of contact block
pairs are obtained. Generally, the interactions among grains are divided into normal behavior and
tangential behavior. In NMM, normal contact springs and tangential contact springs are adopted
to simulate the normal behaviors and tangential behaviors among blocks as shown in Figure 10.
To be consistent with this and to simulate the cohesion effects among blocks as well, the normal
force-aperture relationship shown in Figure 11a and the tangential force-aperture relationship shown
in Figure 11b are adopted and assigned to the normal spring and tangential spring respectively.
Correspondently, to reflect the damage evolution process of the cemented interface, two damage
factors, i.e., the normal damage factor Dn and the tangential damage factor Ds, are defined for the
normal contact spring and tangential contact spring respectively. The normal behavior and tangential
behavior of the damage based contact fracture model are described in detail as follows.

As shown in Figure 11a, the normal behavior of the contact is divided into three parts according
to the normal damage factor. The normal damage factor can be calculated by the following formula:

Dn =


0 o ≤ ou

o−ou
o f−ou

ou < o ≤ o f

1 o > o f

(27)

where o is normal aperture, ou and o f represent the normal aperture corresponding to the initial tensile
strength of the contact Ft0 and the tensile failure of the contact, respectively:

ou =
Ft0

kn0
(28)
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o f = ou +
2GI
Ft0

(29)

where kn0 is the initial stiffness of the normal spring and GI represents the mode I critical energy
release rate. The tensile strength of the contact Ft0 can be determined by Ft0 = l ft0, in which l is the
contact area defined in Figure 9 and ft0 is the initial tensile strength of the interface per unit length.
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Based on the above descriptions, the normal force of the damage based contact fracture model
can be expressed as follows:

Fn =


kn0o o ≤ ou

(1− Dn)Ft0 ou < o ≤ o f
0 o > o f

(30)

Similar to the normal behavior, the tangential behavior of the contact is also divided into three
parts according to the tangential damage factor (Figure 11b). The tangential damage factor can also be
calculated according to the tangential aperture:

Ds =


0 s ≤ su
s−su

s f−su
su < s ≤ s f

1 s > s f

(31)

where s represents the tangential aperture of the contact. su and s f are the tangential apertures
corresponding to the initial shear strength of the contact Fs0 and the shear failure of the contact
respectively, which can be calculated as follows:



Energies 2018, 11, 1380 12 of 21

su =
Fs0

ks0
(32)

s f = su +
2GI I

c
(33)

where GI I denotes the mode II critical energy release rate; c represents the initial cohesion of the
contact; ks0 is the initial stiffness of the tangential spring. According to Coulomb’s friction law, the
initial shear strength Fs0 of the contact can be written as:

Fs0 = Fn tan ϕ + c (34)

where ϕ is the internal friction angle of the contact. As the cohesion of the contact decreases
linearly with the increase of tangential damage factor as shown in Figure 11b, the tangential contact
force-aperture relationship can thus be expressed as:

Fs =


ks0s s ≤ su

Fn tan ϕ + (1− Ds)c su < s ≤ s f
Fn tan ϕ s > s f

(35)

Furthermore, to distinguish the mode I fracture, the mode II fracture and the mixed mode fracture
as well as judge the failure of the cemented interface, a mixed mode damage factor is defined. The
mixed mode damage factor is calculated by the following equation:

Dmix =

√
(Dn)

2 + (Ds)
2 (36)

It is supposed that whenever the mixed damage factor exceeds 1, the contact is set as “failure”.

3. Results and Discussion

3.1. Validation of Contact Heat Transfer Model

The thermal conduction in a plane consists of two square blocks is simulated in this example to
verify the effectiveness of the developed contact heat transfer model. The edge length of the square
blocks is L = 1.5 mm. The plane is subjected to prescribed temperature conditions on the top boundary
and bottom boundary, as shown in Figure 12a. The two blocks are bonded together by the center
cemented interface. The heat transfer across the cemented interface should influence the temperatures
on the two sides of the cemented interface, which is termed as θ1c and θ2c in this example. The steady
state theoretical solutions for θ1c and θ2c can be calculated according to the following equations [43]:

θ1c =
(1 + η)θ1 + ηθ2

1 + 2η
(37)

θ2c =
ηθ1 + (1 + η)θ2

1 + 2η
(38)

where η indicates the ratio of the contact thermal conductivity to the material thermal conductivity:

η =
kc

k
(39)

The NMM cover system shown in Figure 12b is constructed to implement the numerical
simulation. The numerical results of θ1c and θ2c for cases with different η are compared with the
corresponding theoretical solutions in Figure 13a, which indicates good agreements. Moreover, it is
illustrated in Figure 13 that the temperature difference at the cemented interface decreases with the
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increase of η. Therefore, it is inferred that when η is large enough, the interface temperature difference
would diminish to 0. To validate this point of view, Figure 13b shows the temperature on the center
vertical line of the plane for case with η = 1 × 106. Obviously, the temperature agrees well with the
exact temperature solution of a continuous plane with the same size and boundary conditions.
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3.2. Validation of Thermo-Mechanical Coupling

A simple thermo-mechanical coupling problem is analyzed to validate effectiveness of the
extended NMM on simulating thermo-mechanical coupling problems. As shown in Figure 14a,
a square plane with edge length L = 1 m and initial temperature θ0 = 0 ◦C is subjected to thermal
loading θ1 = 1 ◦C on the top boundary. The vertical displacement of the bottom boundary as well as
the horizontal displacements of the right boundary and left boundary are fixed. The plane is subjected
to plane strain conditions.
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(b) NMM cover system.

According to thermodynamics, the heat flux would flow gradually from the top boundary
to the bottom boundary. The resulting temperature variation could cause thermal expansion and
thermal stresses in the plane. To investigate these phenomenon, this transient heat transfer process is
numerically simulated by the extended NMM. The variation of the temperatures and lateral stresses at
point A (0.5, 0) and point B (0.5, 0.5) with time for cases with different time step sizes are extracted and
investigated as shown in Figure 15a,b. To compare, the corresponding theoretical solutions for the
temperatures and stresses are obtained according to the following equations [47]: θ(y, t) = 1− 4

π

∞
∑

n=0

(−1)n

2n+1 exp
[
− (2n+1)π2kt

4L2ρcθ

]
cos
[
(2n+1)πy

2L

]
σx = − αE

1−µ θ(y, t)
(40)

It is clearly indicated in the figure that good agreements between the numerical results and
theoretical solutions are obtained, which confirms the effectiveness of the extended NMM on simulating
thermo-mechanical coupling problems. Moreover, the figures illustrate that the numerical results are
more accurate for smaller time step size, e.g., ∆t = 0.002 s in Figure 15.
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3.3. Thermo-Elastic Fracturing Induced by Elevated Temperature

The thermo-elastic fracturing of a model consists of an outer cylinder and an inner disc is
numerically investigated in this example. The radii of the cylinder and the disc are shown in Figure 16a.
The initial temperature of the model is 0 ◦C. The cylinder and disc are made of two different materials
respectively, termed as Material 1 and Material 2 as shown in Figure 16a, where Material 1 is supposed
to be a typical granular material. The temperature of the model is supposed to be increased uniformly,
in which condition only the thermal fracturing process is considered and the heat transfer across the
model can be ignored. The material parameters of Material 1 and Material 2 are presented in Table 1.
Since the elastic modulus and the thermal expansion coefficient of Material 2 are larger than those
of Material 1, thermal fracturing would occur in Material 1 when the temperature of the model is
uniformly elevated. To investigate this thermal fracturing process, the cylinder is subdivided into 1241
Voronoi polygons as shown in Figure 16b. The contact-based heat transfer model and the damage-based
contact fracture model are used to simulate the heat interactive and the bonding-cracking effects
between the micro grains. The parameters of the interface are presented in Table 1 as well.
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Table 1. Parameters for Example 3.

Parameters Material 1 Material 2

Material
Bulk density, ρ (kg/m3) 2300 2300
Elastic modulus, E (GPa) 20 40
Poisson’s ratio, µ 0.3 0.3
Thermal expansion, α [48] 1 × 10−6 1.5 × 10−6

Interface
Contact thermal conductivity, kc (W/(m·◦C)) 1 × 108

Initial temperature, θ0 (◦C) 0
Normal contact stiffness, kn 1 × 107

Tangential contact stiffness, ks 4 × 106

Cohesion, c (MPa) 10
Tensile strength, ft0 (MPa) 5
Friction angle, ϕ (◦) 0
Mode I energy release rate, GI

(
J/m2) 40

Mode II energy release rate, GI I
(
J/m2) 200

The NMM cover system with 11,187 MEs and 10,955 PCs are generated to simulate this problem
(Figure 16b). According to the analysis of Example 2, the time step size adopted for the numerical
simulation is ∆t = 0.001 s. During the numerical simulation, the temperature of the model is increased
uniformly by 0.3 ◦C per time step. The numerical results of the thermal fracturing processes are
shown in Figure 17. A fracture initiates at the lower right corner of the cylinder first (Figure 17a).
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This fracture propagates rapidly until it completely cut-through the cylinder at 480 ◦C (Figure 17b).
Subsequently, two secondary fractures initiate at the upper left and lower left corners of the cylinder
at 651 ◦C (Figure 17c) and 750 ◦C (Figure 17d), respectively. Similar numerical simulation of this
example has been conducted by the RFPA-thermal [12]. Figure 18a shows the final thermal fracture
morphology of the RFPA-thermal, in which one main radial fracture that cut-through the outer cylinder
as well as some shorter secondary radial fractures are also obtained. A similar experiment test has also
conducted by Abdalla [49]. In Abdalla’s experiment test, a concrete prism symmetrically reinforced
by FRP bars is subjected to uniform rise of temperature. The thermal expansion coefficient of FRP
in the test is much larger than that of the concrete. As a result, transverse thermal stresses gradually
increase in the concrete, which further leads to the radial fracturing in the concrete surrounding the
FRP bars. Figure 18b shows the thermal fracture morphology of the test. Similar to the numerical
results, one main radial fracture is initiated and finally cut-through the surrounding concrete. Along
with the main fracture, there are also some shorter radial fractures in the surrounding concrete.
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3.4. Thermo-Elastic Fracturing Induced by Cooling

The thermo-elastic fracturing of a plane made of granular material induced by cooling is studied
in this example. The length and height of the plane are L = 400 mm and H = 200 mm respectively,
as shown in Figure 19a. The vertical displacement of the bottom boundary as well as the horizontal
displacements of the left and right boundaries are fixed, while the top boundary is mechanically
free. The plane is originally subjected to a high temperature circumstance with initial temperature
θ0 = 1000 . The left, right and bottom boundaries are adiabatic. The top boundary is held at a
prescribed temperature of θ1 = 0 to mimic the contact of the plane with cold, e.g., rapidly flowing
cold water.
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To simulate this thermal cooling induced fracture evolution, 1022 Voronoi polygons are generated
to represent the micro structure of the plane as shown in Figure 19b. Then, the NMM cover system
with 8789 MEs, 8754 PCs is constructed based on the Voronoi assemblies. The material parameters and
the interface parameters of the numerical simulation are presented in Table 2.

Table 2. Parameters for Example 4.

Parameters

Material
Bulk density, ρ (kg/m3) 2500
Elastic modulus, E (GPa) 30
Poisson’s ratio, µ 0.3
Thermal conductivity, k(W/(m·◦C)) 3
Specific heat, cθ (J/kg·) 1000
Thermal expansion, α 5 × 10−6

Interface
Contact thermal conductivity, kc (W/(m·◦C)) 1 × 105

Initial temperature, θ0 (◦C) 1000
Normal contact stiffness, kn 1 × 107

Tangential contact stiffness, ks 4 × 106

Cohesion, c(MPa) 30
Tensile strength, ft0 (MPa) 10
Friction angle, ϕ (◦) 0
Mode I energy release rate, GI

(
J/m2) 50

Mode II energy release rate, GI I
(
J/m2) 200

The numerical results of the thermal fracturing process are shown in Figure 20. During the
numerical simulation, an array of small fractures emerge at the top boundary of the plane immediately
after the cooling process starts, which is due to the large temperature gradient near the top boundary
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(Figure 20a). These small fractures propagate downwards as the plane cools gradually from the
top boundary to the bottom boundary. Additionally, the number of fractures that continue to grow
downwards decrease monotonically. Generally, the ultimate thermal fracture patterns are mainly in
the vertical direction, which is parallel to the average temperature gradient. However, due to the
heterogeneity of the grain structure, the thermal fracture patterns are slightly deviated from the vertical
direction. This numerical result is consistent with that obtained by Huang [50].
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Figure 20. Thermal fracturing process (a) t = 0.6 s (b) t = 3.6 s (c) t = 9.0 s (d) t = 20.1 s.

4. Conclusions

Because of the environmental friendliness and reliable features of geothermal energy, exploration
and exploitation of geothermal energy is attracting more and more attention. However, since rocks
are typical heterogeneous granular materials, the randomly shaped microstructure of the rock can
bring about uncoordinated thermal stresses and even result in thermal fracturing when the deep high
temperature circumstance is disturbed during geothermal energy exploitation. The geothermal-related
thermal fracturing of rock can significantly influence the geothermal energy exploitation.

In this study, a thermo-mechanical coupling algorithm based on the numerical manifold method
was developed to analyze the thermo-elastic fracturing process of granular materials. The developed
NMM algorithm represented the randomly shaped microstructure of granular materials using Voronoi
polygon assemblies. Based on the Voronoi polygon assembly, a transient thermal conduction algorithm
for granular materials was established, in which the heat interactions among Voronoi grains were
reflected by a newly developed contact-based heat transfer model. Then, a damage-based contact
fracture model was incorporated in the NMM algorithm to simulate the bonding-cracking effects
between grains. The newly developed NMM algorithm was validated by two simple examples, the
results of which agreed well with that of theoretical solutions. At last, the thermo-elastic fracturing
processes induced by elevated temperature and cooling were simulated by the developed NMM
algorithm. The obtained thermal fracture morphologies were consistent with those obtained by
experiment test and available numerical simulations.

The developed numerical method is a coupled continuous-discontinuous numerical method.
Since both the heat transfer in the solid grain and the heat interactions among grains are considered,
the developed numerical method can better simulate the heterogeneous heat transfer process of
rocklike granular materials. Additionally, as damage evolution and fracturing at grain interfaces is
also considered, the developed numerical method is applicable to simulate the geothermal-related
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thermal fracturing process. However, in the numerical method developed, the effects of seepage,
which is another significant influence of the geothermal energy exploitation, are not considered. In the
future, the coupled thermal-hydraulic-mechanical numerical method will be developed and applied to
analyze geothermal related problems.

Author Contributions: Q.L. and Z.W. proposed the idea and deduced the numerical method; J.H. and Y.J.
performed the Programming work; J.H. implemented the numerical simulations and analyzed the result; J.H.
wrote the paper; Z.W. revised the paper.

Acknowledgments: The authors wish to acknowledge the China Postdoctoral Science Foundation funded project
(Grant No. 2017M622514) and the support from the National Basic Research Program of China (973 Program)
(Grant Nos. 2014CB046904, 2015CB058102).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ghassemi, A. A review of some rock mechanics issues in geothermal reservoir development. Geotech. Geol.
Eng. 2012, 30, 647–664. [CrossRef]

2. Ranjith, P.G.; Viete, D.R.; Chen, B.J.; Perera, M.S.A. Transformation plasticity and the effect of temperature on
the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng. Geol. 2012, 151, 120–127.

3. Yang, S.-Q.; Tian, W.-L.; Ranjith, P.G. Failure mechanical behavior of Australian Strathbogie granite at high
temperatures: Insights from Particle Flow Modeling. Energies 2017, 10, 756. [CrossRef]

4. Peng, J.; Wong, L.N.Y.; Teh, C.I. Influence of grain size heterogeneity on strength and microcracking behavior
of crystalline rocks. J. Geophys. Res. Sol. Ea 2017, 122, 1054–1073. [CrossRef]

5. Yang, S.Q.; Huang, Y.H.; Tian, W.L.; Zhu, J.B. An experimental investigation on strength, deformation and
crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Eng. Geol.
2017, 217, 35–48. [CrossRef]

6. Peng, J.; Rong, G.; Cai, M.; Yao, M.; Zhou, C. Comparison of mechanical properties of undamaged and
thermal-damaged coarse marbles under triaxial compression. Int. J. Rock Mech. Min. 2016, 83, 135–139.
[CrossRef]

7. He, J.; Liu, Q.S.; Wu, Z.J.; Xu, X.Y. Modelling transient heat conduction of granular materials by numerical
manifold method. Eng. Anal. Bound. Elem. 2018, 86, 45–55. [CrossRef]

8. Burlayenko, V.N.; Altenbach, H.; Sadowski, T.; Dimitrova, S.D. Computational simulations of thermal shock
cracking by the virtual crack closure technique in a functionally graded plate. Comp. Mater. Sci. 2016, 116,
11–21. [CrossRef]

9. Yvonnet, J.; He, Q.C.; Zhu, Q.Z.; Shao, J.F. A general and efficient computational procedure for modelling
the Kapitza thermal resistance based on XFEM. Comput. Mater. Sci. 2011, 50, 1220–1224. [CrossRef]

10. Singh, A.; Singh, I.V.; Prakash, R. Meshless element free Galerkin method for unsteady nonlinear heat
transfer problems. Int. J. Heat Mass Tranf. 2007, 50, 1212–1219. [CrossRef]

11. Gao, X.-W.; Zheng, B.-J.; Yang, K.; Zhang, C. Radial integration BEM for dynamic coupled thermoelastic
analysis under thermal shock loading. Comput. Struct. 2015, 158, 140–147. [CrossRef]

12. Tang, S.B.; Tang, C.A.; Liang, Z.Z.; Zhang, Y.F. Influence of heterogeneity on strength and failure
characterization of cement-based composite subjected to uniform thermal loading. Constr. Build. Mater. 2011,
25, 3382–3392. [CrossRef]

13. Wanne, T.S.; Young, R.P. Bonded-particle modeling of thermally fractured granite. Int. J. Rock Mech. Min.
2008, 45, 789–799. [CrossRef]

14. Xia, M. An upscale theory of thermal-mechanical coupling particle simulation for non-isothermal problems
in two-dimensional quasi-static system. Eng. Comput. 2015, 32, 2136–2165. [CrossRef]

15. Jiao, Y.Y.; Zhang, X.L.; Zhang, H.Q.; Li, H.B.; Yang, S.Q.; Li, J.C. A coupled thermo-mechanical discontinuum
model for simulating rock cracking induced by temperature stresses. Comput. Geotech. 2015, 67, 142–149.
[CrossRef]

16. Lan, H.X.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior
during compression loading. J. Geophys. Res. 2010, 115. [CrossRef]

17. Zhao, Z. Thermal influence on mechanical properties of granite: A microcracking perspective. Rock Mech.
Rock Eng. 2015, 49, 747–762. [CrossRef]

http://dx.doi.org/10.1007/s10706-012-9508-3
http://dx.doi.org/10.3390/en10060756
http://dx.doi.org/10.1002/2016JB013469
http://dx.doi.org/10.1016/j.enggeo.2016.12.004
http://dx.doi.org/10.1016/j.ijrmms.2015.12.016
http://dx.doi.org/10.1016/j.enganabound.2017.10.011
http://dx.doi.org/10.1016/j.commatsci.2015.08.038
http://dx.doi.org/10.1016/j.commatsci.2010.02.040
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.08.039
http://dx.doi.org/10.1016/j.compstruc.2015.06.006
http://dx.doi.org/10.1016/j.conbuildmat.2011.03.029
http://dx.doi.org/10.1016/j.ijrmms.2007.09.004
http://dx.doi.org/10.1108/EC-04-2014-0076
http://dx.doi.org/10.1016/j.compgeo.2015.03.009
http://dx.doi.org/10.1029/2009JB006496
http://dx.doi.org/10.1007/s00603-015-0767-1


Energies 2018, 11, 1380 20 of 21

18. Lan, H.; Martin, C.D.; Andersson, J.C. Evolution of in situ rock mass damage induced by mechanical–thermal
loading. Rock Mech. Rock Eng. 2012, 46, 153–168. [CrossRef]

19. Shi, G.H. Manifold Method of Material Analysis. In Transactions of the 9th Army Conference on Applied
Mathematics and Computing; Report No. 92-1; Army Research Office: Minneapolis, MN, USA, 1991; pp. 57–76.

20. An, X.M.; Zhao, Z.Y.; Zhang, H.H.; Li, L.X. Investigation of linear dependence problem of three-dimensional
partition of unity-based finite element methods. Comput. Meth. Appl. Mech. Eng. 2012, 233–236, 137–151.
[CrossRef]

21. Fan, L.F.; Yi, X.W.; Ma, G.W. Numerical manifold method (NMM) simulation of stress wave propagation
through fractured rock mass. Int. J. Appl. Mech. 2013, 5, 1350022. [CrossRef]

22. He, J.; Liu, Q.S.; Ma, G.W.; Zeng, B. An improved numerical manifold method incorporating hybrid crack
element for crack propagation simulation. Int. J. Fract. 2016, 199, 21–38. [CrossRef]

23. Li, S.C.; Cheng, Y.M. Enriched meshless manifold method for two-dimensional crack modeling. Theor. Appl.
Fract. Mech. 2005, 44, 234–248. [CrossRef]

24. Liu, G.Y.; Zhuang, X.Y.; Cui, Z.Q. Three-dimensional slope stability analysis using independent cover based
numerical manifold and vector method. Eng. Geol. 2017, 225, 83–95. [CrossRef]

25. Terada, K.; Ishii, T.; Kyoya, T.; Kishino, Y. Finite cover method for progressive failure with cohesive zone
fracture in heterogeneous solids and structures. Comput. Mech. 2005, 39, 191–210. [CrossRef]

26. Tsay, R.J.; Chiou, Y.J.; Chuang, W.L. Crack growth prediction by manifold method. J. Eng. Mech. 1999, 125,
884–890. [CrossRef]

27. Wu, Y.Q.; Chen, G.Q.; Jiang, Z.S.; Zhang, L.; Zhang, H.; Fan, F.S.; Han, Z.; Zou, Z.Y.; Chang, L.; Li, L.Y.
Research on fault cutting algorithm of the three-dimensional numerical manifold method. Int. J. Geomech.
2017, 17, E4016003. [CrossRef]

28. Wu, Z.J.; Wong, L.N.Y. Frictional crack initiation and propagation analysis using the numerical manifold
method. Comput. Geotech. 2012, 39, 38–53. [CrossRef]

29. Yang, Y.T.; Zheng, H. Direct approach to treatment of contact in numerical manifold method. Int. J. Geomech.
2017, 17. [CrossRef]

30. Zhang, G.X.; Sugiura, Y.; Hasegawa, H. Crack propagation by manifold and boundary element method.
In Proceeding of the 3rd International Conference on Analysis of Discontinuous Deformation, Vail, CO, USA,
3–4 June 1999; pp. 273–282.

31. Zhao, G.F.; Zhao, X.B.; Zhu, J.B. Application of the numerical manifold method for stress wave propagation
across rock masses. Int. J. Numer. Anal. Methods 2014, 38, 92–110. [CrossRef]

32. Zheng, H.; Liu, F.; Du, X.L. Complementarity problem arising from static growth of multiple cracks and
MLS-based numerical manifold method. Comput. Meth. Appl. Mech. Eng. 2015, 295, 150–171. [CrossRef]

33. Ning, Y.J.; An, X.M.; Ma, G.W. Footwall slope stability analysis with the numerical manifold method. Int. J.
Rock Mech. Min. 2011, 48, 964–975. [CrossRef]

34. Wu, Z.J.; Fan, L.F.; Liu, Q.S.; Ma, G.W. Micro-mechanical modeling of the macro-mechanical response and
fracture behavior of rock using the numerical manifold method. Eng. Geol. 2017, 225, 49–60. [CrossRef]

35. Yang, Y.T.; Zheng, H.; Sivaselvan, M.V. A rigorous and unified mass lumping scheme for higher-order
elements. Comput. Meth. Appl. Mech. Eng. 2017, 319, 491–514. [CrossRef]

36. Xu, D.D.; Yang, Y.T.; Zheng, H.; Wu, A.Q. A high order local approximation free from linear dependency
with quadrilateral mesh as mathematical cover and applications to linear elastic fractures. Comput. Struct.
2017, 178, 1–16. [CrossRef]

37. Zheng, H.; Xu, D.D. New strategies for some issues of numerical manifold method in simulation of crack
propagation. Int. J. Numer. Meth. Eng. 2014, 97, 986–1010. [CrossRef]

38. Zhang, H.H.; Ma, G.W.; Fan, L.F. Thermal shock analysis of 2D cracked solids using the numerical manifold
method and precise time integration. Eng. Anal. Bound. Elem. 2017, 75, 46–56. [CrossRef]

39. Zhang, H.H.; Ma, G.W.; Ren, F. Implementation of the numerical manifold method for thermo-mechanical
fracture of planar solids. Eng. Anal. Bound. Elem. 2014, 44, 45–54. [CrossRef]

40. Norouzi, S.; Baghbanan, A.; Khani, A. Investigation of grain size effects on micro/macro-mechanical
properties of intact rock using Voronoi element discrete element method approach. Particul. Sci. Technol.
2013, 31, 507–514. [CrossRef]

41. Lin, J.S. A mesh-based partition of unity method for discontinuity modeling. Comput. Meth. Appl. Mech. Eng.
2003, 192, 1515–1532. [CrossRef]

http://dx.doi.org/10.1007/s00603-012-0248-8
http://dx.doi.org/10.1016/j.cma.2012.04.010
http://dx.doi.org/10.1142/S1758825113500221
http://dx.doi.org/10.1007/s10704-016-0084-z
http://dx.doi.org/10.1016/j.tafmec.2005.09.002
http://dx.doi.org/10.1016/j.enggeo.2017.02.022
http://dx.doi.org/10.1007/s00466-005-0017-6
http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:8(884)
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000655
http://dx.doi.org/10.1016/j.compgeo.2011.08.011
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000714
http://dx.doi.org/10.1002/nag.2209
http://dx.doi.org/10.1016/j.cma.2015.07.001
http://dx.doi.org/10.1016/j.ijrmms.2011.06.011
http://dx.doi.org/10.1016/j.enggeo.2016.08.018
http://dx.doi.org/10.1016/j.cma.2017.03.011
http://dx.doi.org/10.1016/j.compstruc.2016.10.001
http://dx.doi.org/10.1002/nme.4620
http://dx.doi.org/10.1016/j.enganabound.2016.11.012
http://dx.doi.org/10.1016/j.enganabound.2014.04.002
http://dx.doi.org/10.1080/02726351.2013.782929
http://dx.doi.org/10.1016/S0045-7825(02)00655-2


Energies 2018, 11, 1380 21 of 21

42. Wang, D.S.; Du, Q. Mesh optimization based on the centroidal Voronoi tessellation. Int. J. Numer. Anal. Mod.
2005, 2, 100–113.

43. Wriggers, P.; Miehe, C. Contact constraints within coupled thermomechanical analysis—A finite-element
model. Comput. Meth. Appl. Mech. Eng. 1994, 113, 301–319. [CrossRef]

44. Oancea, V.G.; Laursen, T.A. A finite element formulation of thermomechanical rate-dependent frictional
sliding. Int. J. Numer. Meth. Eng. 1997, 40, 4275–4311. [CrossRef]

45. Eslami, M.R. A First Course in Finite Element Analysis; Tehran Publication Press: Tehran, Iran, 2003.
46. Liu, Q.S.; Jiang, Y.L.; Wu, Z.J.; Xu, X.Y.; Liu, Q. Investigation of the rock fragmentation process by a single

TBM cutter using a Voronoi element-based numerical manifold method. Rock Mech. Rock Eng. 2018, 51,
1137–1152. [CrossRef]

47. Timoshenko, S.; Goodier, J. Theory of Elasticity; McGraw-Hill book Company: New York, NY, USA, 1951.
48. Yan, C.Z.; Zheng, H. A coupled thermo-mechanical model based on the combined finite-discrete element

method for simulating thermal cracking of rock. Int. J. Rock Mech. Min. 2017, 91, 170–178. [CrossRef]
49. Abdalla, H. Concrete cover requirements for FRP reinforced members in hot climates. Compos. Struct. 2006,

73, 61–69. [CrossRef]
50. Huang, H.; Meakin, P.; Malthe-Sorenssen, A. Physics-based simulation of multiple interacting crack growth

in brittle rocks driven by thermal cooling. Int. J. Numer Anal. Methods 2016, 40, 2163–2177. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0045-7825(94)90051-5
http://dx.doi.org/10.1002/(SICI)1097-0207(19971215)40:23&lt;4275::AID-NME257&gt;3.0.CO;2-K
http://dx.doi.org/10.1007/s00603-017-1381-1
http://dx.doi.org/10.1016/j.ijrmms.2016.11.023
http://dx.doi.org/10.1016/j.compstruct.2005.01.033
http://dx.doi.org/10.1002/nag.2523
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods and Backgrounds 
	Basic Concept of NMM 
	Cover System 
	Contact Theory 

	Thermal Conduction of Granular Materials 
	Representation of the Micro Structure of Granular Materials 
	Basic Formulas 
	Contact Based Heat Transfer Model 
	Discretization and Solution 

	Thermo-Elastic Fracture Analysis 
	Thermo-Mechanical Coupling 
	A Damage Based Contact Fracture Model 


	Results and Discussion 
	Validation of Contact Heat Transfer Model 
	Validation of Thermo-Mechanical Coupling 
	Thermo-Elastic Fracturing Induced by Elevated Temperature 
	Thermo-Elastic Fracturing Induced by Cooling 

	Conclusions 
	References

