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Abstract: This paper was intended to explore the mutual influences between electric vehicle (EV)
charging and charging facility planning, to establish a two-stage model for optimizing the EVs’
charging and charging piles’ selection. In the first stage, the distribution pattern of the demands
for EV charging, and various EVs were effectively grouped, in order to reduce the amount of
computation for solving the second stage model. The goal of the second stage was to minimize
the annual investment and electricity purchasing costs on the charging piles, and the coordinated
optimization was carried out for EV charging and charging pile selection. The CPLEX and IP_SOLVE
packages were used in MATLAB (R2014a/64 bits) to solve the established optimization model.
The simulation results showed that, compared with the scheme for selecting the charging pile under
the typical charging pattern (TCP), the total cost of the charging pile could be reduced by 6.32%
with a scheme under the optimized charging pattern (OCP), thereby promoting the coordinated
development of both the EVs and charging facilities.

Keywords: electric vehicles; optimized charging; charging pile; optimization of selection

1. Introduction

In an era of worldwide shortage of oil resources, increased environmental pollution, and global
warming [1–3], widespread adoption of electric vehicles (EV) is the direction and goal of our society
in the pursuit of sustainable development of the automotive industry [4]. However, as the market
penetration increases, uncoordinated charging of EVs will bring a variety of undesirable consequences
to the power grid, charging facilities, and end users. For the power grid, such consequences include an
“extra peak” of load on the grid, reduced voltage at some nodes in the grid, and increased network
loss of the grid [5–7]. For charging facilities, such impacts are manifested in the reduced utilization
and increased operating costs [8]. For end users, such consequences mean the increased charging costs
and duration [9].

To reduce or eliminate these negative impacts, it will be necessary to effectively control the
EV charging. Mehta et al. [10] proposed an optimal charging method that aimed at maximizing
the number of EVs plugged in. The method not only increased the operating cost of the charging
piles, but also cut down the peak load of power grid, while suppressing transformer overload.
Wei et al. [11] proposed an EV optimal charging method that could improve the operating income of
charging facilities. Xia et al. [12] introduced the concept of the distribution network’s power supply
capability and proposed an EV optimal charging method that could reduce the charging costs for
the users and the impacts on the power grid. Zhao et al. [13] comprehensively investigated the
photovoltaic output and EV stoppage features, and an optimal charging method was proposed
to coordinate the EVs and photovoltaic output under the time-of-use price. Through segmentally

Energies 2018, 11, 1350; doi:10.3390/en11061350 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/6/1350?type=check_update&version=1
http://dx.doi.org/10.3390/en11061350
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1350 2 of 16

optimizing the charging power of EVs, it managed to stabilize the load fluctuation of the power
grid, lower the users’ charging costs, and maximize the consumption of new energy. Therefore,
the EV optimal charging method could effectively deal with the problem of uncoordinated charging.
In addition, it is important to denote different objectives for charging management and coordination.
Ugirumumera et al. [14] developed a methodology to manage EV charging via sizing energy systems
in place. Kontou et al. [15] compared charging management that minimized drivers’ charging costs
to management that minimized environmental externalities. Weis et al. [16] quantified benefits of
controlled charging to reduce capacity expansion and operational costs. Yang et al. [17] proposed a
framework for sizing and locating taxi charging stations considering congestion effects.

Meanwhile, adequate construction of charging facilities is essential for the rapid development of
EVs. However, the construction of charging facilities unfailingly depends on the support of proper
planning [18]. At present, studies on the planning of charging facilities mainly focus on the selection
of installation site and optimal capacity. Chen et al. [19] proposed a multi-target model that took
carbon emissions into account for selecting the site and capacity of EV charging stations, and the
validity of the model was verified through examples. Shu et al. [20] investigated the operating
characteristics of EVs and built a model for selecting the optimal site and capacity of charging stations,
in an attempt to enhance the refined planning of charging stations. Based on an extended planning
model of the distribution network, Jia et al. [21] investigated EV charging load, as well as the site
and capacity selection of distributed energy storage, and a multi-stage joint planning model was
established. The references mentioned above contributed to solving the site and capacity selection of
charging piles. However, the selection of charging pile, which is another key topic in the planning of
charging facilities, is often overlooked.

The purpose of charging pile selection is to properly configure the number of charging piles of
each model, to optimize resource allocation to a greater extent. For this reason, studies on charging
pile selection would boost the rapid development of EVs. At present, there is little research on the
selection of charging piles. Meeting the demand of EV charging, based on the typical charging pattern,
Tao et al. [22] proposed a method for calculating the configuration ratio of dispersed charging facilities
and EVs. Wu et al. [23] investigated various types of charging piles and carried out a study on the
selection of charging piles under the typical charging pattern. Based on the typical charging pattern,
Huang et al. [24] proposed a planning scheme for charging piles in the workplace. While meeting
the demands for EV charging, the scheme could minimize the investment costs on the charging piles,
including purchase, installation, and operation and maintenance costs. The above references mainly
investigated the types of charging facilities from the perspective of the maximum output power of the
charging piles.

In summary, the existing studies on EV charging optimization and charging facility planning
are relatively separated. In terms of EV charging optimization, researches tend to assume that when
the charging facilities are given and the demands for EV charging are met, effective control of the EV
charging process, such as the initial charging time and staged charging power [13], can reduce the
charging costs for the users and the impacts on the power grid. In terms of charging facility planning,
based on the given charging method, while meeting the demands for EV charging, researchers tend
to minimize the investment cost on the charging facilities [24], without considering the impacts on
EV charging.

In fact, EV charging and charging facility planning affect each other. On the one hand, EV charging
method is constrained by the planning scheme of charging facilities. For instance, the type of charging
piles will affect the effective charging of EVs [8]. In addition, the maximum output power of the
charging piles will limit the adjustable range of the charging power. On the other hand, charging
facility planning is also affected by EV charging method. For instance, the number of charging pile
configured in the serial charging mode is significantly smaller than that in the parallel charging
mode [25]. Therefore, this paper intends to explore the mutual influences between EV charging
and charging facility planning, to establish a two-stage model for optimizing the EV’s charging and
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charging pile’s selection. In the first stage, the distribution pattern of the demands for EV charging,
and various EVs were effectively grouped, in order to reduce the amount of computation for solving
the second stage model. The goal of the second stage was to minimize the annual investment and
electricity purchasing costs on the charging piles, and the coordinated optimization was carried out for
EV charging and charging pile selection. The rest of the paper was organized as follows: a two-stage
optimization model was built in Section 2. In Section 3, we solved the model with using CPLEX and
IP_SOLVE packages. In Section 4, the selection of EV charging pile at a workplace parking lot was
investigated under two charging strategies, and the results were analysed from the simulations. Finally,
Section 5 concluded this paper.

2. Two-Stage Optimization Model

In general, EVs include private cars, buses, taxis and official vehicles. Private cars are mainly
used for work and entertainment, and the charging sites are mainly distributed in workplace parking
lots, residential parking lots as well as mall and supermarket parking lots. Because the work time is
relatively fixed, EV charging is easy to control at a specific workplace. Therefore, this paper mainly
investigated a coordinated optimization of EV charging and charging pile selection in the workplace.
By now, there have been a wide variety of EVs and charging piles, and the charging scenarios are
also diversified. To simplify modeling, the following assumptions were made: (1) The battery pack of
private EVs in the current mainstream configuration (with a maximum mileage of about 150 km) [22] is
taken as the subject for selecting and configuring the charging piles. (2) All charging piles are equipped
with single chargers, which are classified by their maximum output power [24]. (3) The charging
stations are located in the workplace, where the users’ commute time is fixed, and thus EV charging is
predicable. (4) The configuration ratio of EVs, parking lots, and charging piles is 1:1:1 [26].

2.1. Stage I: EV Grouping Model

To reduce the amount of computation for solving the model in the second stage (e.g., in this
paper, the computational time for solving the model in the second stage with 64 vehicles was longer
than 1 month.), the EVs were generally grouped in the first stage. Then the grouped samples in
smaller size were used for modeling at the second stage, which effectively reduced the dimensions of
decision variables and the amount of computation for solving the model. However, the grouping of
EVs would lead to the problems such as the constraint distribution of transformer’s available capacity
and the diverse demands for EV charging. To this end, the basic principles for grouping EVs were
established as follows: (1) The sample size of each group of EVs should be the same and as small as
possible. (2) The distribution of demands for EV charging should be the same in each group. (3) The
transformer available capacity should be allocated according to the total charging demands in each
group. In particular, only when complying with Principles (1) and (2), an EV grouping scheme that
follows Principle (3) would be valid. Otherwise, it would be considered invalid.

In order to evaluate the similarity of the distribution of demands for charging between any
two groups of EVs, the similarity of any two EV subgroup samples X = (x1, x2, · · · , xN) and
Y = (y1, y2, · · · , yN) was defined and calculated as shown in Equation (1):

rXY =

N
N
∑

i=1
xiyi −

N
∑

i=1
xi

N
∑

i=1
yi√

N
N
∑

i=1
x2

i −
(

N
∑

i=1
xi

)2
√

N
N
∑

i=1
y2

i −
(

N
∑

i=1
yi

)2
(1)

where N denotes the sample size of X and Y, and rXY denotes the similarity between samples of X and
Y, called the Pearson correlation coefficient [27]. Usually, the value of rXY falls bet −1 and 1; if rXY is
closer to 1, it indicates that the similarity between samples X and Y are stronger.
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To evaluate the similarity in EV charging demands between groups, the minimum similarity
between groups that equally divides all the EVs Z = (z1, z2, · · · , zN∗M) into M groups was defined
and calculated as shown in Equation (2):

rmin =


r11, r12, · · · , r1N

r21, r22, · · · , r2N
...

rM1, rM2, · · · , rMN

 (2)

where M denotes the number of groups of EVs, and rmin denotes the minimum similarity between
groups; when rmin ∈

(
0.9 , 1

)
, it is considered that the adopted grouping scheme could meet the

Principle (2).
At the same time, the decision variables for EV grouping were defined as shown in Equation (3):

OZ =



o11, o12, · · · , o1w, · · · , o1M×N

o21 o22, · · · , o2w, · · · , o2M×N
...

...
...

...
...

...
ok1 ok2, · · · , okw, · · · , okM×N
...

...
...

...
...

...
oM1 oM2, · · · , oMw, · · · , oMM×N


(3)

where OZ denotes a matrix with the decision variables for EV grouping, and k denotes the row number.
Therefore, the EV grouping model established in the first stage is as follows:

maxF1(OZ, Z) = rmin (4)

s.t. okw ∈
{

0, 1
}

, k = 1, · · · , M, w = 1, · · · , M×N (5)

M

∑
k=1

okw − 1 = 0 , w = 1, · · · , M×N (6)

M×N

∑
w=1

okw −N = 0 , k = 1, · · · , M (7)

Specifically, the objective function (4) indicates the value of the minimum similarity that maximizes
the groups of EVs. Constraint (5) indicates the integer whose element okw is 0 or 1 in the decision
variable OZ Constraint (6) indicates that each EV could only be a member of one group. Constraint (7)
indicates that the sample size of each group is N.

2.2. Stage II: Coordinated Optimization of EV Charging and Charging Pile Selection

After the grouping in the first stage, all EVs Z were equally divided into M groups. With any
group X = (x1, x2, · · · , xN) as an example, with T as the study period, the decision variables of optimal
charging for group X are defined as the charging power of each EV in the period of T, as shown in
Equation (8).

UX =



u11, u12, · · · , u1i, · · · , u1N

u21 u22, · · · , u2i, · · · , u2N
...

...
...

...
...

...
ut1 ut2, · · · , uti, · · · , utN

...
...

...
...

...
...

un1 un2, · · · , uni, · · · , unN


(8)



Energies 2018, 11, 1350 5 of 16

where UX denotes a matrix with the decision variables of optimal charging for group X, T = n∆t, ∆t
denotes the time interval, n denotes the number of intervals within the period of T, uti denotes the
charging power of EV i within the period of t, and N denotes the sample size of group X.

At the same time, CH =
{

L1 , · · · , Ls , · · · , Lm

}
is defined as the set of

charging piles configured in group X, and Ls denotes one type of charging pile. MP ={
Pmax(L1) , · · · , Pmax(Ls) , · · · , Pmax(Lm)

}
is the set of the maximum output power of charging

piles, where Pmax() denotes a maximum output power function. With CH as the type of charging pile
to be investigated, the decision variables of charging pile selection for group X are defined as shown in
Equation (9):

VX =



v11, v12, · · · , v1i, · · · , v1N

v21 v22, · · · , v2i, · · · , v2N
...

...
...

...
...

...
vs1 vs2, · · · , vsi, · · · , vsN
...

...
...

...
...

...
vm1 vm2, · · · , vmi, · · · , vmN


(9)

where VX denotes a matrix with the decision variables of charging pile selection for group X, m denotes
the total number of types of charging piles to be investigates, vsi denotes the variable of charging pile
configured for EV i.

To minimize the annual investment and electricity purchasing costs on the charging piles in group
X, the EV optimal charging-based model for selecting and optimizing charging pile was established in
the second stage as follows:

minF(VX, UX) =
N

∑
i=1

m

∑
s=1

vsi f (Ls) + α
N

∑
i=1

n

∑
t=1

etuti (10)

s.t. vsi ∈
{

0, 1
}

, s = 1, · · · , m, i = 1, · · · , N (11)

m

∑
s=1

vsi − 1 = 0 , i = 1, · · · , N (12)

0 < uti ≤ Pmax(Ls) , Ls ∈ CH, Pmax(Ls) ∈ MP (13)

n

∑
t=1

uti∆t− ∆Qi = 0 , i = 1, · · · , N (14)

N

∑
i=1

uti − PA
ST(t) ≤ 0 , t = 1, · · · , n (15)

Specifically, the objective function (10) indicates the annual investment and electricity purchasing
costs of the charging piles that minimize group X, f (Ls) denotes the equivalent annual investment
cost for configuring charging pile Ls, et denotes the electricity purchasing price during the period of
t, α denotes the number of annual charges of EV i at the charging station, which was taken as 330
here. Constraint (11) indicates the integer variables whose element vsi is 0 or 1 in the decision variable
VX. Constraint (12) indicates that if and only if there is one type of charging piles configured for each
EV. Constraint (13) indicates that the charging power of each EV does not exceed the allowable value
during different periods, and that the charging process is uninterrupted. Constraint (14) indicates
the exact charging demands for all EVs, and ∆Qi denotes the charging demands of EV i. Constraint
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(15) indicates that the total charging power of group X during different periods should not exceed the
allocated transformer available capacity, which is calculated as shown in Equation (16):

PA
ST(t) =

N
∑

i=1
∆Qi

∆Q
(Pmax

ST (t)− PL(t)) (16)

where Pmax
ST (t) and PL(t) respectively denote the transformer’s active capacity and routine load during

the period of t, and ∆Q denotes the total charging demands of all the EVs.

3. Model Solution Method

In this paper, a two-stage optimization model was established, including the grouping model
in the first stage and charging pile selection optimization model based on EV optimal charging in
the second stage. Among them, the model in the first stage was a 0–1 non-linear integer planning
model, while that in the second stage was a mixed integer linear planning model [28]. The CPLEX and
IP_SOLVE packages were used in MATLAB to solve the two-stage optimization model, as shown in
Figure 1. The specific process is as follows:

Step 1: Initialize the EV charging parameters, including the total number of EVs, initial state of charge
(SOC) distribution, expected SOC, and battery pack capacity. Generate the total charging
demands Z of EVs via Monte Carlo simulation [29]. It consists of three steps. (1.a): Input the
model parameters which includes the total number of EVs, initial SOC distribution, expected
SOC, and battery pack capacity; (1.b): Extract the initial SOC, expected SOC, and battery pack
capacity of EVs according to their number sequence until there is no EV; (1.c): Calculate the
charging demand of each EV according to the Equation (17), and save the results.

∆Qi = (SOCe−SOC0)Q (17)

where SOC0 is the initial SOC; SOCe is the expected SOC; Q is the battery pack capacity of EV.
Step 2: Set the number of EV groups (2, 4, 8, 16, 32, or 64) in turn, and substitute the group number

and EV total number Z into Models (1) to (7) in the first stage. The CPLEX package was used
in MATLAB to solve the model with using dichotomy. The grouping scheme with the smallest
number of groups M and similarity between groups rmin ∈

(
0.9 , 1

)
was saved as the optimal

grouping scheme.
Step 3: Set parameters again, including the charging period T, time interval ∆t, number of interval

n, charging electricity price, set of charging pile types CH, set of maximum output power
MP, and annual investment cost of each type of charging pile. Read the number of groups M,
grouped samples, and sample size N, and number each sample. Set the variable k = 1.

Step 4: Read the charging demands for each EV, total charging demands ∆Q for all EVs, and the
transformer’s maximum active capacity Pmax

ST (t) and routine load PL(t) in the k-th group.
Calculate the available active capacity of the transformer during different periods in the k-th
group according to Equation (16). Substitute these parameters and those in Step 3 into models
(8) to (15) in the second stage. The IP_SOLVE package was used in MATLAB to solve the
model. The obtained charging pile’s selection scheme, EV optimal charging scheme, and the
annual investment and electricity purchasing costs of the charging piles were saved.

Step 5: Change the group number to k + 1. Determine whether M is reached. If yes, go to Step 6;
otherwise, go to Step 4.

Step 6: Summarize the charging pile selection scheme, EV optimal charging scheme, and annual
investment and electricity purchasing costs of charging piles in all groups. End the simulation
and output the results.
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4. Numerical Simulation

4.1. Parameter Settings

(1) EV charging-related parameters. In this paper, the selection of EV charging pile at a workplace
parking lot was investigated [30]. The working hours from 8:00 to 18:00 was the optimization period
T, which was divided into 10 segments with interval ∆t of one hour. The total number of EVs was
256, and the charging of all EVs started at 8:00 for 10 h. The charging power during different periods
was optimized and controlled. According to the current mainstream configuration (with a maximum
mileage of about 150 km), the specifications of the battery of Bavarian Motor Work (BMW) MINI EV
were adopted, and the battery pack capacity was set to 30 kW·h for simulation. Moreover, the expected
SOC of each EV was set to 0.95 with considering the charging profile defined by the manufacturer [8],
and the initial charge SOC data in the MINI E test project carried out by BMW China was used for
simulation, which was approximately in the normal distribution of N (0.35, 0.052) [31]. In addition,
the range of the initial charge SOC was set to 0.2~0.5.

(2) EV typical charging pattern (TCP). Currently, the most typical method for EV slow charging
is the two-stage charging method that alternates between constant current and constant voltage [13].
Throughout the entire charging process, since constant current charging is used for most of the time,
its charging power does not vary greatly but only shows a significant increase at the end of constant
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current charging. For this reason, the EV battery can be regarded as a constant power load. The constant
voltage charging was omitted in this paper, and the constant power charging mode was used as the
TCP to compare with the optimized charging pattern (OCP). Under the TCP, the charging time of each
EV was set to 10 h, and the charging power, which cannot exceed the maximum output power of the
charging pile, was calculated with using the charging demand and charging time of EV.

(3) Electricity purchasing price of charging piles. It was assumed that the EV charging price was
uniform, including the service price and electricity purchasing price of the charging piles. Only the
latter price was investigated in this paper. Specifically, the electricity purchasing price was taken from
the time-of-use price of a city [32], as shown in Figure 2. The valley period is from 23:00 to 7:00, for a
total of 8 h, with an electricity price of 0.0555$/kWh. The peak period is from 10:00 to 15:00 and from
18:00 to 21:00, for a total of 8 h, with an electricity price of 0.1939$/kWh. The rest of the time is the flat
period, with an electricity price of 0.1341$/kWh.
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(4) Type and cost of charging pile. In this paper, three types of charging piles, i.e., Level 1, Level
2, and Level 2M, were taken from [24] to compose the set CH =

{
Level1, Level2, Level2M

}
for

simulation. The maximum output power of the three types of charging piles was 1.8 kW, 7.2 kW,
and 9.6 kW, respectively, as the set of the maximum output power MP =

{
1.8kW, 7.2kW, 9.6kW

}
for simulation. The configuration costs of the three types of charging piles, including purchase,
installation, and annual maintenance costs, are shown in Table 1. Among them, the annual maintenance
cost was 10% of the purchase cost. It was assumed that all the charging piles to be built were located
at the original parking lot of the workplace, and that the additional civil construction costs were not
taken into account. The service life of a charging pile is generally five to eight years and was taken as
six years in this study. Therefore, according to the calculation method in [23], the annual investment
costs on the three types of charging piles f (Level1), f (Level2), and f (Level2M) were 208.82$, 318.22$,
and 397.78$, respectively.
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Table 1. Configuration costs of the three types of charging piles.

Level Purchase Cost ($) Installation Cost ($) Maintenance Cost ($)

Level1 596.67 298.33 59.67
Level2 696.12 795.56 69.61

Level2M 994.45 795.56 99.44

(5) Selection scheme of charging piles. The impacts of the renovated area of parking lot on
charging pile selection were not taken into account. The charging pile selection scheme in typical
charging mode in Reference [23] was adopted, i.e., the model for selecting and optimizing the charging
piles based on the EV typical charging method. Its goal was to minimize the investment cost of charging
piles and its constraint was to meet the users’ demands for charging. The model was compared with
the two-stage optimization model.

(6) Routine load and transformer capacity. In this paper, the load data on typical workdays
was selected for plotting the routine power load [12], as shown in Figure 3. Among the horizontal
coordinates, Segment 8 denotes 8:00 to 9:00, Segment 9 denotes 9:00 to 10:00, . . . , and Segment 17
denotes 17:00 to 18:00, the duration of all of which is one hour. The distribution transformer capacity
was selected as 1600 kV·A, the power factor was 0.9, and the corresponding maximum active capacity
of the distribution transformer was 1440 kW.
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(7) Runtime environment of the experiment. In this paper, the configuration parameters of the
experimental platform were shown in Table 2.

Table 2. The configuration parameters of the experimental platform.

Items Parameters

Laptop computer ThinkPad E430
CPU i5-3210M/2.5 GHz

Memory 4 GB
Operating system Win.7/64 bits

Matlab version R2014a/64 bits
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4.2. Results and Analysis

(1) Group Analysis and Optimal Grouping Scheme

Based on the parameters related to EV charging, the Monte Carlo algorithm was used to simulate
the charging demands of 256 EVs. And the grouped number of EVs was set to 2, 4, 8, 16, 32, or
64. On this basis, the model in the first stage was used to group these EVs, to obtain the minimum
similarity between the groups under different grouping schemes, as shown in Figure 4.
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As suggested by the figure, with the increase in the number of groups, the absolute value of
the minimum similarity between groups gradually decreased. When the number of groups was 32,
the minimum similarity between groups was 0.91. As a result, the optimal grouping scheme was 32
groups with 8 vehicles in each group, as shown in Figure 5. The charging demands in each group were
evenly distributed, thus validating the effectiveness of the grouping model in the first stage.
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Table 3 showed the running time for solving the model in the second stage under different
grouping schemes. With the decrease in the number of groups, the running time substantially increased.
When the number of groups was 4 or 2, the running time was longer than 1 month or 40 year. Therefore,
the running time can be decreased effectively with using the grouped samples in smaller size.

Table 3. Running time under different grouping schemes.

Number of Groups Running Time

32 2 s
16 12 s
8 1.63 h
4 >1 month
2 >40 year

(2) Charging Pile Selection under Different Charging Patterns

According to the optimal grouping scheme in the first stage, the models in the second stage and
in the reference were used to select charging piles for each group. To simplify the analysis, the EV
samples in the No.1 group were selected.

Figure 6 shows the two charging patterns in the No.1 group under different charging pile
configuration schemes, that is, the TCP and the OCP. In the TCP, the charging power of each EV
was constant. In the OCP, however, the charging power of EVs No.1 to No.3 changed insignificantly,
while that of No.4 to No.8 changed significantly. The underlying reason was that the type of charging
piles configured for EVs No.1 to No.3 was Level 1, with the maximum output power of 1.8 kW, which
limited the adjustable range of the charging power. The type of charging piles configured for other EVs
was Level 2, with the maximum output power of 7.2 kW, which could give full play to the adjustability
of EV charging.

Energies 2018, 11, x FOR PEER REVIEW  11 of 16 

 

Table 3 showed the running time for solving the model in the second stage under different 
grouping schemes. With the decrease in the number of groups, the running time substantially 
increased. When the number of groups was 4 or 2, the running time was longer than 1 month or 40 
year. Therefore, the running time can be decreased effectively with using the grouped samples in 
smaller size. 

Table 3. Running time under different grouping schemes. 

Number of Groups Running Time 
32 2 s 
16 12 s 
8 1.63 h 
4 >1 month 
2 >40 year 

(2) Charging Pile Selection under Different Charging Patterns 

According to the optimal grouping scheme in the first stage, the models in the second stage and 
in the reference were used to select charging piles for each group. To simplify the analysis, the EV 
samples in the No.1 group were selected. 

Figure 6 shows the two charging patterns in the No.1 group under different charging pile 
configuration schemes, that is, the TCP and the OCP. In the TCP, the charging power of each EV was 
constant. In the OCP, however, the charging power of EVs No.1 to No.3 changed insignificantly, 
while that of No.4 to No.8 changed significantly. The underlying reason was that the type of 
charging piles configured for EVs No.1 to No.3 was Level 1, with the maximum output power of 1.8 
kW, which limited the adjustable range of the charging power. The type of charging piles configured 
for other EVs was Level 2, with the maximum output power of 7.2 kW, which could give full play to 
the adjustability of EV charging. 

 

Figure 6. The two charging patterns in the No.1 group under different charging pile configuration 
schemes. 

Figure 6. The two charging patterns in the No.1 group under different charging pile configuration schemes.



Energies 2018, 11, 1350 12 of 16

The charge distribution of EVs under different charging patterns is shown in Figures 7 and 8.
In the TCP, all EVs’ charge during peak period accounted for 50% of the total charge. In contrast, in the
OCP, except that the EVs No.1 to No.3 had a large amount of charge during the peak period, the charge
during peak period of the EVs No.4 to No.8 all dropped to the lowest level. The charge during peak
period of EVs No.1 to No.8 accounted for 22.23% of the total charge. Therefore, EV charging in the
OCP could effectively avoid the peak period.
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The selection scheme and costs of charging piles in different charging patterns are shown in
Tables 4 and 5. Compared with the TCP, the OCP had a larger demand for Level 2 charging piles.
Although the investment cost of charging piles would be increased, the total cost could be reduced by
6.48%.

Table 4. The selection scheme of charging piles in different charging patterns.

Type TCP. OCP

Level1 4 3
Level2 4 5

Level2M 0 0

Table 5. The selection costs of charging piles in different charging patterns.

Cost ($) TCP OCP

Total cost 9683 9055
Electricity purchasing cost 7574 6838

Investment cost 2108 2217
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Figures 9 and 10 show the selection scheme of charging pile under different charging patterns.
The selection scheme of charging piles was the same in all groups in the typical charging method, that
is, four Level 1 and four Level 2. In the optimal charging method, there were two selection schemes of
charging piles, that is, three Level 1 and five Level 2, or two Level 1 and six Level 2.
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The selection scheme and costs of charging piles for all EVs under different charging patterns are
shown in Tables 6 and 7. Compared with the TCP, the OCP had a larger demand for Level 2 charging
piles. Nevertheless, it could reduce the total costs by 6.32%. The charge distribution under different
charging patterns is shown in Figure 11. All EVs’ charge during peak period accounted for 50% of the
total charge in the TCP. In contrast, the percentage was 21% in the OCP. Therefore, EV charging in the
OCP could effectively avoid the peak period.
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Table 6. The selection scheme of charging piles for all EVs under different charging patterns.

Type TCP OCP

Level1 128 72
Level2 128 184

Level2M 0 0

Table 7. The costs of charging piles for all EVs under different charging patterns.

Cost ($) TCP OCP

Total cost 316,640 296,627
Reduction (%) —— 6.32

5. Conclusions

To promote the coordinated development of both the EVs and charging facilities, this paper was
intended to explore the mutual influences between electric vehicle (EV) charging and charging facility
planning, to establish a two-stage model for optimizing the EV’s charging and charging pile’s selection.
The major contributions of this study are as follows:

Firstly, this paper proposed an EV grouping method in the first stage. Under the premise of
meeting the principles for grouping EVs, a preset quantity of EVs were effectively grouped to guarantee
that the charging demands in each group were evenly distributed.

Secondly, this paper proposed a coordinated optimization of EV charging and charging pile
selection method in the second stage. Compared with the TCP, EV charging in the OCP could
effectively avoid the peak period, and thus lower electricity purchasing cost of charging pile. Although
the investment cost of charging piles would be increased in the OCP, the total cost could be reduced by
6.32%.

Moreover, since this article took into account the charging demand of each EV and the charging
power levels of different charging piles, the proposed method can effectively improve the precision
level of charging facility planning.
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