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Abstract: Based on 15-min high-frequency power load data from a Chinese hospital, by adopting
recurrence interval analysis, an attempt is made to provide a new perspective for improving hospital
energy administration in electrical efficiency and safety. Initially, the definition of extreme fluctuation
of the power load, as well as the recurrence interval, is given. Next, the stretched exponential
distribution function is provided, which fits quite well with the probability density distribution of
recurrence intervals. Then, tests on recurrence intervals, including scaling behavior and short-term
and long-term memory effect are conducted. At last, a risk estimation method of VaR is proposed for
hospital energy administrator to forecast risk probability. Results clearly indicate that the recurrence
interval analysis (RIA) method works well on forecasting extreme power load fluctuation in hospital.
However, there is no evidence to support the existence of the long-term memory effect of recurrence
intervals, which means that hospital energy management plans have to be continuously fixed and
updated with time. Some relevant applicant suggestions are provided for the energy administrator at
the end of this paper.

Keywords: extreme fluctuation; recurrence interval; risk estimation; hospital energy administration

1. Introduction

Hospitals all around the world consume an immense scale of energy in different ways and
forms every year, which represent around 6% of the total energy consumption in the utility buildings
sector [1]. As the public service sector, hospitals are almost functioning 24 h per day. Meanwhile,
they are large building complexes incorporating kinds of medical instruments and facilities for heating,
cooling, disinfect-purifying, infection controlling, administration, and so on. As a result, hospitals
are two times, or even three times, more energy intensive than other institutional buildings, but less
sensitive to the external climatic environment than most other building types. However, energy waste,
as well as energy inefficiency, is quite severe in hospitals. In Europe, there is more than 20% of the
consumed energy that is wasted in the hospital [2]. In the United States (US), it is declared by the
Department of Energy that reducing hospital energy consumption by 20–30% is entirely feasible [3],
while this number could soar to 45% in practice [4]. Therefore, the energy conservation and emission
reduction in the hospital have become a hot topic of research.

In the context of the global economic depression, budget constraints are increasingly tighter
for both public and private hospitals. When considering that most spending will go to healthcare
facilitation, patient comfort, and staff wages [5], there is little space left from the budget to make
a further investment on energy saving, upgrading, and reconstruction. It is a challenge for the
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administrator to reduce energy consumption without negatively impacting the high-quality comfort,
service, productivity, and safety of the hospital. Given that the large-scale investment in energy-saving
is not an option, it is better to concentrate on improving energy efficiency to reduce energy consumption
and energy bill.

With the widespread use of the medical equipment as well as the sustainable improvement
of the medical environment, hospitals consume more and more electricity resources [6]. Especially,
in China, the electricity becomes the primary energy demand of the hospital, which occupies over 60%
of the total energy consumption [7]. Hence, the energy management of hospital is more of improving
electricity management in China.

Due to the time-of-use pricing system that is conducted by the power enterprise, shifting peak load
(reducing electricity consumption during peak hours and increasing power consumption in off-peak
time) is treated as an efficient way to promote electricity efficiency as well as to reduce power bill [8].
Facilities for power storage and ice thermal storage that are usually used at night to prevent electricity
from reaching a peak in the daytime are widely applied in practice [9]. However, it has to be very careful
to forecast the power consumption in the daytime, since either overestimation or underestimation will
result in electricity waste, which would violate the intention. Therefore, as a management tool, power
load data plays an indispensable role in forecasting electricity consumption [10,11].

Beside the electricity efficiency, the electrical safety of a hospital is another motivation of this
study. With the advance of medical technology, the modern hospital is increasingly relying on medical
equipment and instruments, a lot of which are large and high-power. As is known, it is probably well
to generate shock load (It is a threat to the internal power system as the current can surge up to twenty
times more than rated current at the start moment of running the high-power electrical appliance) when
starting high-power machines. The shock could accelerate insulation aging and shorten the lifespan of
electrical equipment and facilities. It is a threat to the hospital power system, which concerns not only
the effect of diagnosis and treatment, but also patient’s life and death. The extreme positive power load
fluctuation, indicating the synchronous start of massive high-power facilities and equipment, rarely
occurs, but has serious consequences. For example, a fire that was caused by an electrical short circuit
in a Korean hospital killed 37 people and injured 143 patients one 26 January 2018. A lounge heater
was the last straw to the full load power line that caused the short circuit. The safe rated-capacity of
the hospital cannot guarantee the electrical safety in each building. Therefore, the positive power load
fluctuation is a signal of shock load in both risk probability and magnitude.

To the best knowledge of authors, the regression analysis method presuming the functional
relationships of variables, are widely used in relevant researches since they can accurately quantify
the tendency of power consumption [12–14]. However, the conventional practice of the regression
method is to eliminate extreme values for the robustness of findings. Although the extreme volatility of
power load happens rarely, it could lead to power crisis that would mess up the whole plan of energy
management [15]. Therefore, the regression method may be a good choice for trend analysis, but it is
incapable of forecasting extreme event. Besides that, time series models and the neural network (NN)
models are also popular for electricity consumption forecast [16–18]. However, this kind of forecasting
approaches may generate more errors as forecast values are used as inputs for next forecasts [19].

To forecast the risk probability of shock load as well as to avoid errors from presumable function
and excessive round-off, the recurrence interval analysis (RIA) method is adopted in this paper.
So far, this RIA method has proved to be effective in forecasting natural hazards, financial market
volatility, and electricity consumption features in units of enterprise and office building [11,20–23].
Also, the introduction of high-frequent data is able to reflect the instantaneous fluctuation of power
consumption, which does count for much more in hospital energy administration than daily data.

The rest of this paper is prepared, as follows. The detailed description of North Jiangsu hospital,
as well as its electricity consumption characteristics, is given in Section 2. The method of recurrence
interval analysis is introduced in Section 3, in which the descriptive statistics of the dataset is also
presented. Section 4 focuses on the empirical study, where not only the distribution function and the



Energies 2018, 11, 1303 3 of 18

scaling properties, but also memory effect and risk estimation are analyzed. Then, the conclusions of
this paper as well as the relevant suggestions are delivered in Section 5.

2. Description of the Hospital

As a public hospital rating Level A in Grade III (according to a three-tier system hospitals in
China are designed as Primary (Grade I), Secondary (Grade II), and Tertiary (Grade III). Further, based
on the level of service, size, medical quality and so on, these three grades are subdivided into levels of
A, B, and C. Hence, a hospital of Level A in Grade III is at the very top of nine levels), North Jiangsu
hospital is located in a downtown area of the city of Yangzhou, Jiangsu Province, China. The energy
consumption consists of electricity, water, steam, gas, petrol, diesel, and coal, in which power occupies
more than 60% of the total energy demand. More specifically, 50% of the electricity consumption goes
into the air-condition and the ventilating system, while lighting and elevators consume 20% of the
electricity source, and so does the medical equipment and instruments [24], see Figure 1.
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Figure 1. The components of electricity consumption in the Hospital.

Figure 2 shows the feature of rapid change in the hospital power consumption. Moreover, there
are two critical moments of 5:00 and 13:30, after which the hospital’s power load rises sharply in a
short time. That is determined by the working hours and the work practices. For alleviating the supply
shortage of medical resource, the hospital usually examines and treats inpatients earlier. In that case,
the medical equipment and instruments are turned on before the official opening hour of 8:00 a.m.
Hence, the power load is relatively stable when the outpatient departments start working. The power
load is going to drop after 11:30 and then rise again after 13:30, since the hospital takes a two-hour
break at noon when most of the departments and facilities are resting, except for uninterruptible power
demand. It is also a fact that Chinese patients prefer to see the doctor or to get examinations and
treatments in the morning, which can be reflected from Figure 2 that the power load after reopening in
the afternoon is lower than that in the morning.
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As a public service sector, the hospital behaves quite differently in power consumption when
compared with other industry sectors. Taking an individual iron and steel enterprise as an example (see
Figure 3a). It consumes the most power among the three sectors, reflecting the massive energy demand
of the heavy industry. For easing the power supply pressure and saving costs (the electricity price is
much lower during the off-peak time in China), the iron and steel enterprise makes the production
activity fit in well with the off-peak time. Also, once the equipment is switched on, the power load
is comparatively stable. Contrary to the iron and steel enterprises, the specific textile enterprise (see
Figure 3b) that consumes the lowest power resource, is mainly carrying out production activity from
8:00 a.m. to 8:00 p.m. with a very short break during lunch time.

Energies 2018, 11, x FOR PEER REVIEW  4 of 18 

 

As a public service sector, the hospital behaves quite differently in power consumption when 

compared with other industry sectors. Taking an individual iron and steel enterprise as an example 

(see Figure 3a). It consumes the most power among the three sectors, reflecting the massive energy 

demand of the heavy industry. For easing the power supply pressure and saving costs (the electricity 

price is much lower during the off-peak time in China), the iron and steel enterprise makes the 

production activity fit in well with the off-peak time. Also, once the equipment is switched on, the 

power load is comparatively stable. Contrary to the iron and steel enterprises, the specific textile 

enterprise (see Figure 3b) that consumes the lowest power resource, is mainly carrying out 

production activity from 8:00 a.m. to 8:00 p.m. with a very short break during lunch time. 

  
(a) (b) 

Figure 3. The average instantaneous power load of an individual iron and steel enterprise (a) and 

textile enterprise (b) in 2016 (15-min interval). 

The seasonality of the power consumption of hospital is also a highlight, see Figure 4a,b. From 

the daily power consumption at moments of 5:00 and 13:30, we can find that as time goes on, the 

electricity consumption in the hospital continues to rise and reaches the peak in July. After that, with 

the drop of temperature, the electricity consumption begins to decline, and it never grows again, even 

in winter. Due to the adoption of gas-powered heating equipment in winter, the electricity demand 

of the hospital is not as strong as that in summer. 

  
(a) (b) 

Figure 4. The daily power load of the hospital at 5:00 (a) and 13:30 (b) in 2017. 

3. Materials and Methods 

To pursue the statistical significance of the outcome, extreme events that happen infrequently 

are usually excluded in the research, intentionally or unintentionally. However, extreme events, with 

the destructive effect and profound influence, are of great value to study. Therefore, an econophysic 

method, named recurrence interval analysis, which is aiming at solving extreme events data 

deficiencies by tracking the scale properties of the data, is introduced in this paper for studying the 
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textile enterprise (b) in 2016 (15-min interval).

The seasonality of the power consumption of hospital is also a highlight, see Figure 4a,b. From the
daily power consumption at moments of 5:00 and 13:30, we can find that as time goes on, the electricity
consumption in the hospital continues to rise and reaches the peak in July. After that, with the drop of
temperature, the electricity consumption begins to decline, and it never grows again, even in winter.
Due to the adoption of gas-powered heating equipment in winter, the electricity demand of the hospital
is not as strong as that in summer.
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3. Materials and Methods

To pursue the statistical significance of the outcome, extreme events that happen infrequently are
usually excluded in the research, intentionally or unintentionally. However, extreme events, with the
destructive effect and profound influence, are of great value to study. Therefore, an econophysic
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method, named recurrence interval analysis, which is aiming at solving extreme events data deficiencies
by tracking the scale properties of the data, is introduced in this paper for studying the extreme
fluctuations of the hospital power load. Recurrence interval analysis focuses on the time interval
between two sequential events. Based on the extreme event that has happened at a specific time,
this method can estimate the recurrence probability of next one. This method has been proved efficient
in forecasting nature hazards and financial market volatilities [20–22]. In practice, by analyzing the
characteristics of the recurrence intervals of extreme power fluctuations, our study can help the energy
administrator to forecast the hospital power system risk, both in probability and magnitude.

3.1. Methods

The fluctuation of power load is defined as the logarithmic returns of the load in two sequential
moments, which is expressed as:

v(t) = ln l(t)− ln l(t− ∆t) (1)

where l(t) is the electricity load (kW) of tth time, while ∆t is the frequency of sample data.
The logarithmization that was aiming at improving collinearity and heteroscedasticity without
destructing the primitive characters of the data is to smooth the data to benefit the further analysis.

As the customary practice in conducting the recurrence interval analysis, time series v(t) is
normalized, as follows:

V(t) =
v(t)

[Ev(t)2 − E2v(t)]
1/2 (2)

where E indicates the expectation value of variables, hence [Ev(t)2 − E2v(t)]
1/2

is the standard
deviation of v(t). Given a certain threshold q for the normalized returns, a group number of recurrence
intervals τ will be obtained, which is expressed, as follows:

τ(t) =
{

min
(
t− t′

)
: V(t) > q, t > t′, q > 0

}
(3)

Regarding the format of fitting function, the stretched exponential distribution function is
overwhelmingly preferred by researchers [11,25,26], which is also our first choice here in this paper.
The standard form can be specified as:

f (x) = ατe−(βτx)γ

(4)

where α, β, and γ are parameters, and τ is the mean value of recurrence intervals that is determined by
threshold q. Hence, the probability distribution of the recurrence interval τ is Pq(τ).

Additionally, to examine the memory effect of recurrence intervals, the short-term correlation and
the long-term correlation are both investigated. For verifying the short-term correlation, the conditional
probabilities density function Pq(τ|τ0) is introduced to demonstrate the occurrence probability of
recurrence interval τ that follows with last recurrence interval τ0. There are no short-term correlations
between recurrence intervals if Pq(τ|τ0) can be proved to be independent from τ0. To verify the
long-term correlation, the method of detrended fluctuation analysis (DFA) is utilized to discover
whether an abnormal shock will have a long-term effect on the recurrence intervals of the extreme
fluctuation [27].

Last but not least, to estimate the recurrence probability of extreme event in a future period
∆t, the hazard probability function is introduced. The theoretical model of the hazard probability
function is

Hq(∆t|t) =
∫ t+∆t

t Pq(τ)dτ∫ ∞
t Pq(τ)dτ

(5)
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To examine the fitting degree of the hazard probability function, we would calculate the actual
probability under different time intervals, which can be expressed as:

Hq(∆t|t) =
count

(
t < τq ≤ t + ∆t

)
count

(
τq > t

) (6)

where “count
(
τq > t

)
” denotes the number of recurrence intervals that are longer than t and

“count
(
t < τq ≤ t + ∆t

)
” is the number of recurrence intervals belonging to the time interval (t , t + ∆t]

for a given q.

3.2. Data

We retrieve the 15-min high-frequency power load data from North Jiangsu hospital, which is
measured as kilowatt (kW). The period of the record lasts the whole year of 2017 from 0:00 a.m. of
1 January to 23:45 p.m. of 31 December, which includes 35,040 observations in total. As mentioned
above, the return of the power load is defined as the logarithmic difference of the load in two sequential
moments, and the descriptive statistics of the returns are shown in Table 1.

Table 1. The descriptive statistics of the returns v(t).

Mean Median Maxi Mini Standard
Deviation Skewness Kurtosis Nobs

−2.15 × 10−6 −1.97 × 10−3 0.6302 −0.3405 0.0429 0.7935 8.0672 35,039

The returns of power load feature the distribution of right-skewed and peak from the report
of Table 1. Moreover, it presents the returns the characteristic of the seasonality from Figure 5.
For instance, the summer is accompanied by more large returns, while other seasons are accompanied
by comparatively smaller ones. Further, Figure 5 provides us with an intuitive impression that large
return is more likely to be accompanied by large return, while the small one tends to follow with the
small one. This kind of behavior seems like the clustering effect, and a rigorous test will be conducted
to support that.
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4. The Recurrence Interval Analysis

The normalized return of the power load from Equation (2) is named as power load fluctuation.
As we have 35,040 pieces of 15-min high-frequency power load data, the time series of power load
fluctuations will have 35,039 pieces of data. We give the threshold q as the criterion to determine
the magnitude of fluctuation. Any return that is greater or equal to q will be named as an extreme
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fluctuation. In other words, all of the positive fluctuations will be included if we make q = 0. It should
be noted that the extreme event in RIA has no particular value any more, but rather a name. We only
take positive fluctuations into account, because the positive ones could directly threaten the hospital
power system. The time interval between two sequential extreme fluctuations is the recurrence interval,
see Figure 6. The criterion of extreme fluctuation is driven up, as the threshold q is increasingly larger.Energies 2018, 11, x FOR PEER REVIEW  7 of 18 
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The conventional practice to determine of threshold is based on the percentile of sample.
For example, the threshold of extreme climate is usually set as the 90th or 95th percentile of the
sorting sample. Although the threshold q is a man-made selection in this paper, the criterion of extreme
fluctuation is also strict. As seen from Table 2, the maximum percentage is 11.06%, while the minimum
is 3.67%. With the rise of threshold, the sample size is decreasing.

Table 2. The statistics of threshold q.

Threshold Sample Size Proportion (%)

1.0 3874 11.06%
1.2 2892 8.25%
1.4 2168 6.19%
1.6 1668 4.76%
1.8 1287 3.67%

The time series of recurrence interval is transformed from the extreme fluctuations, see Figure 7.
The y-axis in all of the subfigures shows the length of recurrence intervals. It seems to have a clustering
effect of recurrence interval at first glance of figures, where long interval tends to follow with long
interval, while the short one is more likely to follow the short interval.

The time series of recurrence intervals with different lengths τ is obtained, given a specific
threshold q. According to Equation (4), the recurrence probability Pq(τ) is the function of the time
interval τ, as measured in 15 min per unit. As seen from Figure 8, where the y-axis is the logarithm of
recurrence probability, the recurrence of the extreme fluctuation come out more often within shorter
time intervals. Although only two fitting curves (q = 1 and q = 1.8) are presented for the better visibility,
it can be easily imagined that the fitting curve under q = 1 has the peak slope with the largest initial
probability and the least probability in the end. The decay of Pq becomes slower for larger q; that is to
say, it is more likely to have larger fluctuation since longer peacetime has passed. This outcome is in
accordance with the natural rule that the more destructive the natural disasters, the less frequently that
they occur. It should be noted that the stretched exponential function might overestimate the recurrence
probability of shorter time intervals and underestimate the recurrence of longer time intervals.
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In this paper, we use the method of least square to estimate the coefficients of parameters,
see Table 3. The null hypothesis that the parameter is equal to zero can be rejected with a significant
level of at least 5%. Therefore, parameter coefficients estimated by stretched exponential model are
reliable. Moreover, a one-sample Kolmogorov-Smirnov test is conducted to check the extent to which
the recurrence intervals follow a stretched exponential distribution [28–30].

Table 3. The estimates of parameter and the goodness-of-fit of stretched exponential.

Value of q q = 1.0 q = 1.2 q = 1.4 q = 1.6 q = 1.8

α 3.696 3.918 1.849 1.422 1.097
S.E. 1.6783 1.7171 0.0935 0.0542 0.057

t-value 2.2022 2.2818 19.7754 26.2362 19.2456
Sig. ** ** *** *** ***

β 36.659 54.341 13.05 5.155 3.977
S.E. 3.0248 20.4671 0.122 0.0746 0.097

t-value 12.1195 2.655 106.967 69.1019 41
Sig. *** *** *** *** ***

γ 0.2507 0.2358 0.2483 0.2383 0.2182
S.E. 0.0795 0.0562 0.0899 0.0727 0.0852

t-value 3.1535 4.1957 2.762 3.279 2.561
Sig. *** *** *** *** **

p-value 0.169 0.2526 0.3049 0.3261 0.421

Note: S.E. is the standard error of the parameter estimate. The t-value could be simply calculated through
t = (P.E.)/(S.E.). ***/**/* indicates statistical significance at the 1%/5%/10% level.

By conducting a one-sample Kolmogorov-Smirnov (KS) test, we assume that the empirical
distribution is identical to the best-fitted stretched exponential distribution. The KS statistic is defined,
as follows:

KS = max
(∣∣Fq − FSE

∣∣), q ∈ {1.0, 1.2, 1.4, 1.6, 1.8} (7)

where Fq is the cumulative distribution under certain threshold, while FSE is the cumulative distribution
from integrating the fitted stretched exponential.

Then, we adopt the bootstrapping method to do the calculation. 1000 synthetic samples from
the best-fitted distribution are first generated, and then the cumulative distribution Fsim of simulated
sample and its cumulative distribution function (CDF) from integrating the fitted stretched exponential
are reconstructed. Therefore, the KS statistic between the fitted CDF and the simulated CDF can be
written as:

KSsim = max(|Fsim − Fsim,SE|) (8)

The probability that KSsim is greater than KS is reported in the last raw of Table 3. As can be seen
from Table 3, all of the P-values are greater than 0.1, which means that the null hypothesis that the
empirical probability distribution function is well fitted by a stretched exponential cannot be rejected,
even at the significance level of 10%. In other words, the stretched exponential has a good fit to the
empirical probability distribution functions. Moreover, the goodness-of-fit is improved with the rise of
threshold q.

4.1. The Analysis of Abnormal Values

As seen from Figure 8, there is a jump that exists markedly in the downward trend. To make
it clear, we take q = 1 as the example to build a bar graph of recurrence intervals distribution that is
shown in Figure 9.
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As seen clearly from Figure 9, it shows the trend that the longer time that the interval runs, the less
extreme fluctuations recur. However, there is a special case that exists in the time interval of around six
to seven hours (The unit of time interval is 15 min, which means 24–27 units’ interval is approximately
equal to six to seven hours), in which the extreme fluctuation recurs more times than that in neighbor
time intervals. The hospital schedule may be the main reason for that abnormality. As mentioned
above, the primary power consumption of North Jiangsu hospital ends at 22:00 and it starts again at
5:00 in next morning, which means that there are about seven hours when the power load stays at a
stable low level. The power load experiences a sudden rise after 5:00, and that leads to large volatilities.
Hence, it is a golden opportunity for energy manager to make use of the vacant seven hours to smooth
the power consumption in the hospital.

4.2. Scaling Behavior

When considering the similar shape of curves in Figure 8, we will conduct a Yamasaki method [31]
to detect whether scaling behaviors exist in different probability distributions of recurrence intervals.
We start with introducing τ/τ as the scaled recurrence interval, in which τ is the average recurrence
interval. The scaling fq(τ/τ) = Pq(τ)τ is a function of q as τ, and τ vary with threshold q in the same
direction. If fq(τ/τ) is independent to q, all of the functions will converge to a unique function f (x),
which can be derived as fq(x) = f (x) [32]. Namely, recurrence intervals will be scaled with the scaled
probability distribution fq(τ/τ) converges to f (τ/τ). To verify that the scatter diagram of fq(τ/τ),
which is designed as the function of τ/τ, is shown in Figure 10.

It is clear that the scaled probability distributions with different thresholds do not feature the
convergence, which is a refusal to the speculation on the scaling behavior. In practice, it tells us that
the large fluctuations of power load cannot be inferred from the small fluctuations.

The Yamasaki method is more of a graphical test on scaling behavior. There are some
well-established statistical methods that are based on properties of regularly-varying functions and
power-law behavior in the upper tail to test the scaling of sample distribution [33]. Based on the
feature of this study, a two-sample KS test is adopted to check the scaling behavior statistically.
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Figure 10. The scaled probability distributions of recurrence intervals.

The KS test principles allow for us to test whether two samples have the same distribution,
which means that there is scaling if Fqi = Fqj is proved significantly. Denoting Fqj as the cumulative
probability function of fqj, then the KS statistic could be calculated by comparing two cumulative
distribution functions.

KS = max
(∣∣Fqi − Fqj

∣∣), qi 6= qj (9)

The null hypothesis of Fqi = Fqj will be rejected if the KS statistic is larger than the critical value
(CV). The critical value is expressed as:

CV = c

√
(m + n)

mn
(10)

where m and n are the numbers of recurrence interval samples for qi and qj, respectively. c is a threshold
here with certain value (c = 1.63 at the significance level of 1%, 1.36 at 5% and 1.22 at 10%). It is clear
from Table 4 that KS is always much greater than CV in any case, which means that there is no scaling
behavior that exists in the distribution of recurrence intervals for different thresholds.

Table 4. Two sample Kolmogorov-Smirnov test of scaling behavior with critical value (CV) at
significance level of 5%.

qi qj KS CV

1.0 1.2 0.648 0.033
1.0 1.4 0.718 0.037
1.0 1.6 0.732 0.040
1.0 1.8 0.741 0.044
1.2 1.4 0.653 0.039
1.2 1.6 0.631 0.042
1.2 1.8 0.641 0.046
1.4 1.6 0.544 0.044
1.4 1.8 0.536 0.048
1.6 1.8 0.454 0.051

4.3. Memory Effect

The relationship between two observations of time series is usually measured by their
autocorrelation function. In stationary time series, the degree of correlation between the two
observations at the different time depends on the lag order of n, and as n increases, the degree
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of correlation decays gradually to zero. The memory effect of the time series is characterized by the
decay rate of correlation. If the autocorrelation function quickly converges to zero with the increase of
lag order, then it is named as short-term memory effect, and vice versa, is long-term memory effect.

In the scenario that the previous time interval is τ0, the conditional probability density function
Pq(τ|τ0) measures the recurrence probability of extreme fluctuation after time interval τ. If Pq(τ|τ0) is
found to be independent of τ0, then it means that there is no short-term correlation [34].

We could have selected any two of sequential recurrence intervals to make a comparison, but we
enlarge the scope of comparison for the rigorous purpose. By arranging the recurrence intervals that
are determined by a specific threshold q in ascending order, and then dividing them equally into four
disjoint subsets with the same size as S = S1

⋃
S2
⋃

S3
⋃

S4 where Si
⋂

Sj = φ, i 6= j, the smallest
quarter of the sorting intervals are in subset S1 , while S4 contains the largest quarter of S. If the
Equation (11) is true, then there is no short-term correlation. To verify this, we draw the scatter
diagram of Pq(τ|τ0)τ as a function of τ/τ in Figure 11.

Pq(τ|Si) = Pq
(
τ
∣∣Sj
)
, i 6= j (11)
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Figure 11. The conditional probability density distributions Pq(τ|τ0) with τ0 ∈ S1 (hollow dots) and
τ0 ∈ S4 (filled dots) for the office building.

As seen from the figure, where the filled dots are from S4 and hollow dots are from S1, distributions
from all the subsets do not feature the superposition properly, which means Pq(τ|Si) 6= Pq

(
τ
∣∣Sj
)
.

Hence, there is the short-term correlation. Additionally, we also find that Pq(τ|τ0 ∈ S1) is larger than
Pq(τ|τ0 ∈ S4) when τ/τ is small, but Pq(τ|τ0 ∈ S4) will be greater than Pq(τ|τ0 ∈ S1) when τ/τ is
large. This indicates a fact that a short recurrence interval is more likely to follow a short one, while
a long time interval tends to follow a long recurrence interval. As a conclusion, the existence of
short-term memory effect implies that there is a great possibility that an extreme fluctuation of the
power load will recur very closely if the last recurrence interval is short.

To examine the robustness of short-term dependence of recurrence interval, a permutation test
is adopted [35]. The permutation test focuses on comparing the observed value of statistic with the
permutation distribution of that statistic. If there is some dependence structure in data, then the
observed value should be extreme with respect to this reference distribution.

The outcome is achieved by generating 1000 permutations of the time series. As seen clearly from
Table 5, all of the p-Values are reliable concerning the standard error of each. The null hypothesis of
independence of data cannot be rejected at any significant level. Therefore, the short-term dependence
of recurrence intervals statistically exists.
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Table 5. The permutation test for independence of recurrence intervals.

The Value of q q = 1.0 q = 1.2 q = 1.4 q = 1.6 q = 1.8

c 599 720 928 452 443
p-Value 0.599 0.72 0.928 0.452 0.443
S.E. of p 0.0155 0.0142 0.0082 0.0157 0.0157

Reject H0 N N N N N

Speaking from financial research experience, the fluctuations in the time series usually have
the long-term memory effect in the long run [36]. However, whether this rule regularly applies to
recurrence interval series of extreme volatilities is still unknown. To study the long-term memory
effect of the recurrence intervals, we utilize the method of detrended fluctuation analysis (DFA) in
order to investigate the long-term correlations among recurrence intervals.

The DFA method is first invented in 1994 and has been employed as an authoritative way to detect
the long-term correlations in a time series since then [37–39]. The necessary steps that are involved in
conducting a detrended fluctuation analysis are as follows:

(a) Calculating accumulated deviations of original data to build a new time series:

Y =

{
y(i) =

i

∑
N=1

(τi − τ), N = 1, 2, . . . , n

}
(12)

(b) Dividing new series Y into m subsets with the same s, where m = n
s , and then using the Ordinary

Least Squares method (OLS) to do the first order linear fitting of the data in each subset.
(c) Calculating the mean squared errors (MSE) whose trends have been filtered:

εi(s) = yi − ỹi(s) (13)

(d) Computing the root-mean-square deviation of each subset to get the volatility function of DFA,
which is expressed as:

[F(s)]2 =
1
n

m

∑
i=1

[εi(s)]
2 (14)

(e) Calculating the F(s) for a range of different s, a log-log figure of F(s) against s is constructed in
accord to the form F(s) ∼ sH . The H here is the Hurst exponent, which is used to determine
whether the time series have a long-term correlation, see Table 6.

Table 6. The explanations of Hurst exponent.

The Range of Values Meaning

0.5 < H < 1 Indicating the existence of long-term correlation in the time series,
and with closer to 1 the stronger correlation will be.

H = 0.5 Indicating an independent random process, which means the
current volatility will not affect the future.

0 < H < 0.5 Indicating the anti-continuity feature that the volatility has a
negative influence on the future volatility.

Combining Figure 12 with Table 7, it is clear that most Hurst exponents are smaller than 0.5,
suggesting that the long-term correlations do not exist in the time series of recurrence interval, or at
least, the inference on the long-term memory effect is the lack of evidence. Namely, it is not a one-time
practice for power load volatilities forecasting, and the energy plan, aiming at improving power
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efficiency, has to be fixed and updated continuously by tracking the power load change in the short
term, which puts a heavy responsibility on the energy manager in the hospital.Energies 2018, 11, x FOR PEER REVIEW  14 of 18 
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Table 7. The Hurst exponents under different thresholds.

Threshold q Hurst Index

q = 1.0 0.42599
q = 1.2 0.45650
q = 1.4 0.49655
q = 1.6 0.44758
q = 1.8 0.50938

4.4. Risk Estimation

For the energy manager of the hospital, besides the extreme power fluctuation that has already
occurred, the recurrence probability of next extreme volatility is more of a matter to concern. To estimate
the recurrence risk, we introduce the hazard probability function, which has been covered in the last
section [40]. Figure 13 shows the scatter plots as well as the fitting curves of the hazard probability
function. The horizontal axis indicates the length of time intervals, while the vertical axis is the hazard
probability of Hq(∆t = 15|t).
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As seen from Figure 13, the risk probability of extreme volatilities recurrence decreases along with
the increase of time interval, and, by that, the cluster behavior of recurrence intervals has been proved
once again. Moreover, the discrepancy between real and theoretical values is increasingly narrowing
with the increase of the recurrence interval. However, Figure 13 also tells us that the long-term memory
effect may not exist in the time series of recurrence intervals as a sudden rise appearing in the middle
of the horizontal axis. As a result, the hazard probability function cannot fit the scatter plots in the
mid-term (∆t ∈ (20, 30)).

In practice, the hazard probability function can be used to estimate the future risk of extreme
volatility of hospital power consumption. However, the energy administrator has to be very careful
that the mid-term estimation error may increase.

To motivate the risk estimation analysis, we adopt the method of Value at Risk (VaR) [41]. We use
the loss probability density function to estimate the VaR, which is written as

∫ +∞
q P(V)dV = P∗.

P∗ defines the probability to lose the amount of q, while P(V) is the probability distribution function
(PDF) of time series of V(t). Based on the integral principle, it is easy to infer that the loss probability is
also equal to the ratio of samples whose return is no smaller than q to total sample size of V(t). Hence,
the P(V) can also be written as:

P∗ =
∫ +∞

q
P(R)dR =

samples ≥ q
total sample size o f V(t)

(15)

As seen from Figure 6, the total length of recurrence intervals is approximately equal to the total
sample size of the times series V(t). The mean recurrence interval is τq = 1

Nq
∑

τq
i=1 τq,i, hence the

number of returns that is no smaller than q is Nq + 1. Then, the P(V) can be rewritten as

P∗ =
∫ +∞

q
P(R)dR =

samples ≥ q
total sample size o f V(t)

=
1
τq

(16)
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By doing that, the VaR of recurrence intervals can be presented as a function of 1
τq

and q, which
is also shown in Figure 14. The reciprocal of mean recurrence interval decreases with the rising of q,
suggesting a longer time interval with a larger fluctuation. The VaR method is quite useful in practice.
The hospital energy administrator can roughly estimate the risk probability (loss = q) of the next
occurrence. For example, if a risk probability of 10% is acceptable by the hospital, then the energy
administrator can easily find the criterion of extreme fluctuation by making 1/τq = 10%.

More importantly, Figure 14 also indicates the difficulty in forecasting hospital power load
fluctuation. As there is an inflection point that exists at q ≈ 7, the scatters cannot be fitted by only one
empirical distribution. The declining trend is speeding up after the inflection point, which requires
more attention.
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5. Conclusions

How to balance the electricity efficiency and electrical safety is a tough job for the hospital energy
administrator. This paper may provide a new perspective for this dilemma. As a sudden surge of
power consumption could endanger the medical instruments and hospital power system, it is of
theoretical value to detect the feature of power load fluctuations. Also, it is of practical value to forecast
the risk of extreme fluctuations to avoid potential hazard (e.g., fire caused by short circuit).

Based on 15-min high-frequency power load date, this paper utilizes the method of recurrence
interval analysis to investigate the instantaneous features of power load fluctuation in a Chinese
hospital. As a result, the stretched exponential function statistically fits with the probability
distributions of the recurrence interval. Secondly, the inexistence of scaling behavior makes it
impossible to infer large (small) fluctuation from small (large) fluctuation. Additionally, the clustering
effect is confirmed from the short-term dependence of recurrence intervals, as only the short-term
memory effect has been proved. Last but not the least, the VaR method is proposed to accurately
estimate the risk probability at a certain loss.

On the basis of the statistical and empirical analyses, the following suggestions are summarized
for the hospital energy administration:

By empirical analyses above, the recommendations for improving the power efficiency of the
hospital are summarized: Firstly, when considering the seasonality of power consumption in hospital,
it will be a good choice for the energy administrator to take seasonal differential practice. For example,
more efforts should be taken to store power and to make ice during the off-peak time in the summer
to improve electricity efficiency and to save on the bill. Secondly, as the power consumption often
fluctuates drastically, the energy administrator should conduct frequent and prospective inspections on
power devices and equipment in a timely manner to avoid hazard. Thirdly, since only the short-term
memory effect exists, it is not a one-time practice to forecast the fluctuation. To ensure the forecast
accuracy, the energy administrator has to update and process power load data timely. Fourthly, as the
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extreme fluctuation is more likely to reoccur in a short time while the more serious fluctuation is
more likely to appear in a long time, the energy administrator need to avoid fluke mind and to keep
concentration. Last but not least, the risk probability needs to be adjusted according to the threshold of
loss, as there is an inflection point that exists at q ≈ 7.
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