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Abstract: Accurate and stable prediction of short-term load for electric vehicle charging stations is
of great significance in ensuring economical and safe operation of electric vehicle charging stations
and power grids. In order to improve the accuracy and stability of short-term load forecasting for
electric vehicle charging stations, an innovative prediction model based on a convolutional neural
network and lion algorithm, improved by niche immunity, is proposed. Firstly, niche immunity is
utilized to restrict over duplication of similar individuals, so as to ensure population diversity of lion
algorithm, which improves the optimization performance of the lion algorithm significantly. The lion
algorithm is then employed to search the optimal weights and thresholds of the convolutional neural
network. Finally, a proposed short-term load forecasting method is established. After analyzing
the load characteristics of the electric vehicle charging station, two cases in different locations and
different months are selected to validate the proposed model. The results indicate that the new hybrid
proposed model offers better accuracy, robustness, and generality in short-term load forecasting for
electric vehicle charging stations.

Keywords: electric vehicle (EV) charging station; short-term load forecasting; niche immunity (NI);
lion algorithm (LA); convolutional neural network (CNN)

1. Introduction

The development of the electric vehicle (EV) industry has attracted broad attention from
governments, auto manufacturers, and energy enterprises. Electric vehicles are regarded as an
effective way to cope with the depletion of fossil energy and increasingly serious environmental
pollution [1]. Charging stations, serving as the infrastructure, have been extensively built along
with the advance of EVs. However, the volatility, randomness, and intermittence of the load bring
new challenges to optimal dispatching and safe operation of power grids [2]. The establishment
of a scientific and reasonable short-term load forecasting model for EV charging stations will not
only improve the prediction precision for optimal dispatching, but will also promote the rational
construction of charging stations, and boost the popularity rate of EVs. Accordingly, focus on the
research of load forecasting for EV charging stations is of great significance.

The current methods of load forecasting for EV charging stations can be divided into two parts,
namely: statistical approaches and artificial intelligent algorithms. Statistical forecasting models are
based on the theory of probability and statistics, such as the Monte Carlo method [3]. Concretely,
on the foundation of a residents’ traffic behavior database, the Monte Carlo approach exploits a definite
probability distribution function to fit the users’ driving behaviors, and establishes a mathematical
model with random probability to forecast the charging time, location, and load demand of EVs in

Energies 2018, 11, 1253; doi:10.3390/en11051253 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en11051253
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/11/5/1253?type=check_update&version=1


Energies 2018, 11, 1253 2 of 18

the future [4]. Simple though it is, this kind of method is not suited to address load forecasting for
inaccurate estimation, considering the randomly selected distribution parameters [5]. Additionally,
Ref. [6] carried out charging load prediction of EVs based on the statistical analysis of vehicle data from
the perspective of time and space. In order to simulate the driving patterns of EVs, Ref. [7] outlined
an improved charging load calculation model, where charging probability was proposed to illustrate
the uncertainty of charging behaviors and kernel density functions. Multidimensional probability
distribution functions were utilized to replace deterministic ones, and a random number was generated
to present the coupling characteristics of driving discipline. The view of big data was indicated in the
literature [8], which calculated the load of every EVs at the charging station, and summed them up;
thus, load forecasting results were obtained. Nevertheless, these statistical approaches are criticized by
researchers for their weakness of universality, due to the difficulty of parameter determination.

With the rapid development of artificial intelligence (AI) technology, intelligent algorithms,
which mainly include artificial neural networks (ANNs) and support vector machines (SVM), are
gradually applied to load forecasting of EV charging stations by scholars [9]. Ref. [10] employed back
propagation neural network (BPNN) models to predict the daily load curve of EV charging stations,
with consideration of various factors. Here, fuzzy clustering analysis based on transfer closure methods
was adopted to select the historical load similar to the predicted one as the training samples, so as to
improve forecasting accuracy. The drawbacks of BPNN are the existence of many parameters to set,
and trapping into the local minimum or over-fitting easily. To address these problems, Ref. [11] studied
a short term load forecasting model for EV charging stations on the basis of radial basis function
neural networks (RBFNN), and modified it by the use of fuzzy control theory. The results showed that
prediction accuracy was further improved. In [12], particle swarm optimization and spiking neural
networks were combined to forecast the short term load of EV charging stations. The findings revealed
that the prediction accuracy of the proposed model was superior to BPNN. An SVM integrated with
genetic algorithms was exploited in short term load forecasting for EV charging stations in [13], which
illustrated that it was difficult for SVMs to deal with large-scale training samples and achieve ideal
prediction accuracy. The aforementioned algorithms belong to shallow learning with weak ability in
processing complex functions, and cannot completely reflect the characteristics of information based
on prior knowledge. To this end, deep learning algorithms provide better ways to present data feature
by abstracting the bottom feature combination into high-level [14].

At present, deep learning algorithms have been widely applied in various fields, especially in
the field of prediction. Ref. [15] executed an advertising click rate prediction method based on a
deep convolutional neural network (CNN). This model accomplished feature learning through the
simulation of human thinking, and analyzed the role of different features in forecasting. Ref. [16]
successfully introduced deep structure networks into ultra short term photovoltaic power predictions.
A deep belief network with restricted Boltzmann machine was presented to extract deep features to
finish the unsupervised learning, and the supervised BPNN was taken as the conventional fitting layer
to obtain the forecasting results. Ref. [17] built deep CNN for bioactivity prediction of small molecules
in drug discovery applications. These studies have demonstrated that deep learning algorithms
have better prediction accuracy in comparison to shallow learning. CNN allows the existence of
deformed data and reduces parameters through local connection and weight sharing; thus, forecasting
precision and efficiency can be greatly improved [18]. As a result, CNN is selected as the prediction
model in this paper. Notably, the fitting accuracy of CNN is influenced by its two parameters’
selection, namely: weight and threshold. Consequently, it’s vital to apply an appropriate intelligent
algorithm to determine theses values. Several traditional optimization algorithms have been used to
select parameters for CNN, such as genetic algorithms, particle swarm optimizations and ant colony
algorithms. Although the above algorithms have their own advantages, they also have corresponding
shortcomings. For example, genetic algorithm cannot guarantee the convergence to the best, and is
easy to fall into the local optimum, which leads to a decrease in prediction accuracy [19]. Particle
swarm optimization will appear in premature convergence in different situations [20]. Ant colony
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algorithms have low searching efficiency and long calculation times, and local search accuracy is not
high. Also, it cannot fully meet the needs of the CNN parameter optimization problem [21]. The Lion
algorithm (LA), based on the social behavior of lions, was introduced by B.R. Rajakumar in 2012 [22].
Compared with preceding models, this approach shows strong robustness and good abilities in global
optimization, and fast convergence. Nevertheless, inbreeding appears among the lions with large
fitness during the iterative process, which leads to premature convergence and diversity reduction.
To settle this problem, niche immune algorithms are employed in this paper to optimize LA, namely
NILA. Here, niche immune algorithms can restrict over-duplication of similar individuals, so as to
ensure the diversity of the population, and improve the optimization effect of the lion algorithm for
selecting the parameters of CNN. This hybrid optimization method is used to automatically determine
the appropriate values in CNN model.

This paper combines NILA with the CNN model for load forecasting of EV charging stations,
with scientific analysis of influential factors. The rest of the paper is organized as follows: Section 2
shows a brief description of LA, NILA, and CNN, as well as the framework of the proposed technique;
Section 3 presents an analysis of the influential factors and determines the input; Section 4 introduces
an experiment study to test the accuracy and robustness of the established model; Section 5 makes
further validation on this method, and Section 6 concludes this paper.

The innovations of this paper are as follows:

(1) The construction of the forecasting model

Firstly, it is the first time to combine CNN and lion algorithm improved by niche immunity and
employ this model for the load forecasting of electric vehicle charging stations. Furthermore, the CNN
model used for load forecasting cannot only allow the existence of deformed data, but also improve
the load forecasting efficiency and accuracy by parameter reduction through local connection and
shared weight. Finally, niche immunity is used in this paper to restrict over duplication of similar
individuals, so as to ensure the diversity of population, and it effectively improves the optimization
effect of the lion algorithm, as we can conclude from the case study.

(2) The input selection of the forecasting

In order to produce a scientific and reasonable input index system for the forecasting model,
this paper fully analyzes the load characteristics in an EV charging station. And it can be concluded
that the load in the EV charging station is heavily influenced by meteorological conditions, seasonal
variation, and day types, which are more comprehensive and effective for forecasting.

In summary, this paper not only creatively combines various prediction theories to construct a
comprehensive forecasting model, but also conducts the study of influential factors affecting the load
of EV charging stations so that a scientific and reasonable input index system is produced.

2. Methodology

2.1. Lion Algorithm Improved by Niche Immune (NILA)

2.1.1. Lion Algorithm (LA)

Lion algorithm is a social behavior-based bionic algorithm developed by B. R. Rajakumar in 2012.
The iteration and generation of optimal solutions can be realized through territorial lion’s breeding,
and its defense to other nomadic lions. In this approach, every single solution corresponds to “Lion”.

LA proceeds through four main steps: population initialization, mating and mutation, territorial
defense, and territorial takeover. The objective function is set as Equation (1):

min f (x1, x2, · · · , xn), (n ≥ 1) (1)

Step 1: Population initialization
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In the first stage of this algorithm, 2n lions are averagely assigned to two groups as
the candidate population, namely male lions Am =

[
ψm

1 , ψm
2 , ψm

3 , · · · , ψm
l
]

and female lions

A f =
[
ψ

f
1 , ψ

f
2 , ψ

f
3 , · · · , ψ

f
l

]
. l represents the length of the solution vector.

Step 2: Mating

Mating is an essential process to update and maintain the stability of the lion group via crossover,
mutation, cluster or killing the sick and weak, thus new solutions can be continually delivered
through iteration.

Dual probabilities based crossover is introduced in this paper, that is, crossover is
implemented with two different probabilities. The lion Am and lioness A f generate a new cub
Acub =

[
ψcub

1 , ψcub
2 , ψcub

3 , · · · , ψcub
l

]
through mating. Then, four cubs Acub

1∼4 are generated according to

two randomly selected crossover points by ψm
i and ψ

f
j .

Random mutation with p is enabled to generate Acub
5∼8, resulting in 8 cubs after crossover

and mutation.
The cubs are separated into male cubs (Am_cub) and female cubs (A f _cub) by K-means clustering.
Then, in light of health status, the weak cubs in larger group are killed off to ensure an equal

number in the two cubs. After population regeneration, the age of the cub is initialized as 0.

Step 3: Territorial defense

During breeding, it will be attacked by the nomadic lion. At this time, the male lion will defend
and protect the cubs, and occupy the territory, as illustrated in Figure 1.

Energies 2018, 11, x 4 of 18 

 

( ) ( )1,,,,min 21 ≥nxxxf n  (1)

Step1: Population initialization 

In the first stage of this algorithm, n2  lions are averagely assigned to two groups as the 
candidate population, namely male lions [ ]mlmmmmA ψψψψ ,,,, 321 =  and female lions 

[ ]flffffA ψψψψ ,,,, 321 = . l  represents the length of the solution vector. 

Step 2: Mating 

Mating is an essential process to update and maintain the stability of the lion group via 
crossover, mutation, cluster or killing the sick and weak, thus new solutions can be continually 
delivered through iteration. 

Dual probabilities based crossover is introduced in this paper, that is, crossover is implemented 
with two different probabilities. The lion mA  and lioness fA  generate a new cub 

[ ]cub
l

cubcubcubcubA ψψψψ ,,,, 321 =  through mating. Then, four cubs cubA 4~1  are generated according to 

two randomly selected crossover points by m
iψ  and f

jψ . 

Random mutation with p  is enabled to generate cubA 8~5 , resulting in 8 cubs after crossover and 
mutation. 

The cubs are separated into male cubs ( cubmA _ ) and female cubs ( cubfA _ ) by K-means 
clustering. 

Then, in light of health status, the weak cubs in larger group are killed off to ensure an equal 
number in the two cubs. After population regeneration, the age of the cub is initialized as 0. 

Step 3: Territorial defense 

During breeding, it will be attacked by the nomadic lion. At this time, the male lion will defend 
and protect the cubs, and occupy the territory, as illustrated in Figure 1. 

Territorial lion

Lioness

New adult 
territorial lion

Swimming lion

 

Figure 1. Lion defense process. 

The nomadic lion nomadψ  is generated in the way that is the same as territorial lion. Then the 

new solution nomadψ  is used to attack the male lion m
iψ . If nomadψ  is superior to other solutions in 

the pride, replace m
iψ  with nomadψ . The new lion will continue to mate, and the old, as well as the 

cubs, will be killed off. Otherwise, the old lion will continue with territory defense, and the cubs will 
be one year older than before. 

( )⋅f  is the objective function and ( )pridef ψ  is the value of the whole population which can be 
calculated as Equation (2). 
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The nomadic lion ψnomad is generated in the way that is the same as territorial lion. Then the new
solution ψnomad is used to attack the male lion ψm

i . If ψnomad is superior to other solutions in the pride,
replace ψm

i with ψnomad. The new lion will continue to mate, and the old, as well as the cubs, will be
killed off. Otherwise, the old lion will continue with territory defense, and the cubs will be one year
older than before.

f (·) is the objective function and f
(

ψpride
)

is the value of the whole population which can be
calculated as Equation (2).

f
(

ψpride
)
=

1
2
(
1 + ‖ψm_cub‖

)
 f (ψm) + f

(
ψ f
)
+

agemat

agecub + 1
·
‖ψm_cub‖

∑
k=1

f
(

ψm_cub
k

)
+ f

(
ψ

f _cub
k

)
‖ψm_cub‖

 (2)
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where f (ψm) and f
(

ψ f
)

represent the values of lion and lioness, respectively; f
(

ψm_cub
k

)
and

f
(

ψ
f _cub
k

)
equals the values of male cub and female cub, respectively; ‖ψm_cub‖means the number of

male cubs; agemat is employed to designate the time required for mating.

Step 4: Territorial takeover

In this step, the optimal solutions among the lion and lioness are found to replace the inferior one.
Mating will not end until the terminating conditions are reached. The best lion ψm

best and lioness ψ
f
best

are determined according to the following criteria:

f (ψm
best) < f

(
ψm

pride

)
, ψm

best 6= ψm
pride, ψm

pride =
{

ψm, ψm_cub
}

(3)

f
(

ψ
f
best

)
< f

(
ψ

f
pride

)
, ψ

f
best 6= ψ

f
pride, ψ

f
pride =

{
ψ f , ψ f _cub

}
(4)

In the pseudo code, κ represents the number of breeding and κstrenth describes the female’s optimal
breeding ability, generally set to 5. κstrenth is set as 0 at the time of initial pride generation, and should
be incremented. If the female lion is replaced, κ has to be started from 0. On the other hand, if the old
lioness continually existed, κ should be accumulated. When the previous steps are completed, go back
to Step 2 until the termination condition is satisfied. The best lion responds to the optimal solution.

2.1.2. LA Improved by Niche Immune

LA is a parallel combination of self-adaption, group search and a heuristic random search,
while inbreeding appears among the lions with large fitness during the iterative process, resulting in
premature convergence and diversity reduction. Niche immunity is exploited in this paper to restrict
over duplication of similar individuals, so as to ensure the diversity of population. The detailed steps
of NI algorithm are displayed in [23]. LA optimized by NI can be performed as follow:

Step 1: According to the value of objective function, M cloned lions can be obtained in the center
of the location at a specified iteration interval.

Mj = Mmax × (1−
ρj

N
∑

j=1
ρj

) (5)

where Mj is the clone number of the j-th lion, Mmax represents the maximum clone number that is set
to 40 here. ρj is the objective function value of the j-th lion.

Step 2: M lions are mutated by single parent after clone. For the lion with low objective function
value, mutation is carried out by the parthenogenetic lions, as given in Equations (6) and (7).

xi+1 = xi + r× randn(1) (6)

r =
2× Pmax

N
(7)

where xi represents the lion, xi+1 is the offspring generation after parthenogenesis, Pmax is the
maximum value of lion location, N equals the number of lions.

Step 3: Make comparison among the M mutated lions and select the one with the maximum
objective function value as the new lion.

2.2. Convolutional Neural Network (CNN)

As a kind of ANN with deep learning ability, the CNN achieves local connections and shares the
weights of neurons in the same layer [24]. The network consists of 1~3 feature extraction layers and
fully connected layers. Each feature extraction layer includes a convolutional one and a subsampling
one. The structure of CNN containing a feature extraction layer is shown in Figure 2.
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In convolutional layer, the original data is processed by the convolutional kernel to obtain the
output, as described in Equation (8).

xl
j = f

(
k

∑
j=m

xl−1
j wl

j + θl
j

)
(j = 1, 2, · · · , n; 0 < m ≤ k ≤ n) (8)

where f (I) = 1
1+e−I , I =

k
∑

j=m
xl−1

j wl
j + bl

j (1, 2, · · · , n; 0 < m ≤ k ≤ n). xl
j and xl−1

j represent the output

in Layer l and the input in Layer l − 1, respectively. j is the local connection ranging from m to k. wl
j

equals the weight and θl
j is the bias.

The subsampling process can be expressed as follows:

xl
j = g(xl−1

j ) + θl
j (9)

where g(∼) represents the function that selects the average or maximum value.
Then, the obtained data is linked to the fully connected layer as presented in Equation (10).

xl = f (Il), Il = W l xl−1 + θl (10)

where Wl is the weight from Layer l − 1 to Layer l and xl represents the output data.
In the above calculation, each convolutional kernel plays a role in all the input via the slide.

Different convolutional kernels corresponding to multiple sets of output where the weight of the same
convolutional kernel is identical. The output of different groups are combined and then transferred
to the subsampling layer. Here, the output in the previous convolutional layer is treated as the input
data. At this time, set the range of values and use the average or maximum as the specific values in the
range. The data needs to be combined to satisfy a dimensionality reduction. Finally, the results can be
derived from the fully connected layer [25].

The application of the CNN model has two main advantages: (a) the existence of deformed data
is allowed; (b) the load forecasting efficiency and accuracy can be improved by parameter reduction
through local connection and shared weight. However, the stability of the prediction results can not
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be guaranteed, due to the subjective determination of the weights and thresholds [26]; thus, NILA is
proposed to complete the optimal parameter selection in this paper to overcome this shortcoming.

2.3. The Forecasting Model of NILA-CNN

The short-term load forecasting approach for EV charging stations incorporating NILA and CNN
is constructed as Figure 3 shows.
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On the basis of NILA-CNN model, the optimal parameters of CNN can be derived as follows:
(1) Input selection (xi) and data pre-processing. The initial input set is formed based on the

load analysis of EV charging stations and needs to be quantified and normalized. The specific data
preprocessing method is shown in Section 4.1.

(2) Parameters initialization. Randomly determine the weights and thresholds of all layers in
CNN model from the smaller numerical set.
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(3) NILA optimization. Search the optimal weights and thresholds of CNN on the basis of NILA.
If the maximum iteration number is reached, the optimal parameters are obtained; if not, repeat the
optimization steps until the condition is satisfied.

(4) CNN training. After initialization including the neuron numbers in the input layer,
convolutional layer, and subsampling layer, respectively, train the CNN optimized by NILA, and derive
the optimal forecasting model.

(5) Simulation and prediction. Forecast the short-term load of EV charging stations based on the
trained approach and analyze the results.

3. Analysis of Load Characteristics in Electric Vehicle (EV) Charging Station

The study of influential factors that affect the load in charging station contribute to load forecasting
accuracy improvement. This paper selects an EV charging station in Beijing as a case study. It can be
seen that the load is heavily influenced by meteorological conditions, seasonal variation, and day types.

3.1. Seasonal Variation

Seasonal variation has an obvious effect on the load characteristics in EV charging station [27].
Therefore, the typical daily load curves in spring, summer, autumn and winter are compared in
Figure 4. It should be noted that these four days are all Tuesday, and are all sunny days.
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Figure 4. Typical daily load curves in four seasons.

As presented in Figure 4, the load of the EV charging station is relatively high in winter and
summer, mainly due to increasing use of air conditioning in these two seasons, which leads to more
energy consumption. As a result, air conditioning load can be considered as a vital influencing factor.

3.2. Meteorological Conditions

The load in EV charging station is greatly affected by temperature and weather type, while wind
and humidity play insignificant roles [28,29]. Here, take the daily load curves on 1 June, 8 June and
15 June in 2017 as examples. The average daily temperatures are 23.5 ◦C, 27 ◦C and 31 ◦C, respectively.
It can be seen that there is a positive relationship between temperature and daily load, as shown in
Figure 5. Therefore, temperature is selected as the influential factor in this paper.
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Divide the weather conditions into two categories: sunny days and rainy days. Figure 6 illustrates
the relationship between weather conditions and the daily load of the EV charging station on
21 February and 22 February in 2017. It is sunny on 21 February and it is rainy on 22 February.
It proves that snow days can reduce the daily maximum load as a result of vehicle’s deceleration,
which leads to the decrease of daily driving mileage and charging. Hence, snow is another important
influential factor.
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3.3. Day Types

Divide the days into workdays, Saturday and Sunday. Figure 7 describes the relationship between
day types and daily load of the EV charging station based on the data from 14 August to 20 August in
2017. It is Monday to Friday from 14 August to 18 August. 19 August and 20 August are Saturday
and Sunday respectively. The loads on workdays are slightly lower than those of the weekends.
From Monday to Friday, the use of EVs focuses on the period that people go to and from work,
while the abundant outdoor activities on Saturday and Sunday increase the use of EVs. To this end,
the day type is chosen as an influential indicator in this paper.
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4. Case Study

The selected EV charging station in this paper is composed of 5 large power chargers which can
be used by batteries with high capacity in a single box, or series batteries with low capacity in three
boxes, and 10 small power chargers that can be only employed by a battery with low capacity in a
single box. The load data every 30 min from 1 June 2016 to 30 November 2017 are collected from the
charging station. The data from 1 June 2016 to 29 November 2017 are selected as training set, and the
remaining data on 30 November 2017 are utilized as test set.

4.1. Input Selection and Processing

According to the analysis of the load characteristics for EV charging station, ten influential factors
including seasonal category, maximum temperature, minimum temperature, weather condition, day
type, and the loads at the same moment in the previous five days are selected as input in this paper.
The input features are discussed as follows: (a) the season can be divided into four categories: spring
(March, April and May), summer (June, July and August), autumn (September, October, November)
and winter (December, January and February), which are set as {1, 2, 3, 4}. (b) Weather conditions are
decomposed into two types: sunny and cloudy days, valued at 1, and rainy and snowy days, valued at
0.5. (c) Days can be divided into workdays (Monday to Friday) and weekends (Saturday and Sunday).
When quantifying the day type, workdays are valued at 1, and weekends at 0.5. Because the collecting
data is not publically available, statistically significant parameters are presented in Table 1.

Table 1. Statistically significant parameters of the collecting data.

Statistics Total Days Maximum Load
(MW)

Minimum Load
(MW)

Maximum
Temperature (◦C)

Minimum Temperature
(◦C)

Value 547 5.212 0.006 36 −13

Statistics Number of days
in spring (day)

Number of days
in summer (day)

Number of days
in autumn (day)

Number of days in
winter (day)

Number of precipitation
days (day)

Value 92 184 182 89 76

The temperature and load data should be normalized in accordance with Equation (11).

Y = {yi} =
xi − xmin

xmaxxmin
i = 1, 2, 3, . . . , n (11)
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where xi is the actual value, xmin and xmax equals the minimum and maximum values in the samples,
respectively, yi represents the normalized load.

4.2. Model Performance Evaluation

This paper assesses the forecasting model by using the following appropriate indicators.

(1) Relative error (RE):

RE =
xi − x̂i

xi
× 100% (12)

(2) Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(
xi − x̂i

xi
)

2
(13)

(3) Mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
i=1
|(xi − x̂i)/xi| · 100% (14)

(4) Average absolute error (AAE):

AAE =
1
n
(

n

∑
i=1
|xi − x̂i|)/(

1
n

n

∑
i=1

xi) (15)

where x is the actual load of charging station and x̂ is the corresponding forecasted load, n
represents the groups in the dataset. The smaller these evaluation indicators are, the higher the
prediction accuracy.

4.3. Results Analysis

In NILA, set agemat = 3, κstrenth = 5, the maximum iteration number is 100, p = 0.5, and the
specific iteration process is shown in Figure 8. As can be seen in Figure 8, the optimal parameter of CNN
is obtained at the thirty-fifth iteration. In order to validate the performance of the proposed technique
NILA-CNN, comparisons are made with the final forecasting results from different algorithms
involving LA-CNN, single CNN, SVM, and time series (TS). The parameter settings in LA-CNN
model are consistent with those in NILA-CNN. The CNN model consists of one feature extraction
layer which includes a convolutional layer with 12 neurons, and a subsampling layer with 5 neurons.
The maximum number of training times, and the training error, are 200 and 0.0001, respectively. In SVM,
the regularization parameter is 9.063, the kernel parameter equals 0.256, and the loss parameter is
equal to 3.185. In Table 2, load forecasting results are derived from five different techniques.
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Table 2. Actual load and forecasting results in 30 November 2017 (Unit: MW).

Time/h Actual Data NILA-CNN LA-CNN CNN SVM TS

0:00 0.374 0.384 0.387 0.361 0.364 0.354
0:30 0.408 0.398 0.422 0.399 0.427 0.432
1:00 0.282 0.282 0.277 0.272 0.292 0.302
1:30 0.262 0.255 0.254 0.271 0.247 0.245
2:00 0.402 0.411 0.414 0.418 0.381 0.431
2:30 0.330 0.321 0.341 0.342 0.315 0.353
3:00 0.269 0.267 0.260 0.258 0.280 0.284
3:30 0.247 0.242 0.244 0.241 0.257 0.261
4:00 0.251 0.254 0.243 0.242 0.257 0.240
4:30 0.253 0.245 0.245 0.262 0.265 0.267
5:00 0.246 0.252 0.255 0.256 0.233 0.226
5:30 0.269 0.276 0.277 0.259 0.254 0.285
6:00 0.503 0.510 0.519 0.510 0.515 0.537
6:30 0.696 0.715 0.719 0.668 0.721 0.743
7:00 0.850 0.832 0.824 0.882 0.889 0.910
7:30 1.003 1.013 0.987 1.038 0.957 1.059
8:00 1.560 1.518 1.507 1.615 1.521 1.653
8:30 1.999 2.055 2.066 2.071 1.901 2.109
9:00 2.100 2.159 2.170 2.025 2.185 1.980
9:30 2.316 2.374 2.387 2.283 2.396 2.450
10:00 3.757 3.687 3.628 3.618 3.932 3.995
10:30 3.761 3.671 3.784 3.806 3.598 4.000
11:00 3.612 3.519 3.486 3.752 3.780 3.928
11:30 3.821 3.923 3.706 3.971 3.883 4.120
12:00 2.635 2.679 2.595 2.736 2.760 2.503
12:30 2.882 2.955 2.783 2.985 3.004 3.043
13:00 3.354 3.403 3.470 3.220 3.153 3.582
13:30 3.832 3.930 3.707 3.686 4.008 4.094
14:00 4.335 4.225 4.189 4.487 4.531 4.643
14:30 3.867 3.876 3.897 4.013 4.028 4.136
15:00 4.063 3.942 3.931 4.121 3.889 4.330
15:30 4.559 4.688 4.707 4.741 4.363 4.879
16:00 4.654 4.708 4.799 4.830 4.438 4.988
16:30 3.819 3.710 3.936 3.906 3.593 4.079
17:00 3.498 3.472 3.379 3.623 3.566 3.303
17:30 2.959 2.886 2.858 2.856 3.081 3.170
18:00 2.647 2.710 2.686 2.595 2.762 2.829
18:30 2.695 2.753 2.783 2.591 2.551 2.846
19:00 2.795 2.773 2.890 2.898 2.651 2.950
19:30 3.158 3.068 3.253 3.044 3.020 3.003
20:00 3.479 3.407 3.594 3.396 3.565 3.684
20:30 4.271 4.381 4.130 4.114 4.449 4.511
21:00 3.577 3.673 3.454 3.437 3.752 3.829
21:30 2.605 2.583 2.625 2.697 2.489 2.787
22:00 2.059 2.006 1.988 2.136 1.980 2.200
22:30 1.831 1.876 1.891 1.904 1.754 1.958
23:00 1.135 1.165 1.170 1.091 1.101 1.071
23:30 0.447 0.438 0.462 0.463 0.428 0.478
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Figure 8. The iterative process of NILA.

Figure 9 displays the prediction results of Table 2, shown for more intuitive analysis. The values
of RE obtained from the forecasting models are illustrated in Figure 10. Under the circumstance of
electricity market, the error range between short-term load forecasting and the actual value should
be [−3%, +3%]. It can be seen that the prediction error range of NILA-CNN is controlled within
[0.23%, 2.86%] while the prediction error ranges of LA-CNN and CNN are [0.62%, 3.47%] and [−4%,
2.28%], respectively. Among them, 6 error points of NILA-CNN are controlled in [−1%, 1%], while
the corresponding number of LA-CNN and CNN are 3 and 0. The errors of SVM model mostly range
from [−6%, −4%] or [4%, 6%], and additionally, the errors of TS present a large fluctuation ranging,
from [−8%, −5%] and [5%, 8%]. Thus, the prediction precision from the superior to the inferior can be
ranked as follows: NILA-CNN, LA-CNN, CNN, SVM, TS. This demonstrates that NI can effectively
improve the performance of LA. Further, NILA is conducive to high forecasting accuracy, due to the
optimal parameter setting in the CNN model. Although the prediction results of NILA-CNN model are
greater than other four methods in some points, such as at 10: 30, the overall errors perform the best.
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The statistical errors of the five prediction models are displayed in Figure 11. The analysis shows
that: (a) NILA-CNN model outperforms other four techniques in terms of RMSE (2.27%), MAPE
(2.14%) and AAE (2.096%). (b) Compared with LA-CNN, NI avoids premature convergence based on
increasing the diversity of lion population. (c) The generalization ability and prediction accuracy of
the CNN model can be improved by parameter optimization. (d) the CNN model can make a deep
excavation of the internal relationship between the influential factors and the load of EV charging
station in comparison with SVM. (e) ANN can reflect the non-linear relationship more accurately than
TS methods.
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5. Further Study

In order to further verify the effectiveness of the proposed model, one more case which selects the
data from another EV charging station is provided in this paper. The study is carried out with data
from 1 June 2016 to 31 May 2017. To reflect the influence of seasonal factors on load, data from 7 days
of each season are selected as a test set, with the rest as a training set. The specific data division is
shown in Table 3.
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Table 3. The data division of case two.

Data Type Data Range Season Type

Training set

1 June 2016–24 August 2016 Autumn
1 September 2016–23 November 2016 Winter
1 December 2016–21 February 2017 Spring

1 March 2017–24 May 2017 Summer

Test set

25 August 2016–31 August 2016 Autumn
24 November 2016–30 November 2016 Winter

22 February 2017–28 February 2017 Spring
25 May 2017–31 May 2017 Summer

The five models shown above are still used in this experiment, where the parameter settings
of NILA-CNN, LA-CNN and CNN are consistent. In SVM, the regularization parameter is 2.0153,
the kernel parameter is 0.015, and the loss parameter is 0.013. The statistical errors including RMSE,
MAPE and AAE are displayed in Figure 12.
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results of test set in Winter).

As demonstrated in Figure 12, the values of RMSE, MAPE and AAE of NILA-CNN in four seasons
are all the lowest among the forecasting techniques, namely 2.010, 2.00% and 1.97% in Spring, 1.93%,
1.86% and 1.80% in Summer, 2.16%, 2.14% and 2.04% in Autumn, 2.07%, 2.00% and 1.90% in Winter.
Meanwhile, it can be noted that the overall prediction accuracy of LA-CNN is better than that of the
CNN model, and CNN-based approaches are superior to SVM and TS, which proves the advantages
of NI, LA and CNN. Therefore, the short-term load forecasting for EV charging stations based on the
NILA-CNN model is efficient enough to compete with existing approaches in prediction precision.
As a hybrid algorithm, the proposed model is able to provide accurate data support for economic
operation of the charging station.
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6. Conclusions

In recent years, with the gradually worsening energy crisis and the intensification of global
warming, EVs have become one of the main development directions for new energy vehicles due,
to their energy savings and emission reductions. EV charging stations are an important part of
the power load; thus, research on their short-term load forecasting is not only of great significance
for economic dispatch in the grid, but also contributes to stable operation of the charging station.
In this paper, a short-term load forecasting method for EV charging stations combining NILA with
CNN is established, where NI is used to improve the optimization performance of LA, and the
hybrid technique NILA is introduced to determine the optimal parameters of CNN model, so as to
obtain better prediction accuracy. Through analysis of load characteristics in the charging station, ten
influential factors are selected as input, including seasonal category, maximum temperature, minimum
temperature, weather condition, day type, and the loads at the same moment in previous five days.
According to the case studies, CNN integrated with NILA outperforms other models in terms of
prediction precision, indicating that NILA-CNN model is a promising technique for short-term load
forecasting of EV charging station.
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Abbreviations

EV Electric vehicle
CNN Convolutional neural network
LA Lion algorithm
NI Niche immunity
NILA Lion algorithm improved by niche immunity
ANN Artificial neural network
SVM Support vector machine
RBFNN Radial basis function neural network
TS time series
RE Relative error
RMSE Root mean square error
MAPE Mean absolute percentage error
AAE Average absolute error
LA-CNN Convolutional neural network optimized by lion algorithm
NILA-CNN Convolutional neural network optimized by niche immunity lion algorithm
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