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Abstract: The Internet of Things (IoT) is beginning to shape the future of many industries and
emerging markets. One of the target markets for IoT is the energy systems. IoT is a matter of
producing, transferring, and processing information, therefore all parts of the system including
software and hardware parts should be considered as a whole. In this paper, a state-of-the-art
of the IoT-based energy systems is presented to review the recent activities on every component
of IoT in energy systems. Challenges in this subject area are discussed, and some solutions are
presented thereafter.
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1. Introduction

One of the main challenges in reliable operation and control of a given system is managing
information produced by its components. This includes data collecting, transmitting, and processing.
By introducing more useful information to data processing systems, more appropriate decision can be
made based on the knowledge pool. The new concept of the Internet of Things (IoT) is introduced for
systems in which the components are connected via the Internet [1]. This system of interrelated physical
systems and computing devices introduces many opportunities as every object in the system can
communicate with related objects of the system by using two-way communications. Specifically talking
about energy systems, IoT could offer advanced connectivity of heterogeneous objects to form a single
system [2]. However, there are some challenges in seamless integration of different domains once
various services have to be offered beyond machine-to-machine (M2M) communications. The situation
gets worse as a number of systems such as power systems, control systems, and communication
systems are integrated into a bigger system while each is following its unique set of objectives.
Although a great effort can be found in the literature about every issue of energy systems, integration
of subsystems is a hot research topic at this time [1–3].

In this regard, a deep perception of every aspect of energy systems and their rightful assortment
is of high importance. Figure 1 shows a categorization of energy systems in a general aspect. As can
be seen, compared to the traditional energy systems, modern energy systems are designed in a full
grid sensor layout with automatic monitoring and recovery capabilities, which enable distributed
energy generation.

This architecture becomes bolder as Microgrids (MGs) are introduced into energy systems.
MGs are the integration of some distributed generations (DGs) and loads that are capable of running
in grid-connected or island mode [4]. MGs are defined in many ways, considering who are dealing
with and how they are using it. For instance, a mobile phone can be defined as an MG, while a wind
farm can be defined in the same respect. With this in mind, there is no standard mentioning directly
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MGs, while there are some standards such as IEC 61850, which define DGs as key players [5]. Based on
these standards, many efforts about stability, reliability, control, etc. on MGs can be found in the
literature [4,6]. A general review of many features such as reliability, resiliency, and Power Quality
(PQ) in some aspects like protection control, communications, and economics of MGs can be found
in [7]. A great effort has been done on IEC/ISO 62264 regarding communication structure of MGs
represented in a five-level architecture. In this hierarchical structure, in which higher level has a priority
to the lower one, a common standard for communication of Distribution Energy Resources (DERs)
is considered.
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Figure 1. Energy system scheme including electrical, thermal, and communication infrastructures.

On the other hand, in IoT-enabled energy systems, communication infrastructure is a key part
that has to be well-established at each level of the system starting from a wide-area network down
to a building unit [8,9]. In addition, to design a communication system for a given energy system,
there are some factors like system size, installation and maintenance costs, flexibility of the system
for future expansions, etc., which need to be considered [8]. More importantly, security of the system
should be considered in every step of designing a communication system [10]. Based on what is needed
from the system, different communication technologies may also be used in the system. For example,
when a wired system like Power Line Carrier (PLC) is accessible, it is logical to use this facility.
In contrast, for using synchronous communication in large power systems, wireless networks such as
Wide Area Measurement Systems (WAMS) will be a good choice [9,11].

With all this in mind, to study an energy system properly, a good comprehension of the system’s
components is not a recommendation, but a requirement. This means, that based on the application
and the needs, an energy system should be modeled not only in every single aspect, but also in
an integrated framework. In [3], it has been mentioned that there is no great effort about the
integration of communication systems and power systems, which leads to some unreal simulation.
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Talking about IoT, integration of all subsystems is important because IoT is a matter of communication
among smart objects, regardless of their category. In this manner, co-simulation is proposed in some
attempts [12–15]. For example, in [12], a well-integrated simulation considering both the power
system and communication system is presented to find a cost-effective communication system for MGs
avoiding a steep learning curve between the mentioned two parts. In [13], a framework is presented
for co-simulation of energy systems using a middleware which helps to get the benefits of standard
software like MATPOWER 6.0, which is an open-source Matlab-based simulation package, Mosaik,
which is a co-simulation framework for smart grids, etc. In this manner, different analyzing models in
steady-state and transient mode can be considered in a unified framework. In [14], a co-simulation
model taking into account events in both power and communication simulations is designed to
minimize synchronization delay error. In [15], a centralized co-simulation architecture is designed to
model power and communication system of an energy system. In this manner, PSCAD/EMTDC, which
is a power simulation software, is used to simulate the transient part of the power system, Optimized
Network Engineering Tool (OPNET) is hired to simulate communication network, and Cyber Physical
Java Simulator is used as an interface between the mentioned platforms. This centralized co-simulation
is used for testing protection behavior of MGs. Mostly, a framework or architecture should be defined in
advance to specify the domain of each application in every subsystem. To make it clear, let us consider
a Smart Home (SH) environment where a wireless local area networking based on WiFi communication
is used. In such system, devices should not only follow the communication requirements based on
the IEEE 802.11 standards, but also meet the required electrical specifications at the low-voltage
distribution network (e.g., IEC 60038). In a higher level, a communication infrastructure based on
wired LAN, WLAN, WiMaX, or optical fiber can be used to form a Wide-Area Measurement System
(WAMS) [16,17].

To date, there has also been a lot of effort on IoT and its application in fields like healthcare,
SHs, etc. [2,18,19]. However, there are many challenges in this area. In [18], it has been mentioned
that, as new concepts like Cyber Physical Systems (CPSs) and IoT are introduced into energy systems,
security of the system is threatened by cyber-attacks. The other challenge mentioned in [19] is how
to connect different devices developed by different protocols and standards in a single IoT platform.
In [20], authors discussed challenges in Energy Internet from the software viewpoint. In addition,
different aspects of implementing the IoT into energy systems such as tool-vendor’s and programmer’s
perception are discussed, physical constraints are not considered and explained. In [21], a great
effort has been done in order to assess different challenges such as security, power management,
sensing challenges, etc. of the Energy Internet. Although some recommendations are introduced in
order to overcome the aforementioned challenges, modern power systems challenges such as different
system architectures and integration of the various energy types are not discussed in detail in this
review paper. In [22], the main issues in IoT-based energy systems are introduced, yet no specific
recommendation is introduced.

To the best of the author’s knowledge, the main challenge still exists in development of solutions
for information management among subsystems of a typical IoT-enabled energy system.In this regard,
what is really missing in the literature is a review of the recent activities in respect of IoT based energy
systems, and showing the potential areas that need efforts to improve. Based on that, in this survey,
reviewing existing literature about the IoT-based energy systems and exploring challenges in this field
of research are tried. The main contributions of this paper with respect to the other surveys are listed
as follows:

• Integration of different components of the energy systems regarding the IoT. In this manner, it is
tried to have a comprehensive understanding of IoT-based energy systems in different layers.
By doing so, new IoT-based energy systems may be designed based on their requirements.

• Reviewing the standards in communication infrastructures related to the energy systems.
This gives an appropriate sense of which technology may be used in various energy systems
based on its needs.
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• Discussing IoT-based energy system architecture. Although there are several architectures
introduced in the literature about IoT, only some of them fit energy systems. This issue is
discussed in this paper and an appropriate IoT-based energy system architecture is introduced.

• Illustrative examples are introduced regarding the energy systems and their IoT challenges are
discussed accordingly.

With all this in mind, the main purpose of this paper is to review the recent works on IoT in energy
systems, to discuss existing challenges and issues in this area and to outline a working architecture for
IoT-based energy systems. To do so, first, subsystems of the Energy Internet will be introduced. Then,
challenges regarding the IoT-based energy systems will be discussed. Eventually, some solutions will
be introduced with respect to the discussed challenges.

The rest of the paper is organized as follows: In Section 2, key features of an IoT-enabled energy
system, also known as energy Internet, is presented. Section 3 elaborates on some challenges of IoT in
energy systems. Then, in Section 4, some illustrative examples are introduced to show the challenges
and open issues of IoT in the real-world situation. Finally, conclusions are drawn in Section 5.

2. Key Features in the Energy Internet

Energy Internet is the integration of energy systems and Information and Communications
Technology (ICT) systems [23]. What is new in this area of research is how to integrate the needed
component considering technical aspects and logical investment aspects while making the platform
widely acceptable. To suitably address these questions, one must well understand every aspect of
IoT in energy systems. This section, therefore, outlines the key elements in an IoT-driven system and
provides a platform for their co-operation and integration in an intelligent way.

2.1. Energy Sources

In modern energy systems, generation of energy is distributed among the system making many
aspects of the system such as stability, reliability, and security more complex. Talking about MGs,
energy is generated mostly by Power Electronic-based (PE-based) energy sources, which brings
more constraints like controllability to the operation management problem. In [24], new indices are
introduced to indicate controllability of DGs in a distributed system, as system variables’ thresholds
are affected by DGs’ capacities and their locations in an energy system. Energy sources, as the main
building blocks of every energy system, have to be studied from the different points of views such
as their stochastic nature, controllability, and emission awareness. These three main viewpoints are
discussed as follows:

• Stochastic and deterministic nature of the energy source

Some energy sources such as wind and solar power have stochastic behaviors meaning that they
are directly influenced by the weather and their energy generation would be a nonlinear function of
atmospheric variables. Thus, it is unlikely that their power production level stays the same from one
hour to the next, or during the day and at night [25]. On the other hand, there are some energy sources
such as conventional ones (thermal powers from coal, petroleum, and natural gas or hydroelectric
power from high velocity of running water) that have a fixed nature meaning that the system output
can be defined based on certain deterministic inputs. By increasing the level of uncertainty in energy
systems, it becomes necessary to develop mathematical programming techniques in order to find the
optimal production schedule. This leads to uncertain unit commitment models for energy systems in
which stochastic nature of the thermal, hydro, and renewable generation units are taken into account
through optimization under data uncertainty methods [26].

• Controllability of energy sources

Many factors affect controllability of the system. As an example, the control system of a wind
turbine has to deal with stochastic nature of the wind. Mostly, a probabilistic energy source is defined
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as an uncontrollable one while conventional energy sources can be treated as controllable energy
sources. The other factor that affects control system design of energy systems is the system size, i.e.,
bulk energy sources’ control systems differ from the ones for distributed energy sources. This is also
true for big and small energy consumers control systems. In this regard, the level of controllability
varies based on the system size, the nature of the energy source, and the system configuration [27,28].

• Emission-awareness

As global warming becomes one of the most important issues of this world, supplying energy in an
environmentally friendly manner is a matter of importance. Some energy sources such as renewables
inherently have an emission-aware nature and can play a great role in clean air/environment
policies [29,30]. As it is reported in [30], it seems that Renewable Energy Sources (RESs) are the
only solution for the future global emission challenge, and there is going to be more investments in
solar and wind power.

2.2. Energy Consumers

Although energy is used in many forms (e.g., thermal, chemical, electrical, etc.), some are
well-accepted at the end-use due to easier transmission and conversion [31]. Consumers of energy
mostly use an electrical form, as it is easy to use and transfer and related infrastructures are well
developed. However, energy consumers act differently based on their needs (i.e., demand level) and
their types (e.g., residential, commercial, industrial, etc.). In this regard, some features of the energy
consumers that should be considered are as follows:

• Controllability of the loads

Some loads can be curtailed, while others cannot be curtailed or shed. This significantly affects
energy management of the system [32,33] and it has pros and cons either from a system operator’s or
end-user’s perspective. If the system could shed a load whenever it wants, then it may be able to reach
its optimum point easier. On the other hand, this facility will cost money for the system, as it may be
undesirable from the end-user’s viewpoint. In the manner of Smart Grids, Internet of things can be
used interchangeably with ICT. Therefore, it is involved in Demand Response (DR) of the smart grid,
as it is widely discussed in [34]. On the other hand the energy consumption pattern of a system can be
detected by studying the consumers’ behavior over time: collecting information via sensors, storing,
and analyzing the information by defining a data processing system. Finally, a logical decision can be
made to shed or curtail loads regarding decision makers’ benefit and/or consumers’ preferences [35].
Other applications, which can be applied in energy systems in respect of load controlling, is related to
time-shiftable loads and thermostatically controllable loads [36–38]. In this regard, system operators
control shiftable loads by using incentive-based offers.

• Mobility of the loads

Some loads have the ability to move from one place to another. This brings both challenges and
opportunities to energy systems. The main challenge lies in efficient scheduling of these loads over
different time scales and locations. On the other hand, the main opportunity relates to the mobility and
load shaping capability. As an example, optimal charging/discharging scheduling of Electric Vehicles
(EVs) can help smoothing the system load profile [39]. EVs bring a new aspect of EMS in smart grids,
as real-time machine to machine communications are needed in order to exchange information among
EVs and local or central controllers [40].

• Load type and nature

According to loads nature and function, loads can be categorized and modeled in different types,
and, subsequently, their behavior can be simulated differently [41,42]. Based on that, systems behavior
can be studied in different ways. As an example, when nonlinear loads are connected to the grid, they
draw harmonic currents, which cause voltage harmonics and losses over the system [43].
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• Effect of loads on global emission

Without any doubt, global warming affects industries. This feature really changes the future of
loads. Loads that produce greenhouse gases will be less used in near future; instead, there will be
a tremendous increase in the number of loads that are green. This means that people wish to use
electric vehicles instead of traditional cars, which results in both a change and opportunities in energy
consumption [44].

2.3. Communication Infrastructure

Communication infrastructure is deemed as the backbone of the communications system upon
which different broadcasting and telecommunication services are operated [45]. Many architectures
are designed in respect of Information and Communication Technology (ICT), based on the need of the
system and valid facilities. Generally, communication infrastructures are divided into two categories:
(a) wired communication systems like Asymmetric Digital Subscriber Line (ADSL), PLC, and Ethernet;
and (b) wireless communication systems like WiFi, Cellular, and Satellite [46]. The main goal of every
communication system is to obtain, collect, process, and save the information from each component of
the system. In this manner, information sensing and processing are defined as a part of communication
infrastructure in energy systems [31]. After sensing information and processing it, the next step is to
send commands from decision-makers to low-level parts of the system; this means that bi-directional or
two-way communication systems are needed to handle data exchange among components. The whole
process of receiving, processing, and sending back the data is affected by the stochastic nature of
the loads. This means that uncertainty in the energy demand affects the designed structure of the
communication system. Therefore, stochastic nature of loads should be considered in planning of the
communication system [47]. To overcome this drawback, in [47], two robust applications based on
multi-layer and mixed-line-rate network design are introduced for the communication network in
order to deal with uncertain input parameters.

Talking about collecting information in an energy system, which can be considered as a key
part of communication infrastructure, gateways are needed to overcome this part, for which they are
responsible to reach information from sensors and send it to data collectors [48]. In addition, in some
cases, information could be shared with some parts of the system. However, what is understood from
every communication system is that a well-designed architecture is needed for the communication
system, so each component of the system can be named in a level [49].

In the IoT perspective, communication infrastructure is mostly included in network layers that
provide networking supports and data transfer using wireless and wired network for industries [50].
In the IoT-based systems, communication networks face challenges like scalability of the system,
quality of the service requirements, and optimizing communication related power consumption.
In addition, as in this system, things are supposed to communicate with each other with minimal
human intervention; then, each subsystem, in this case the communication system, should be able to
be organized and healed by themselves. In this manner, standards and protocols need to be agreed
by the society in order to have a mutual perception. To do so, in [51], communication protocols are
categorized in three main classes that are contention-based, contention-free, and hybrid protocols.
More details about communication infrastructures could be found in [51,52].

Machine-Type Communication (MTC) is defined as the data exchange and processing among
machines with the minimum intervention of human, which is generally used in IoT-based systems.
To establish data connection among things in MTC, several steps must be followed: first of all,
things that are supposed to be connected should establish a session between them (Figure 2). In this
step, the flow and direction of data flow need to be controlled. Depending on the nature of the
application, full duplex, half duplex, or simplex communication mode will be established. In this
manner, applications must know when and how long they should send information. For this step,
International Organization for Standardization (ISO) introduces a detailed protocol in order to establish
the connection between objects in communication systems [53]. In the second step, they may exchange
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their main information. Based on the importance of the establishment of the access or the importance
of the main data (payloads), several MTC technologies are used. For example, in the Long-Term
Evolution (LTE) standard, to establish the connection of User Equipment (UE) with a higher level
Evolved Node B (eNodeB), it is possible that a collision happens during the process [54]. The collision
may happen if two or more UEs try to send preambles simultaneously. Then, as eNodeB is not able to
recognize a collision happens, it will send a Random Access Response (RAR) to the recognized UEs.
To increase the chance of successful connection, several attempts will be done by UEs accordingly.
This access reservation procedure has a probabilistic characteristic, and the packet may be lost during
the data transmission both in the uplink and downlink processes, or even failure and limitations in the
system bottlenecks [54,55]. Different perspectives of MTC challenges are defined and tried to overcome
in the third Generation Partnership Project (3GPP) by different solutions and technologies like LTE
and Low Power Wide Area Network (LPWAN) introduced as NarrowBand IoT (NB-IoT) [56,57].

Aside from probability characteristic of communication systems, especially wireless
communication systems, coverage range, throughput, latency, capacity, power efficiency, and complexity
are the issues raised in this field [58].

eNodeB
UE (2)

Preamble

Connection Request

Random Access Response

Random Access Response

UE (1) UE (3)

UE (n)

Figure 2. Establishing a communication link between end users and Evolved Node B (eNodeB).

2.4. Security and Privacy

One of the main questions every system faces is that who is in charge of the system, and to
what extent an authority can control the system, especially in modern energy systems with many
independent players [59,60]. Security is an inseparable part of IoT architecture because of its importance
and effect on the whole system performance [59]. As energy systems become more complex, security
concerns are raised. In other words, integration of IoT with energy systems makes the security issue
more vulnerable; therefore, more attention must be paid to system security [60]. As an example,
integration of wireless and wired communication network in energy systems increases accessibility to
information and subsequently makes system security more vulnerable [61]. On the other hand, a key
feature to implement the IoT in the energy system is trust. If system components, in this case, people,
want to use a facility, it would be more appropriate if system asks for their permission in advance.
In this manner, there would be less violation of users’ privacy [62]. Moreover, in [63], users are involved
in management of their security and privacy. This leads to a trusted privacy management system
where both sides (consumers and service providers) have a degree of controllability over their privacy.

As Big Data (BD) is available on an IoT platform, many service providers, like public and private
health care companies, can access different types of information. In this manner, users’ information
can be shared with some third parties, which in turn raises issues about the privacy of the end-users.
Generally, it is suggested that every accessibility to information is possible with the permission of
end-users, unless the information will not be shared with service providers [64]. The privacy issue
drives the problem into a more complex one, as adaptive service scenario should be designed.
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Generally, there are two types of information related to security of an IoT system. The first type of
information is that people do not want to share it for the sake of their privacy, such as the position
of their electric vehicle during a day. The second type of information is that end-users are worried
about the security of their information, as they may suffer financial loss if specific third parties are
informed about it, like their bank account or the monthly energy consumption. A solution for privacy
issue of IoT systems for both cases, mentioned in [65], is to ask end-users to use their information for
a specific purpose or to inform them that the information shall not be shared with any other third
parties. What is obviously accepted here is that consumers feel more confident when they are asked
for the accessibility of their information.

Aside from this, a key feature to meet the end-users’ and service providers’ trust is to ensure that
the system is secure. A great effort has been done in reviewing most parts of security of Cyber Physical
Systems (CPS) such as threats, attacks, and controls in [66]. In [67], an encryption scheme is introduced
to secure energy information from unauthorized manipulations. In this manner, energy systems are
divided into four categories: appliance group, monitor group, central controller, and interface with
users. Each level needs its own security scheme. To do so, data integrity, computational complexity,
and needed memory size must be taken into account to have the best energy efficiency.

More security is demanded when data is transferred among IoT components, including
communication between IoT devices and the gateways, gateways and data store, data store and
data access layer, and users and data access layer [68]. This trade-off is an ongoing challenge for energy
internet systems, as in one hand, the more information that is transferred among IoT components,
the more benefit they could gain; and, on the other hand, the more information end-users share
with third parties, the more they could be threatened, and in this manner system may become more
vulnerable. This uncomfortable feeling can be balanced by incentive offers from service providers.

In IoT-based systems, a tremendous amount of heterogeneous objects is connected together.
As the number of things rises, traditional methods used for cyber security and control systems
become insufficient. For example, for a large IoT system in which a large geographical area and many
components are included, it is more practical to implement distributed or decentralized control system
than centralized control systems, for the sake of more reliable decision-making [69]. On the other
hand, in distributed and decentralized system architectures with different levels of controllability,
different levels of security may be applied. In this manner, advanced machine learning and data
mining methods are developed with respect to of cyber security [70]. This happens in IoT framework
because data is collected from different sources, which may be located in different security but the
same physical level [71,72]. In this regard, many aspects of security in energy internet arise such as
privacy and trust of the end-users, authentication, access control, etc. [73]. As an example, in [74], a
method is developed to give access to the end-users’ position in emergency conditions.

In summary, security in energy systems includes three main parts: (a) data confidentiality;
(b) privacy; (c) and trust area [71]. Related parts should be defined in detail and in an understandable
way for both end-users and service providers. For instance, it is not beneficial to explain encryption of
data for end-users, but they should be convinced that their information is safe with the system.

2.5. Energy Management Systems in IoT framework

One of the main motivations for developing integrated energy systems and what is called energy
internet is to manage energy in an optimal way. To make it clear, assume an IoT-based energy
system including Electric Vehicles (EVs) [75]. In this attempt, each EV tries to maximize its objective
(paying less money), while an energy retailer tries to maximize its own objective (earning more money).
Both sides act smart and try to maximize their own profit, which in this case their objective is in
conflict. A solution to find an optimum point, in which both sides satisfy with their profit, is to hire
IoT infrastructure (e.g., WiFi or WiMAX systems and sensors to collect information from EVs).

To do so, many efforts have been done to improve EMS considering different objectives such
as reducing energy losses, minimizing the costs or even some technical objectives like minimizing
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voltage deviation [33,76,77]. In the new paradigm of energy systems, customers of energy may produce
and inject energy (also known as prosumers) to an upper level, which may be a distribution system.
The role of prosumers energy management systems is highlighted in the literature as their role in peak
demand management [78]. In this regard, not only electrical systems should be reconfigured, but also
communication systems have to change fundamentally. Moreover, prosumers can not only exchange
energy, but also data with the system using bi-directional connections [76]. In this regard, control
objectives and settings of the EMSs have to be reconfigured as well. In [77], a dynamic control strategy
is introduced and limitations of the communication system are considered as a drawback that makes
challenges in a fast response of the designed control system. On the other hand, with the growing
trend in the use of internet in smart buildings and cities, it is a must to design an energy-efficient,
cost-effective, secure, and reliable IoT-based platform for energy management purposes [79]. IoT
solutions for EMS are developed in regards of either reduce or shift energy consumption by applying
incentive offers or optimize utilization of energy sources.

Generally, there are two types of energy/power management strategies, used in smart energy
applications, named as passive schemes based on self-autonomy, and interactive schemes, based on
information sharing mechanisms. In a given interactive power/energy management system (IP/EMS),
local and global system information (such as line currents, nodal voltages, frequency and powers)
is communicated in the system and exchanged between corresponding nodes in order to determine
operation point of each controllable DG or consumption unit. These strategies also benefit from a sort
of intelligence in the integration of the computing and communications technologies, which help them
to define and develop the communication structure based on the computation burden of each node
and other related system’s objectives and constraints. In this regard, three different communication
schemes can be realized for an IP/EMS: centralized, decentralized, and hybrid. In centralized EMS,
a centralized decision-maker is used to find the optimum point for the objective of the system based on
the information of every component [80,81]. In this manner, mostly energy sources and end-users have
no authority to manage the energy unless the decision maker (centralized controller) decide for an
action. In [80], a centralized EMS using model predictive control is designed for isolated MGs. In this
regard, lack or loss of information can significantly affect the mentioned method. In centralized control
scheme, not only a centralized controller controls system features like frequency and voltage, but also
it is responsible for some challenges like harmonic mitigation [81]. In a decentralized EMS, every
player in the system decides individually to optimally manage its energy production/consumption
level [82,83]. A decentralized system is more reliable, as every sub-system decide independently.
In contrast, these systems have a more complex communication system architecture, as sub-systems
need to transact information with each other. Distributed EMS is implemented to decentralized system
category in order to have more reliability of the system in some cases [84]. In distributed EMS, each
node shares specific information with the neighboring nodes using a bidirectional communication
system, yet they act independently and decide to optimize their performance based on the shared
information. In this manner, more complex communications are needed (compared to other schemes),
but more controllability can be achieved over a system wide operation.

In each of the mentioned schemes, different communication technologies such as microwave (uW),
power line carrier (PLC), fiber-optics, infrared, and/or wireless radio networks (such as global system
for mobile (GSM) communications and code division multiple access (CDMA)) can be effectively used
and integrated into the existing infrastructure.

On the other hand, self-autonomy of operation for a local controller without having information
from neighboring nodes is the main idea of a passive power/energy management scheme (PP/EMS).
In this structure, it is assumed that making an information sharing mechanism is too costly or not
viable, thus independent operation of energy sources is required. In this realization, it is important to
clearly define the control objective of each node to assure reliable operation of the system. It should
also be mentioned that this category includes limited accessibility and communication links. Mostly,
it includes simple energy management in which local optimization is needed. This category of energy
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management may also be used for very low harvested power levels [85]. As the level of energy is very
low, for instance in sensors, it is logical to observe energy from sensors’ environment and then use it
for any kind of applications. Therefore, there may be the maximum level of energy to be managed [86].

3. IoT Challenges in Energy Systems

There are many challenges in applying IoT in energy systems. Some of them are mentioned
as follows.

3.1. Identification of Things on the Internet

As the number of things connected via the internet increases, item identification becomes a major
challenge [87]. It has been mentioned in [80] that every real thing in IoT framework should be identified
as a virtual object. The first challenge in identifying a real-world object with a virtual one is in its
concept: Does a virtual object present all information of its real-world match? For instance, based on
the services provided by a service provider, specific identifications will be allocated to an object. Hence,
a real object could have several virtual identifications representing several virtual objects/services.
Then, the challenge appears when objectives of services are in contrast with each other, and then there
will be a conflict in the thing’s behavior, which means that an object tries to follow different objectives
simultaneously. Using identification methods like IPv4 could solve the mentioned issues; however,
it becomes limited only to some local usage such as some point-to-point links. Other standards like
IPv6 can also provide an identification and location system for objects on networks, but it suffers in
certain conditions such as the mobility of objects in energy systems (EVs for instance) [88,89]. This
is because, as the position of an object changes in the system, the object may be connected to a new
node of the communication system. Then, the object should be addressed again. This is even more
challenging in the energy internet where there are heterogeneous objects and there is going to be a
mismatch of identification when different protocols used for addressing objects [90].

3.2. Supplying Energy for Sensors

In IoT-driven environments, every object sends and receives information to other objects or a cloud
of information. This means that a sensor should be used to sense the information for each individual
object and an energy source should also be defined to supply each sensor. Considering thousands of
these sensing nodes, a tremendous amount of energy would be needed to run the things. This is a
serious challenge that IoT will face in the near future [91]. A new hierarchical architecture including
three layers of hardware, middleware, and application layer is designed in [84] in order to save energy
consumed by sensors in an IoT-based system. In this attempt, sensors are switched into sleep mode
in certain conditions to save energy: (1) whenever it is not necessary to use them; (2) whenever
using sensors will affect its battery life; or (3) when battery energy is lower than a threshold. In [92],
a new framework is introduced for IoT systems in order to decrease human interaction in system
management and decrease energy consumption. In this regard, the self-organized system is designed,
which is able to optimize energy efficiency, which leads to more saving in energy used by sensors.
This self-organized IoT framework is called Self-organized Things (SoT).

Aside from software solutions for saving energy or optimizing energy efficiency used by
sensors, there are methods to provide sufficient energy sources in hardware point of view. In [93],
wireless energy harvesting is introduced as one of the best ways to supply energy for many sensors.
In this regard, energy harvested from environmental sources like solar power is used to supply sensors.

3.3. Big Data (BD) Processing

As the amount of information becomes large in an IoT-based system, data handling with
traditional methods becomes impractical. BD analysis is one of the main challenges in IoT systems,
as systems should be able to store data, analyze it, and plan for future, based on the present and the
past data. In designing algorithms to deal with this condition, uncertainty and lack of data should also
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be considered. On the other hand, data is collected from different sources, and BD analysis in real time
is a key to apply IoT systems in real world situations [94]. Therefore, modern methods with specific
architecture are needed for BD processing. In this regard, some toolboxes such as toolboxes in Matlab
are developed to deal with BD [95,96]. One solution to deal with BD is using localize processing of
data. In this regard, devices are aware of the state of the main server and their neighbors, which makes
it possible to save more network bandwidth. In addition, by using localized algorithm, it is possible to
deal with BD, as data mostly process locally [94].

In respect of BD analysis, as the system enjoys more detailed information, data processor systems
are able to analyze information in more detail. On the other hand, system security will be affected by
the large amount of information [97]. Despite challenges introduced by BD analysis, advanced machine
learning algorithms can enjoy large scale information for better training in their process [95,96,98].

Assume that there is an Advanced Metering Infrastructure (AMI) to collect data of the system.
The very first step after gathering the data is to use a method to extract information. This can be done
through cluster-based computing systems. For example, in 2004, Google introduced a solution based
on the Google File System, which used different methods to process data. In 2012, Hadoop with an
Apache license introduced another method to deal with BD, and used Spark SQL as a database system.
Later, this BD processing framework became the most dominant one [99].

After useful knowledge extraction from BD, the system should be able to further classify the
information and provide certain services (such as sending signals to the actuators or alerting systems).
As an example, in energy systems, data collected from electricity and heat consumption can be
subjected to consumers’ type like industrial and residential, and each of the consumption level can
be further classified into off, standby, and active operating mode. Based on this argumentation, a BD
architecture is introduced in [100].

3.4. Privacy and Security

The concepts of privacy and security are tied together; as the level of security becomes lower,
the system would be more threatened by unauthorized manipulation and so the privacy may be
affected. On the other hand, privacy could be violated in a secure system. As an example, assume that
noise pollution is aimed to determine on streets in an IoT framework; hence, sound sensors should be
installed on the streets. While the system may be designed in a secure manner and no unauthorized
third party may have the access to consumers’ information, the very first question arise about privacy
is that: “Is it legal to record people’s voice?” Another example is that in IoT framework for smart
buildings, a procedure could be detected for what people watch on television, or when they are awake.
Although an appropriate security protocols may be used in such system, the question is that who can
access this information, and do people feel pleasant to share this information? This challenge makes
IoT processing slow and is extensively reported in the literature [101,102].

Generally, there are three main categories for privacy challenges: personal privacy,
privacy-preserving data mining, and underlying technologies’ privacy. Considering these aspects
of privacy, legal regulations, which are globally accepted by governments, are strongly needed. In
addition, human rights should be considered in all actions that are done in this regard [103]. Generally
speaking, limitations in IoT sensors’ capability make challenges in privacy and security issue more
complex. This means that they cannot handle complicated security protocols. This challenge is
mentioned in [104], and a small cryptographic key size is designed for IoT security.

3.5. Standards

IoT covers a large range of technologies and use cases that range from a single device to massive
cross-platform deployments of embedded systems connecting in real-time while following different
standards [105]. The mismatch among IoT devices using different standards and protocols is a major
problem. Assume that some information needs to be sent from an Apple iPhone device to some other
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mobile devices via Bluetooth. This may not be possible as Apple devices can only be connected to
Apple devices via Bluetooth.

The very first step in standardization of IoT-based energy system is to define a system of
systems with a common sense of understanding. In this manner, it is worth mentioning some of
the organizations’ definitions of IoT are as follows:

• IEEE: The IoT is the integration of things, equipped with sensors, via the internet.
• The European Telecommunications Standards Institute (ETSI): This institute does not provide

a direct definition of the IoT. However, it brings a definition for M2M communication.
M2M communications is a kind of communication among devices for which there is no need of
human direct manipulations.

• The International Telecommunication Union (ITU): the IoT is a ubiquitous network, which means
that it is available anywhere, anytime, by anything and anyone. This definition does not answer
specific questions like what is the range of availability of an IoT system, yet generally, it brings
a great presentation of an IoT system. In addition, ITU Telecommunication Standardization
Sector (ITU-T) mentioned the IoT system as an infrastructure for information society that connect
physical and virtual things together. This definition includes all inanimate objects.

Aside from the mentioned institutes, some companies provide definitions about the IoT. Some of
them are mentioned as follows:

• The Systems, Applications, and Products in Data Processing (SAP): The IoT is a world
where physical things are defined in the information network, hence they can participate in
business activities.

• The CISCO: this company defines the Internet of everything as gathering people, data, and things
in order to provide a network, which is capable of exchanging information into actions.

• The Hewlett-Packard Company (HP): the IoT is a system, for which every object is defined on the
internet. This means that human can manipulate and control objects from any place; and devices
can communicate with each other without human interactions [106].

What is explicitly obvious from the comparison of IoT definitions provided by a non-profit
institute and companies is that they all define the IoT in a same manner, yet companies try to provide
a definition for which its benefit for the people is bold. In summary, the IoT is an infrastructure
including sensors, communication system, data processing system, and objects that are connected via
the Internet, in order to bring services and applications for people with minimum human intervention.
Based on this definition, related standards should be addressed for communication systems, data
processing, the Internet protocols, services, and applications.

In case of communication systems, for example, IEEE 802.15.4-based (ZigBee) is one of the mostly
adopted standards about low-rate wireless networks [107]. Based on this standard, data can be
transferred at 800/900 MHz and 2.4 GHz. Other standards like IEEE 802.11p have also been developed
for wireless communications. IEEE 802.11 is the standard about Wireless Local Area Networks
(WLANs) in a vehicular environment. Communication bandwidth in the mentioned standard is
10 MHz and 5.9 GHz frequency band [108]. It is worth mentioning that technologies like LoRa
and Sigfox present long range, low power consumption data transmission, and are used widely in
IoT-driven systems [109,110]. The range of frequency accepted by the aforementioned technologies
is in 863–870 MHz [110]. Main advantages of LoRa and Sigfox technologies are their free-license
availability. In addition to their long-range data transmission, which makes it possible to be utilized
for many applications such as agriculture processing, energy management systems, smart homes,
smart parking, etc. Regarding LoRa technology, LoRaWAN is a protocol designed for low-powered
devices specifically for the LoRa technology. This is suitable for some applications in which a small
amount of data need to be transferred, such as in electric vehicles [111]. These features lead to the
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integration of the LoRaWAN protocol with cellular communication technologies such as 4G in the
IoT-driven systems [112]. The LoRa technology has been widely accepted by the related organizations.

In Sigfox technology, however, ultra-narrow band technology is employed in order to transmit
information in long-distance communication [109]. Considering the bandwidth dedicated to the Sigfox
technology, only a small amount of data may be transferred. While LoRa technology may be used in
bidirectional communication links, for instance, grid monitoring, network density needs to be higher
in Sigfox technology. Apart from this difference, these technologies are very similar [113]. Considering
characteristics of the Sigfox technology, it is widely used in remote devices that need to transfer small
amounts of data in a long distance.

In a similar way, several attempts have been done by many organizations such as oneM2M and
IEEE to define a global standard that fits every IoT system [100,114]. For instance, in the OneM2M
organization, several partners participate in defining a standard for Machine-to-Machine (M2M) with
more focus on the service layer. On the other hand, IEEE organization is developing a standard for
IoT focusing on communication layer. In [115], a great attempt is done to collect standards for IoT
introduced by organizations to make a coordination among them. A complete list of communication
standards regarding to the IoT is mentioned in Table 1.

Table 1. Communication technologies and standards.

Technology Name Standard Name Frequency Band Coverage Range Data Rate

ZigBee ZigBee 2.4 GHz 100 m 250 Kbps
WiFi IEEE 802.11 2.4 GHz, 5 GHz 150 m 1 Gbps

WiMAX IEEE 802.16 10–66 GHz 50 km 75 Mbps
Thread IEEE 802.15.4 2.4 GHz 30 m 250 Kbps
Z-Wave Z-Wave 900 MHz 30 m 100 Kbps

Bluetooth IEEE 801.15.1 2.4 GHz 10 m 1 Mbps
Cellular 4G 1.4–20 MHz 50 km 100 Mbps

LoRa LoRa 863, 915 MHz +10 km 100 Kbps
Sigfox Sigfox 863, 915 MHz +10 km 10, 100 Kbps
PLC IEEE 1901 500 kHz 3 km 10–500 kbps

Ethernet IEEE 802.3 100 MHz 100 m 100 Mbps–10 Gbps
Fiber optic IEEE 802.3 500 MHz 100 km 40 Gbps

Satellite IEEE 521 30–300 GHz 6000 km 1 Mbps

3.6. Global Architecture for Energy Internet

Architecture design is another challenge in IoT-enabled energy systems. System architectures are
designed based on its applications and use. A basic architecture for an IoT system includes three layers:
application layer, network layer, and perception layer [116]. The application layer is the top layer in
which transferred data from network layer are proceed and used to provide services. Network layer is
the middle layer, which is responsible to receive information from perception layer and transmit it
application layer. Most IoT components such as communication systems’ components and protocols
are categorized in this layer. The lowest layer in three-layer IoT architecture is the perception layer.
Collecting information from sensors and processing of data are considered in this layer. The three-layer
architecture is introduced by standards, like IEEE P2413 [114]. This architecture is also recommended
for health care systems and smart grids [117,118].

The three-layer architecture is well known because of its simplicity, and it is easy to apply.
However, some details may be missed by defining the IoT system through three layer. In this regard,
some other architectures are introduced in the literature, including more layers with more details
in each layer, or targeting a goal and introducing it as an additional layer. In this regard, security
as one of the most important features in every IoT systems is considered as another perspective of
the architecture [119]. In [120], a generic architecture is introduced to deal with an interoperability
challenge in IoT where a distributed architecture is designed to deal with heterogeneity, scalability,
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interoperability, security and privacy, etc. In this attempt, a three-layer architecture is presented, and an
extra distributed module, called security management, is presented. This module is distributed among
the main three layers, and by doing so, modeling and enforcement of security, policies are supported.
In [121], a five-layer architecture is introduced including objects layer, object abstraction layer, service
management layer, application layer, and business layer. In the business layer, BD analysis and
end-user privacy is mentioned. In the application layer, services are presented to consumers. The
service management layer plays the role of the middleware layer. Hence, in this layer, processing of
data received from the object abstraction layer will be done. In the object abstraction layer, transferring
the information between sensors and the service layer is handled. This layer acts as communication
layer, so different communication technologies like WiFi, ZigBee, etc. are categorized in this layer.
The very basic layer is objects layer in which things are presented as physical sensors. In this layer,
information are collected from objects. IoT-based energy system’s architecture is illustrated in Figure 3.

What is evident by reviewing IoT architectures introduced in literature is that every team tries
to follow its goal by defining an architecture for an IoT-based system. For instance, to improve the
security of the system, a security layer may be added to the system architecture, while this may affect
data quality as a result. Designing a general architecture for IoT-based system leads to a trade-off
among system goals, physical and virtual components, system size, etc.
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Figure 3. IoT-based system architecture.

4. Illustrative Examples

In this section, some examples of energy internet are indicated to show different applications of
IoT systems in smart buildings, smart cities, and smart grids, which vary greatly in terms of system
structure and scale, information scale, privacy and security level, etc.

4.1. Smart Buildings

The very basic feature of an energy system using IoT can be introduced as a consumer of energy
sending information to a data collector via a communication system. This appears in a smart building.
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In this case, the number of components is limited, and they are close to each other. Hence, short-range
communication systems like ZigBee is suitable for this application.

In designing of an IoT-based smart building, the very first step is to address every physical
object by a virtual one [122–124]. In this manner, a virtual environment will map every object related
to the real-world environment. For developing smart energy systems in buildings, the three main
issues should be considered: energy consumption monitoring using smart meters and smart devices,
designing a model to analysis it, and implementing an appropriate IoT-based system considering
the designed model to analyze energy and needs. For example, using LAN is more appropriate in
comparison with a WAN for a small house. The latter one needs attention to every detail including
how to manage BD, determine location-based energy management, etc., and all of the IoT-based smart
buildings are studied. In order to make the information secure, some policies should be agreed on
by energy consumers. As an example, details about the location of end-users must be available to
authorities, and security constraints should not negatively affect this accessibility.

The main motivator of employing IoT for Buildings is reducing sensors’ prices and developing
applications that are user friendly [125]. This means that, by using a mobile device, every component
that is connected to the IoT system can be monitored and controlled. In [126], an example of IoT-based
smart home is presented. In this attempt, data sense by some sensors, and then information is sent to
a network using ZigBee technology in JavaScript Object Notation (JSON) format. Then, applications
like monitoring home conditions, managing home conditions, and controlling home access are applied
through the Internet. Physical components are equipped by RFID tags, and, in this manner, physical
objects are introduced into the cloud as virtual objects.

One of the main applications in IoT-based smart buildings is the internet-based demand
response, which can be introduced as incentive-based or price-based schemes [127]. Communication
infrastructure is mentioned as the key feature in developing DR in smart buildings.

4.2. Power IoT

The issue of implementing IoT in smart grids is dissimilar from smart building in different
aspects of security, data mining, etc. One of the main reasons that can be addressed is the scale of the
system. As the size of the system increases in smart grids, wireless communication is mostly chosen
for communication infrastructure. This leads to a great attention to ICT in IoT-based smart grids [18].

Another matter in IoT-based smart grids that is worth a great amount of attention is a variety
of applications and services, provided by either the grid or third parties. In this manner, a higher
level of standards, protocols, architecture, etc. should be followed, which is called industrial IoT
(IIoT) [128]. At the same time, as the systems’ scale become larger, the need and importance of
real-time applications increases. This is introduced as a Knowledge Discovery in Database (KDD)
in the literature, as online monitoring is a desirable capability in smart grids [129]. To overcome
this challenge, new technologies, protocols, and architectures should be developed. In [130], a new
technology called Software Defined Networking (SDN) is developed to make data system more robust.
By using SDN technology, real-time monitoring and control of the energy systems are available. To
do so, an architecture including infrastructure, control, and application layers is presented based on
the IIoT paradigm for energy systems. Talking about IoT-based smart grid architecture, a four-layer
architecture for residential smart grids including device, network, cloud management, and application
layer is presented in [131]. In this effort, the network layer connects device and application layer using
IP-based protocols like Representational State Transfer (RESTful) based on Hypertext Transfer Protocol
(HTTP). On the other hand, in the device layer, some other IP-based protocols like Bluetooth may be
used for connecting things to gateways, as most devices have limitations from a communication point
of view.

To apply the IoT system into smart grid systems, some technologies should be considered:
(1) Sensor technologies; (2) Communication technologies, like Bluetooth, ZigBee, etc.; (3) Data Mining
technologies: as IoT nodes are limited in many aspects such as bandwidth, it is inappropriate to
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exchange all unstructured data. Hence, data fusion technologies may be hired in order to exchange
useful data. In [132], necessary technologies to implement IoT into power systems are discussed
in detail.

4.3. IoT-Driven Smart Cities

To apply IoT systems in smart cities, some fundamentals need to be defined in advance. The first
indispensable necessity is communication infrastructure. Then, people interaction with the system
should be enabled. In smart cities, IoT is not only for energy management purposes, but also for many
different goals, such as smart parking, transportation and vehicular traffic, healthcare, etc.—all of
which can be monitored and controlled via a unified IoT system, while a different level of accessibility,
privacy, security, BD, and even communication technologies must be enabled based on the services’
specifications [133]. To apply IoT in smart cities, still an architecture must be used to categorize
every component in a category and to define their connections. In [106], a three-layer architecture
including perception, network, and application layer is used in order to implement IoT systems into
smart cities. Many of the implemented IoT systems in smart cities are reported in [106,134], which
include Amsterdam, Barcelona, Fujisawa, etc. In all of the mentioned attempts, one or two services like
controlling streetlights are implemented. Although these attempts are appreciated, a global IoT system
including most IoT services mentioned in the literature with different control and monitor level, and
real-time accessibility for consumers is a matter of research and has not been implemented yet.

5. Discussion and Conclusions

In this paper, a general overview of the IoT-enabled energy systems was presented. IoT key features,
different specifications, such as energy consumers, communication infrastructures, and privacy were
also outlined in the context of energy systems, which could be an integration of different domains
such as electrical and thermal grids and communication networks. Then, some challenges in IoT-based
energy systems like BD analysis and are discussed. Finally, some examples of IoT-based systems in
three levels of smart homes, smart power grids, and smart cities are discussed, so a general view of
how to implement IoT systems in real work can be comprehended.

One of the main challenges of enabling IoT in energy systems is to map every single object into
one unique virtual object. This challenge can be overcome via standard communication protocols like
IPv6 standards. On the other hand, as IoT-based systems contain many components, they can raise
concerns from different points of view like security and energy saving. In this regard, every system
designer may include his/her own concerns to design an architecture for the system, which leads to
different architectures. Therefore, a unified architecture for IoT-based energy systems is still a concern
for researchers.

It is true that every piece of useful information from system components can enhance monitoring
or controlling the system. However, adding information to controlling systems as an input can make
it more complex. Moreover, this needs financial support. The development of IoT-based systems
increases dramatically as the price of sensors decreases during the last decade. It is anticipated that
sensors become smaller in size and cheaper in price. Changes in wireless sensor network and the
maturation of sensor systems, improvement in performance of data processing systems, and the
progress in solving communication systems drawbacks, such as communication delays and data loss,
will affect the future of IoT-based system.

One of the main objectives of the integration of the IoT with energy systems is to involve more
people’s cooperation with system operators, in addition to involving more interaction with the energy
components. By doing so, it is expected to operate the system in more reliable and stable conditions.
Improving system performance is always desired from the viewpoint of system operators, while this
may face challenges from some perspectives like cloud computing, data management, infrastructures,
and social network.
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