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Abstract: In this paper we devise a neural-network-based model to improve the production workflow
of organic solar cells (OSCs). The investigated neural model is used to reckon the relation between
the OSC’s generated power and several device’s properties such as the geometrical parameters and
the active layers thicknesses. Such measurements were collected during an experimental campaign
conducted on 80 devices. The collected data suggest that the maximum generated power depends
on the active layer thickness. The mathematical model of such a relation has been determined by
using a feedforward neural network (FFNN) architecture as a universal function approximator. The
performed simulations show good agreement between simulated and experimental data with an
overall error of about 9%. The obtained results demonstrate that the use of a neural model can be
useful to improve the OSC manufacturing processes.

Keywords: nanotechnologies; photonics; nanoplasmonics; neural networks

1. Introduction

The basic design constraints in organic solar cells (OSCs) influence significantly the energy
absorption by light trapping and the consequent conversion efficiency. OSC electrical characteristics
strongly depend on the device’s geometry [1–4]. Among such geometrical values, the cell surface
dimension and the thickness, particularly the active layer thickness, influences the performances
of the solar cell. Such electrical performances can be devised by means of several parameters such
as carrier mobility, the donor–acceptor ratio, the materials’ concentrations, and the morphology of
the blend [5–11]. Moreover, in solar cells, electron-hole pairs are formed when light is absorbed.
Unfortunately, some electrons-hole pairs can recombine before they reach the external circuit. In this
latter case, the recombined pairs do not contribute to the produced electrical current; thus, these pairs
reduce the conversion efficiency of the solar cell.

Also found in the literature [12] is that OSCs’ electrical output is affected by the optical properties
of a device’s blend film, so it is paramount to determine the right thickness of the active layer for OSCs
to achieve optimal behavior. In [13], the authors present a particle swarm optimization algorithm
to devise a two-dimensional model for multilayer bulk heterojunction organic nanoscale solar cells.
Such a model takes into account the active layer thickness and the device’s morphology in order to
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optimize electrical performances. In [14], an iterative Levenberg–Marquardt optimization algorithm
was developed to investigate the dependence of the electrical characteristics from the aluminium oxide
layer’s thickness in relation to several chemical parameters, such as the amount of sulphuric acid,
the amount of oxalic acid, the amount of aluminium cations, the electrolyte temperature, and the
anodizing time. In this paper, we propose an optimized production process, improved by means of a
neural network, to reduce both cost and time. The developed neural network can be used to model the
OSC and determine its efficiency based on its geometrical and optical characteristics.

The paper is structured as follows: In Section 2, we discuss the device fabrication techniques and
the related production workflow, and illustrate the improvement proposed in this paper. In Section 3,
we describe the adopted experimental procedure for the production of several prototypes and their
analysis with AFM measurements and the determination of their electrical characteristics. In Section 4,
the basis of the neural network modeling techniques are reported, while the used implementation and
the obtained results are shown in Section 5. Finally, in Section 6, we draw our conclusions.

2. Device Fabrication Workflow

Many different layer processing techniques have been recently developed, and many of them are
suitable for OSC production. On the other hand, the produced OSC performances have been considered
dependent on a delicate and highly empirical relationship between the processing method, the solvents,
the additives, the drying, the materials, the substrate, and perhaps even the operator [15–21]. It follows
that the production workflow is strongly affected by an unavoidable, and often extensive, cycle of tries
and tests until optimal manufacturing solutions are finally found. The said production workflow is
generally characterizes by the following steps:

• technology selection;
• geometric design;
• prototype manufacturing;
• AFM measurement;
• electrical characterization;
• prototype testing;
• prototype evaluation;
• mass production or rejection.

Firstly when a technology is selected determining the chemical compounds to be used, a design
phase should follow to define the geometrical characteristics of the prototype, aiming to find a
suitable solution that can optimize the optical and electrical performances of the device. After the
prototype manufacturing, a series of studies are performed on it, such as AFM measurement and electrical
characterization. The latter is paramount for the prototype testing phase when the electrical performances
are determined. Finally, once the data has been collected, the prototype is evaluated in order to decide
whether it can be produced or not [22]. In the latter case, the prototype is rejected, and the production
workflow starts again until a suitable solution is found for the mass production of a finalized device.
Unfortunately, proportionally with the number or tries, the development cost of a device could grow
exponentially, therefore tampering with the OSC’s production convenience and feasibility.

In this paper, we deal with the development cycle growth devising a functional model for the
OSC prototype based on neural networks. Consequently, instead of an undetermined number of tries,
it suffices to produce several prototypes for a chosen technology, in order to train a neural network to
model the device behavior based on a set of optical and geometrical parameters. The neural network
model study can be easily integrated into the production workflow as a complementary step between
the AFM-electrical characterization and the production of an engineered device (see Figure 1).
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Figure 1. The proposed improvement to the production workflow of organic solar cells (OSCs): a neural
network module is introduced in order to determine a model of the OSCs’ electrical characteristics in
order to devise their optimal design.

3. Experimental Prodcedure

In the following, we will show how the introduced neural network modeling technique has been
integrated into the said production workflow and the related results.

3.1. Device Manufacturing

In order to investigate the thickness of layers in OSCs, we prepared and manufactured 80 samples
using flexible and conductive organic materials (Figure 2). The produced samples have an active
layer area of 12 mm × 12 mm and implements indium tin oxide (ITO)-coated glass substrates of a
12 mm × 12 mm surface and a 0.7 mm thickness, with a resistance of 20 Ohm/m2. The said substrates
are rinsed and sonicated in an acetone, methanol, and isopropyl solution for 15 min each. Afterwards,
the substrates are treated in a plasma oven to remove organic residues for 5 min. A water solution of
poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is spin-coated on substrates at
5000 rpm and annealed for an hour at a temperature of 100–105 ◦C. This latter process is necessary to
remove the water and solidify it as a layer. The next step, performed into a glove-box, requires the
blending of a compound of polythiophene and phenyl-C61-butyric acid methyl ester (PCBM:P3HT)
layer with a weight ratio of 1:1, and this compound is dissolved in chloroform trichloromethane
(CHCl3). The solution is then stirred for one hour with a magnetic stirrer and finally spin-coated on
substrates for one minute at 1000 rpm. All samples are annealed at 105 ◦C for an hour and transferred
inside the thermal evaporator, where aluminum cathodes, approximately 80 nm thick, are evaporated
on the samples (Figure 3).
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Figure 2. A representation of the geometry of a device containing four OSCs. On the bottom panel, a
detail of the layers composition of the OSCs.

Figure 3. On the left, an optical microscopy image of one the prototypes captured with a Zeiss Stereo
Discovery.V12 microscope. On the right, a SEM image of a scratched sample.
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3.2. Morphological Study

The device’s morphological studies have been performed on samples as shown in Figure 3 with
Zeiss Stereo Discovery V12 microscope (Zeiss, Oberkochen, Germany) with a digital camera Zeiss
4.0×, under magnification of 150×. The topographical analyses are carried out using an atomic
force microscope (AFM) (Asylum Research, Santa Barbara, CA, USA). Initially, we scratched the
aluminum and located the samples under the AFM microscope. We then analyzed the surface
profiles of 8 samples. Each surface profile was sampled at 512 equidistant points with a scan rate
of 0.50 Hz, namely the frequency to complete a trace–retrace cycle. Each image was composed of
256 lines. The optoelectronic studies ran under simulated air mass (AM) 1.5 solar irradiation with
a power density of 100 mW cm−2 using a Stellar Net spectrometer (Stellar Net, Tampa, FL, USA),
while measurements were analyzed using a Keithley Model 2420 SourceMeter instrument (Tektronix,
Bracknell, UK). The measurement of generated power, in terms of current–voltage characteristics
(I-V curve), was measured at room temperature under AM 1.5G conditions using a solar simulator
(Steuernagel Lichttechnik, Morfelden-Walldorf, Germany) with a wavelength range of 300–750 nm.

3.3. AFM Measurements

The AFM can provide accurate 3D surface profiles at atomic resolution, measuring the force
at a nano-newton scale by a laser beam deflection system. Measuring the topography can reveal
information on the film structure including roughness, texture, abrasion, adhesion, cleaning, corrosion,
etching, friction, lubrication, plating, and polishing. The AFM forms the image without lenses, using a
very thin tip trace at the end of a flexible lever (cantilever), performing a scan on the surface of the
sample. AFM tips and cantilevers are typically fabricated from Si or Si3N4. A typical tip radius is from
a few to 10 s of nm. During the scanning, the interaction and magnetic surface forces are established
between tip and sample and are typically less than 10−9 N, which determine cantilever bending and the
subsequent detection of the surface topography (Figure 4). The cantilever deflections can be detected
up to 0.01 nm via an optical detection system consisting of a laser and a photodiode. The laser beam is
reflected by the back of the cantilever towards the photomultiplier and then converts the solar energy
to voltage, amplifying the incoming signal. The photodiode measures the difference in light intensities
between the upper and lower photodetectors, proportional to the cantilever deflection. In conditions
of null deflection, the difference signal is assumed equal to zero. Through this system, the cantilever
movements are amplified several times. The sample is placed on a miniature piezoelectric tube
designed to move along the system of crystallographic axes (x, y, z). Piezoelectric tube is made of a
particular material (piezoelectric ceramics) that is able to expand or change the response subjected to
an electric field. An AFM image is typically comprised of a signal representing some Z distance of
cantilever motion per X,Y point on the scan raster. All signals are typically read as a voltage in the
software control system. For biology applications and material science, different modes of operations
are used for the system such as intermittent contact mode (called AC mode). In contact mode, the tip is
in full contact with the surface as the sample is rastered in an XY pattern, and maintains a user-defined
deflection voltage (i.e., the force on the tip is repulsive, with a mean value of 10−9 N to keep a positive
deflection on the cantilever).
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Figure 4. A schematics of the AFM piezoelectric scanner: the tip scans the surface and the resulting
cantilever deflections are detected from an optical system consisting of a laser, a set of lenses, and
a photodiode.

3.4. Data Acquisition

AFM can reveal a sample surface and precisely up to nanometer size in three dimensions. We have
analyzed the surface profiles of 80 samples produced at the Optoelectronic Organic Semiconductor
Devices Laboratory at Ben Gurion University of the Negev (Figure 5). Each surface profile was sampled
at 512 equidistant points with a scan rate of 0.50 Hz, namely the frequency to complete a trace–retrace
cycle. Each image was composed of 256 lines. The scan size varied between 30 and 60 µm. A thermal
tune was performed to determine the natural resonant frequency of the cantilever by monitoring the
amplitude over a user-defined frequency range. During the measurements, the AFM tip was excited at
the resonant frequency to obtain a free oscillating amplitude that corresponds to 800 mV output of the
integrated detector (Set Point) with an intergral gain of 12.76. The resonance curve of the cantilever
obtained in AC mode is expected to peak around 200–400 kHz. The MFP-3DTM (Version 13, Revision
A-1715, Asylum Research, Santa Barbara, CA, USA) allows one to better ensure that the tip experiences
net repulsive forces with the sample as it interacts with the surface. Based on the height profile, pixel
histograms from images can be counted and plotted. The Histogram Graph appears with a pixel count
(Y) relative to the Z scale (X). The histogram method is used to determine the thickness. The whole
range of height difference is divided into small pieces, each of which is counted by statistics. By fitting
these histogram peaks using Gaussian equations, the height difference (175 nm for P3HT:PCBM and 4
nm for PCBM:PEDOT) and the ITO substrate can be accurately determined. We evaluated the current
as a function of different film thicknesses for active layers. The current increases typical for film
thicknesses over 50 nm and near 250 nm are shown in Figure 6. The problem in OSCs, especially
in π-conjugated polymers, is mainly related to the low charge carrier mobility exhibiting reduced
Langevin bimolecular charge recombination. The recombination of free charge carriers (electron and
holes) is often described with the Langevin recombination rate βL expressed by

βL =
eµ

εε0
(1)

where e is the electron charge, βL the Langevin-type bimolecular recombination coefficient, µ the
mobility of electrons and holes, and ε the relative dielectric permittivity. The recombination could be
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influenced by the active layer thickness, nevertheless physical parameters, electronic properties, and
defects contribute mostly.

Figure 5. The laboratory in the Ilse Katz Institute for Nanoscale Science and Technology at Ben-Gurion
University of the Negev, where the devices have been analyzed.

Figure 6. Current as a function of active layer thickness (ITO, PEDOT:PSS, PCBM:P3HT) for three
different OSC samples (labeled OSC1, OSC2, and OSC3).

The experimental data collected during our measurement campaign suggested that the maximum
generated power depends on the active layer thickness (see Figure 7). It was observed that optimal
efficiency, in terms of generated power, can be obtained by using specific thickness configurations (e.g.,
by using a PEDOT:PSS films 40 nm thick and a PCBM:P3HT of 180 nm, see Figure 8).
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Figure 7. The figure shows the results of the trained neural network. On the top, the dependence of
the generated power from the total thickness and length is reported. On the bottom, the power as a
function of the PEDOT:PSS and PCBM:PSS thicknesses is shown.

These experimental results suggests that it exists a highly non-linear relation between power and
active layer thickness. Our purpose here is to devise such a non-linear relation. In order to model such
a relation, we used a neural-network-based architecture due to its well known ability to approximate
mathematical functions, as will be described in the following.

Since the entire physical structure of an OPV affects the obtained performances, we used the
neural network to reckon the relation between the generated power (network output) and the following
input parameters.

1. PEDOT:PSS thickness (t1);
2. PCBM:P3HT thickness (t2);
3. overall device thickness (t);
4. overall device length (l);
5. overall device height (h).

The basics of the adopted neural modeling technique will be described in the following.
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Figure 8. Extraction profiles of PCBM, PEDOT, and ITO. Top to bottom: the profile collected by Z sensor
channel; a histogram of the height difference between PCBM:PEDOT and ITO; 2D topographical image.

4. Neural-Network-Based Modeling

A typical application of neural networks is to extract and identify useful relationships/structures
in complex systems, frequently for several available data and mostly containing a little information.
The neural network is composed by nodes, input, hidden, and output units connected by links with
associated numeric weights wi. The output of each unit is expressed as a function of its input xi, and
an activation function g is then applied to the weighted sum of inputs. To parametrize the behavior of
the activation functions, the bias weight w0 is used:

y(x) = g(
d

∑
i=1

wixi + w0). (2)
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By adjusting the weights at each step and by changing the function of the network, the learning
procedure is defined. The feed-forward neural network (FFNN) has three layers of neurons: an input
layer, one or more hidden layers, and an output layer with neurons connected with the layers and
input units. In a similar fashion, a neural network can be represented as a directed graph composed
by a finite number of nodes, called neurons, and weighted edges, called connections. The neurons
are organized in layers: an input layer, an output layer, and a variable number of hidden layers.
The neurons of each hidden layer are called hidden neurons. This latter uses the output of the previous
layer’s neurons as an input weighted by means of the related connections’ weights, and computes
on such input a function (called activation totransfer function). In a general formulation, suppose an
N-dimensional input u ∈ RN such that

u = (ui ∈ R)N
i=1. (3)

We will define input layer the set of neurons x(0)i so that

x(0)i = ui ∀ i ∈ [1, N] ∩N : u ∈ RN . (4)

Given the l-th hidden layer, it can be similarly formalized as

x(l)j = γ
(l)
j

(
b(l)j +

Nl−1

∑
i=1

w(l)
ij x(l−1)

i

)
∀ l ∈ [1, L] ∩ N
∀ j ∈ [1, Nl ] ∩ N

(5)

where x(l)j is the output of the j-th neuron of the l-th layer (composed by Nl neurons), γ
(l)
j its activation

function, and b(l)j the bias; Nl−1 is the number of neurons in the previous layer; w(l)
ij is the connection

weight from the i-th neuron (with output x(l−1)
i ) on the (L− 1)-th layer (composed by Nl neurons) to

the j-th neuron on the L-th layer. The output layer will be composed of M neurons with a value yk
given by

yk = γ
(L)
k

(
b(L)

k +
NL−1

∑
j=1

w(L)
jk x(L−1)

j

)
∀ k ∈ [1, M] ∩N : y ∈ RM. (6)

Neural Networks as Universal Approximators

As is well known [23–25], any Riemann-integrable function, that we will call signals, can be
arbitrarily approximated by means of an FFNN regardless of the activation function or input space,
while signals with a finite support can be exactly approximated by a single layer of neural units.
Although similar to the Cybenko–Hornik theorem, it must be highlighted that the MLP approximation
theorem does not need a continuous signal among its hypothesis. An FFNN [26] can approximate
signals using two hidden layers [27,28]: the first hidden layer approximates the signal by means of a
step function σ such that

x(1)j = σ

(
b(1)j −

N0

∑
i=1

w(1)
ij x(0)i

)
∀ j ∈ [1, N1] ∩N (7)

is the output of the first hidden layer (composed by N1 neurons x(1)j ), with respect to the input

(composed by N0 elements x(0)i ), where w(1)
ij are neural weights and b(1)j is the bias used as threshold

for the step function. The second hidden layer computes the height of the stair step, in which the
input value lies in order to return a value to the output layer. The threshold logic units’ computation
can be interpreted geometrically as they split the input hyperplane in two half-hyperplanes. In this
representation, the separation line’s equation depends on the weights and bias. Such variables are
determined by a training algorithm based on the overall approximation error that affects the network.
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On the other hand, the approximation accuracy after training strictly depends on the number of
neurons, which influences the size of the stair steps.

5. The Implemented Neural Model and Results

The FFNN proposed in this paper is developed in order to obtain an approximate mathematical
expression of OSC’s maximum power depending on the device’s geometrical parameters and the active
layer’s thickness (PEDOT:PSS and PCBM:P3HT). The proposed neural network, shown in Figure 9,
is composed of four layers: an input layer, two hidden layers, and an output layer. The input layer has
five inputs (the device’s overall length, l, the height, h, the thickness, t, the PEDOT:PSS layer thickness,
t1, and the PCBM:P3HT layer thickness, t2). The two hidden layers of the implemented FFNN use
logsigmoid activation functions and are respectively composed of 7 and 4 neurons. The proposed
neural network has been trained to minimize its root mean squared error (RMSE) by means of a
Gradient Descend with Momentum Algorithm (GDMA) [29], using the geometrical parameters and the
measured thicknesses as inputs and the measured maximum power as target (see Figure 6, where three
examples of the measured generated currents are reported in relation to the active layer thicknesses).

Figure 9. The implemented feed-forward neural network (FFNN) architecture.

Figure 7 shows some of the results obtained using the neural network: respectively, the dependence
of the maximum generated power from the total thickness and length of the device versus the maximum
power as a function of the PEDOT:PSS and PCBM:P3HT thicknesses.

6. Conclusions

The implemented FFNN was trained by means of the experimental measurements collected
on 80 devices with active layers (PEDOT:PSS and PCBM:P3HT) with different thicknesses at the
Optoelectronic Organic Semiconductor Devices Laboratory at Ben Gurion University of the Negev.
Once trained, the network was shown to be capable of determining the maximum power as a
function mainly dependent on the active layers’ thickness, The extensive simulations show good
agreement between simulated and experimental data with an overall error of about 9%. Furthermore,
the simulations show that the active layer has a great influence on the OSCs’ efficiency. The neural
network at hand has thus been validated as an empirical mathematical model of the relation
between the thickness and the maximum power generated by OSCs. Finally, ultrathin OSCs
with GLASS/ITO/PEDOT:PSS/PF3HT:PCBM/Al structures with different active layer thicknesses
dependent on carrier mobility were investigated. An AFM in AC mode was used to better measure the
active layer’s thickness and therefore to determinethe OSC’s maximum power by means of a dedicated
FFNN. The experiments showed the effect of the thicknesses of the P3HT:PCBM and PEDOT:PSS active
layers on the power conversion efficiency of the organic cell. The implemented neural architecture
can be integrated in the manufacturing workflow in order to improve OSCs’ efficiency and reduce the
related production costs.
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