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Abstract: In spite of the benefits from thermal energy storage (TES) integration in dwellings,
the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment.
However, there is currently no direct support for TES in buildings compared to support for electricity
storage. This could be due to lack of evidence to support incentivisation. In this study, a novel
systematic framework is developed to provide a case in support of TES incentivisation. The model
determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for
a domestic user under policy neutral and policy intensive scenarios. The model is applied to different
building types in the UK. The model is applied to a case study for a detached dwelling in the UK
(floor area of 122 m2), where heat demand is satisfied by a boiler and electricity imported from the
grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and
Power (CHP) reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year
payback. Additional benefits from TES integration can pay for the investment within the first 9 years,
reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario
(for example considering the Feed in Tariff (FIT)), primary energy demand and CO2 emissions reduce
by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES
integration can pay for the investment in TES within the first 2 years. The framework developed is
a useful tool is determining the role TES in decarbonising domestic energy systems.

Keywords: TES; multi-period mixed integer linear program; incentives; techno-economic analysis

1. Introduction

1.1. Background

Integration of Low-to-Zero Carbon (LZC) technologies in domestic buildings might go a long
way in achieving the UK target for 80% reduction in greenhouse emissions by 2050 (from 1990 levels).
Major barriers to implementation are: (1) large seasonal variations in space heating and electricity
requirements; (2) sporadic nature of renewable energy; and (3) high capital costs. Thermal Energy
Storage (TES) allows better integration of heat and electricity systems, and storage of energy for
use during peak times, thereby addressing the first two barriers. However, despite these benefits,
the penetration rate of TES in buildings in Europe is low [1].

Micro-generation can protect against future end-use energy cost and encourage household
self-sufficiency [2]. Due to low penetration rates, a number of fiscal instruments have been introduced
for micro-generation in the UK. There is a strong argument that fiscal incentives designed to increase
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uptake of technologies can in the long run decrease the cost of technologies [3]. An example is the Feed
in Tariff (FIT). FITs are fixed electricity prices paid to micro-generation producers per unit of energy
produced and injected into the electricity grid. The ability of FIT to stimulate development of less
mature LZC technologies in many countries has been established [3,4]. However, the potential of the
FIT to increase uptake of TES has not been analysed. In the UK, there is no incentive for homeowners
to accommodate TES in their dwellings and communities. Policy makers in the UK have yet to consider
storage a critical component of the UK energy future [5]. This could be due to uncertainty about the
benefits of TES integration and lack of a reliable cost recovery mechanism for TES. This work seeks to
address these challenges through the development of a systematic framework to evaluate the benefits
of TES integration in a dwelling energy system, and determine if the additional investment in TES
is economically viable. The framework is first mentioned in Oluleye et al. [6], and is extended in
this paper.

Modelling and optimisation studies exist to determine the design and dispatch of LZC
technologies and TES. However, there are still challenges in: (1) balancing complexity and robustness
through the selection of appropriate temporal precision and time bands to represent energy demand
and technology characteristics; and (2) representing storage and allowing the TES size to be determined
optimally. These challenges are addressed in this work, through the development of a more accurate
integrated framework for optimal design and operation of a low carbon dwelling energy system.
The framework forms the basis of a case to support incentivising TES in dwellings.

1.2. Literature Review

A high share of micro-generation technology for satisfying the energy demand of the building
sector could result in reduction in CO2 emissions, if an optimal operation strategy is pursued [7].
Reduction in primary energy consumption is also possible with a Micro-Combined Heat and Power
(CHP) [8], and further reductions when TES is integrated [9]. Fubara et al. [10] records a 6–10%
reduction in primary energy from integrating a micro-CHP. Murugan and Horak [11] identify primary
energy savings and emissions reduction from micro-CHP, and their large market potential. Further
reductions are possible from integrating heat storage with micro-CHP [8]. Improved capacity factor,
and reducing low utilisation plant are benefits of generating and storing heat during periods of
low demand and regenerating at periods of high demand [12]. Diaz and Moreno [9] records cost
improvements when a micro-CHP is supplemented by TES. Storing heat improves the synchronisation
of the demand for heat and electricity in buildings [13]. In spite of these benefits, LZC technologies
and TES still have a small percentage of the market [14], implying low adoption by homeowners.

Furthermore, it is unclear if the benefits from TES integration make the additional investment
worthwhile. The economic viability could be determined by estimating how long it takes to payback
the additional investment in TES and if the investment has a positive return. Such analysis has not
been done before.

Economic benefits in terms of operational savings are made possible by charging an accumulator
when electricity is high, and releasing heat during cheap night hours [15,16]. However, analysis
was done on a district scale. An advantage of district heating is that bigger size technologies are
required thereby benefitting from economies of scale. This implies, the additional cost of the TES
may be less than in an individual home. Even though district heating has been identified as a way of
decarbonising domestic heating in the UK, the estimated deployment of district heating in 2030 is 6%
of the total heat demand according to the 4th carbon budget [17]. Furthermore, district heating is not
economically viable for lower population density areas. There is a need to evaluate the benefits of TES
integration in an individual home (considering different dwelling types), as such an analysis has not
been done before.

The development of a framework for system design is required before a techno-assessment of
the design, and impacts of TES can be determined. These models account for technical and economic
parameters, and boundary conditions like heat and electricity demands. Frameworks for system



Energies 2018, 11, 1095 3 of 17

design are based on detailed buildings and technology physics, heuristics and optimisation. A detailed
building simulation model is applied by Kelly et al. [18] to determine the amount of thermal storage
needed to shift heat pump operation to off-peak periods. Salata et al. [19] also applies a detailed
simulation model to evaluate the impact of micro-CHP. Detailed building models determine the
potential effect on the end user in terms of comfort; however, technology selection and dispatch
determination is not addressed. Furthermore, capturing design trade-off is not done systematically.
Therefore, designs obtained are suboptimal in relation to delivery of energy and costs, making them
insufficient as a framework to quantify the benefits of TES integration, and determine if the additional
investment in TES is worthwhile.

Heuristics based on operational logic have been applied to size thermal stores [20]. A heuristic
approach for economic optimisation for a single CHP plant and TES capacity is also applied in Vogelin
et al. [21]. Heuristics are often iterative in nature, therefore, solving larger models becomes challenging;
making them insufficient to form the basis to provide a case to support incentivizing TES.

Optimisation frameworks are able to capture capital-energy trade-offs systematically, and produce
optimal designs. LZC technologies have been modelled to determine capacity and dispatch based on
linear models [22,23], non-linear models [24] and mixed integer linear models [25,26]. Linear models
underestimate the optimal unit capacity by 15% [27], whilst non-linear models suffer from long
solution times and local optima [25]. Furthermore, selection of technologies and their capacities is
not addressed in linear and non-linear models. Mixed integer linear models are suitable for solving
scheduling problems with binary variables and obtaining a global optimal solution rapidly. Thus
providing a useful tool to provide evidence to support TES incentivisation.

Such models are often complex due to the varying nature of energy demand and technology
characteristics. To reduce model size and complexity, the size of the thermal store is sometimes
predetermined [8,13], resulting in non-optimal designs. However, within the Mixed Integer Linear
Program (MILP) modelling framework appropriate use of integer variables can obtain good compromise
with model complexity whilst ensuring the designs are optimal. Furthermore, integers have been
used in a crude way, that is, only associated with selection of technologies. A compromise with
model complexity is possible using integers for operation of technologies, charging/discharging TES,
import/export of electricity per temporal precision. The later use of integers ensures the operations
do not occur simultaneously. In previous research, charging/discharging the store was only based on
excess heat available, neglecting price signals. In this present work, in addition to the heat balance, TES
is actively regulated to account for gas and electricity price signals.

A model’s environmental and economic outcome is influenced by the temporal precision [28] and
the banding structure used to represent energy demand [16]. Different temporal precisions have been
applied by various authors: 1 h [9,13,21,29–32] and 15 min [25]. Too large temporal precisions could
introduce errors in technology sizing and ignore peak demands. Fine temporal precision (5–10 min) is
required to adequately capture the characteristics of demand from an economic and environmental
viewpoint [28]. Banding structures are used to simplify demand representation; 39 time bands (7 for
weekdays, 6 for weekends and 3 seasons in a year) [16], bands of 3 weeks taken from 3 seasons
with a time zoom factor for result scale up [25], 3 representative days [9], monthly time bands [33],
3 non-consecutive weeks for 3 seasons and multiplied by a weighing factor [26] and transition and
winter days [8]. Choice of technology capacity becomes challenging with large time bands, and they
may be errors in the techno-economic assessment [16]. A reduced time slice and band can guarantee
a more reliable analysis of the system, as real peaks will be accounted for. The challenge in time slice
and band selection is the trade-off between model complexity and accuracy. In the novel framework
developed, a temporal precision of 5 min for all the days in the year is used to accurately determine
the economic and environmental outcomes. The multi-period MILP model is selected to guarantee
a global optimum and prevent the need to iterate when non-linear models are used. In addition to the
heat balance, TES is actively regulated to account for gas and electricity price signals.
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1.3. Contributions of This Work

A novel systematic framework based on a multi-period MILP model is proposed for the
integration and assessment of TES in an existing dwelling. To improve the model accuracy finer
temporal precisions are used considering 365 days in the year. The novel model is also able to
determine the optimal LZC technology size. The assessment of the benefits of TES considers how long
it will take to payback the additional investment compared to the system payback, and if the additional
investment in TES has a positive return. Such an analysis of the benefits of TES integration has not been
done before. This could provide evidence to support TES incentivisation. The analysis also considers
different house types representative of the UK building sector, that is, detached, semi-detached, terrace
and flat.

2. Methodology

A techno-economic assessment of the system is required to provide a case to support TES
incentivisation. First, the energy system is designed systematically and the results forms the basis for
the techno-economic study. A multi-period mixed integer linear program is proposed to design the
energy system. Additional binary variables are included to address electricity import/export and TES
charging/discharging. The model summary is provided in Figure 1. The scope considers integrating
a micro-CHP, an auxiliary boiler and TES into an existing building.
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2.1. Design Statement

A more specific definition of the design problem is:

• Given:

# Set of LZC technologies (different sizes of micro-CHP).
# The energy demands of a dwelling: space heating, hot water and electricity provided in 5

min temporal precision for all the days in a year. The electricity demand is for combined
appliances, electronics and lighting.

# Energy prices (electricity and fuel), electricity tariff structure, technology costs.

• Determine:

# Optimal energy system design
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# Energy flows, economics and CO2 emissions
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# Energy (both heat and electricity) balances
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# Technology capacity constraints

• In order to:

# Minimise the EAC of meeting dwelling energy demand to a residential user

A detailed building model was developed in Environmental Systems Performance - Research
(ESP-r) to determine the space heating and hot water demands [34]. The demands are evaluated based
on building geometry, thermal characteristics and weather forecasts. The European Electrical Standard
profiles, by Annex 42 of the IEA’s ECBCS [35], were used for the electricity load. The micro-CHP
applied is the gas engine due to maturity, fuel adaptability, fast responses to load changes and presence
in the market [9]. The alternative to these is a gas boiler for meeting the heating demand, and electricity
imported from the grid.

2.2. Mathematical Formulation

The optimal design is obtained by minimising the systems Equivalent Annual Cost (EAC), defined
as the sum of the annualised capital, fuel and maintenance cost less the net electricity cost (Equation (1)).
Breakdown of each component of the objective is provided in Equations (2)–(5), and the annualisation
factor in Equation (6).

The annualized capital cost in Equation (2) takes into account the installed capital (IC) of the
micro-CHP and TES. The TES size (SizeTES) is a degree of freedom in the model. Several sizes of the
micro-CHP are included in the analysis, that is, 1, 2 and 4 kWe, and the binary variable ZCHP selects
from the available sizes. The fuel costs (Equation (3)) is a sum of the fuel consumed in the micro-CHP
and the boiler. Assumptions of the CHP performance (PerfCHP) and boiler performance (PerfBOI) are
in Table A1. t is the time resolution used (5 min) and r is the number of time periods used to represent
the annual energy demand and technology characteristics. The net electricity cost (Equation (5)) is the
cost of electricity import less the revenue from electricity exported from the micro-CHP. Assumptions
of electricity prices are in the Appendix A.

Equality and inequality constraints to describe the feasible region are also defined. Energy
balances for heat and electricity is provided in Equations (7) and (8). In Equation (7), the heat
produced from the micro-CHP, the boiler, and heat diverted out of storage must satisfy the thermal
energy demand. No dumping of heat is allowed. Also in Equation (8), electricity produced from the
micro-CHP and any electricity imported less electricity exported must satisfy the electricity demand.
The technology operation is constrained in Equations (9) and (10). When YCHP is 1, the unit operates
between the minimum and maximum allowed. In Equation (11) if a unit is not selected (determined
by the binary variable ZCHP), it does not operate.

Min : ACC + FC + MC + WGRID,NET (1)

ACC = AF×
((

SizeCHP × ZCHP × ICCHP
)
+
(

SizeTES × ICTES
))

(2)

FC =

∑
r


((

QCHP
r + WCHP

r

)
× tsr

)
PerfCHP

+ ∑
r


((

QBOI
r

)
× tsr

)
PerfBOI

×NGP (3)

MC =

(
∑

r

(
WCHP

r × tsr

)
×MCCHP

)
+

(
∑

r

(
QTES,OUT × tsr

)
×MCTES

)
(4)

WGRID,NET = ∑
r

((
WIMP

r × tsr ×GIMPr

)
−
(

WEXP
r × tsr ×GEXPr

))
(5)

AF =
IR× (1 + IR)n

(1 + IR)n−1 (6)
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QCHP
r + QBOI

r −Qdemandr + QTES,OUT
r −QTES,IN

r = 0, ∀ r ∈ R (7)

WCHP
r + WIMP

r −Wdemandr −WEXP
r = 0, ∀ r ∈ R (8)

WCHP
r − Lo× YCHP

r ≥ 0; ∀ r ∈ R (9)

WCHP
r −Uo× YCHP

r ≤ 0; ∀ r ∈ R (10)

YCHP
r − ZCHP ≤ 0; ∀ r ∈ R (11)

In order to define whether electricity is imported or exported, a binary variable, YEI, and a series
of constraints are formulated in Equations (12) and (13). Electricity export and import cannot
occur together in any time slice. UEI is a number some orders of magnitude larger than electricity
import/export. The same formulation is done for charging/ discharging the store in Equations (14) and
(15). The heat diverted out of the store, QTES,OUT and heat diverted into the store QTES,IN are degrees
of freedom in the model. YTES represents the binary variable for operating the store. Equation (14) and
(15) are formulated to ensure charging and discharging the store does not occur simultaneously in any
time period r.

WIMP
r −UEI × YEI

r ≤ 0, ∀ r ∈ R (12)

WEXP
r −UEI ×

(
1− YEI

r

)
≤ 0, ∀ r ∈ R (13)

QTES,OUT
r −UTES × YTES

r ≤ 0, ∀ r ∈ R (14)

QTES,IN
r −UTES ×

(
1− YTES

r

)
≤ 0, ∀ r ∈ R (15)

In each time slice, the energy content of the store is subject to the below constraint in Equation
(16). Where θ is the daily storage loss, ISH is the Initial Store Heat.

0 ≤
r=1
∑

r=r

(((
QTES,IN

r × ηcharge

)
−
(

QTES,OUT
r

ηdischarge

)
−
(

SizeTES × θ
))
× tsr

)
+
(

SizeTES × ISH
)
≤ SizeTES (16)

Equation (17) states that the heat transferred into the store is equal to the heat recovered from it
during 24 h. Therefore, at the end of each day:

(
SizeTES × ISH

)
− 0.1 ≤

r=1
∑

r=r



(

QTES,IN
r × ηcharge

)
−
(

QTES,OUT
r

>ηdischarge

)
−
(

SizeTES × >θ
)

× tsr

+
(

SizeTES × ISH
) ≤ (SizeTES × ISH

)
+ 0.1 (17)

After obtaining the optimal design based on Equations (1)–(17), a techno-economic analysis of
the design follows. The criteria for assessment are the Equivalent Annual Income (EAI), the designed
system payback and Net Present Value (NPV), payback and NPV associated with the additional
investment in TES, the total delivered energy (TDE) and the net CO2 emissions (NTCO2).

The EAI is the difference between the cost of energy for a Business as Usual (BAU) system and
the EAC in Equation (1). Traditionally, a dwelling space heating and hot water demand is satisfied by
a boiler and electricity imported from the grid. The energy cost of a BAU system is calculated using
Equation (18). The difference in the energy cost for a BAU system and the EAC for the optimized
design with TES, gives the EAI associated with integrating TES. A positive EAI implies the homeowner
has some savings from integrating the new system. The payback and the NPV for the additional
investment in the TES is calculated using the difference in investment, and savings for design without
TES and design with TES. The TDE is the fuel value of energy flows calculated in Equation (19), and the
net CO2 emissions is estimated using Equation (20) taking into account CO2 from fuel, electricity
import and CO2 displaced when electricity is exported. The model was implemented using the GAMS
24.7.3 software (24.7.3, GAMS Development Corporation, Fairfax, VA, USA) and solved with the
CPLEX solver on a 64 bit 3.40 GHz Intel® Core™ i7-6700 CPU with 32 GB RAM machine.
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CBAU =

(
∑

r

(
Qdemandr × tsr

PerfBOI

)
×NGP

)
+ ∑

r
(Wdemandr × tsr ×GIMPr) (18)

TDE =

 ∑
r

(
((QCHP

r+WCHP
r)×tsr)

PerfCHP

)
+

(
∑
r

(
((QBOI

r)×tsr)
PerfBOI

))
+

(
∑
r

(
WIMP

r × tsr

))
−
(

∑
r

(
WEXP

r × tsr

))
GEE

(19)

NTCO2 =

 ∑
r

(
((QCHP

r+WCHP
r)×tsr)

PerfCHP

)
+

(
∑
r

(
((QBOI

r)×tsr)
PerfBOI

))
× FEF +


(

∑
r

(
WIMP

r × tsr

))
−
(

∑
r

(
WEXP

r × tsr

))
×GEE (20)

3. Case Study

The case study is on integrating micro-CHP and TES into an existing dwelling with an objective
to analyse the benefits from its integration, and determine if the additional investment is economically
viable, and how it can be incentivised. Four building types representative of UK housing stock
are investigated.

3.1. Design Problem

Given the energy demands for different dwelling types, the space heating demand for a detached
house, semi-detached house, terrace and flat are presented in Figure 2, associated hot water demand in
Figure 3, summary provided in Table 1. Simulation models of four key UK house types is presented in
Allison et al. [34]. The simulation models enable the dynamic thermal demand (heating and hot water)
of each house to be quantified over a range of different operating conditions. Occupancy, insulation
levels, and construction thermal characteristics are defined in the earlier work done in Allison et al. [34].
A micro-CHP, boiler and TES are available to satisfy the energy demand. Different design scenarios
were developed and analysed to assess TES integration. They are, design with and without TES,
and design with/without incentives. Since TES is not a stand-alone technology, fiscal incentives such
as the FIT to support the deployment of micro-CHP is adapted; where the value for production and
export are 13.45 and 4.91 p/kWh respectively [36]. Another instrument explored is the exemption
from the CO2 levy (current central value is 0.063 £/kg) [37], especially when the CO2 of the system
designed is less than the BAU.

Table 1. Energy demand and house characteristics.

Detached Semi-Detached Terrace Flat

Peak demand (kW)
Space heating 7.65 6.89 4.42 5.11

Hot water 27.2 34.9 34.6 34.7

Total demand (kWh/year) Space heating 9904 5400 2480 1940
Hot water 1712 1590 1351 1304

Floor area (m2) - 121–152 74–93 66–83 45–57
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3.2. Results and Discussion

The contribution of each technology to heat produced under different scenarios are presented
in Figures 4–7. In the absence of incentives, and for design without TES, the micro-CHP contributes
more to the heat supply compared to the auxiliary boiler. The contribution depends on the house type,
increasing from detached to flats. A micro-CHP is better suited to a house with high demands, hence
the EAI is highest for a detached house as shown in Table 2. The optimiser maximises the use of the
micro-CHP for the semi-detached, terrace and flat, in order to improve their economics. For design
with TES, the boiler contribution reduces to 0% for a flat. The majority of the heat in the store is
supplied from the micro-CHP. The TES size for a semi-detached, terrace and flat is higher than for
a detached house, because since the design for the other houses are uneconomic, the optimiser will
maximise the use of storage to improve the economic viability. This will ensure the micro-CHP does
not operate all the time resulting in a decrease in operational costs. Hence the heat diverted to storage
increases from detached to flat (Figure 6). The heat diverted to storage is more for a non-incentivised
design compared to the design with incentives.

Other benefits of TES integration are reduction in net CO2 emissions, TDE, and in this case more
income for the home owner (Tables 2 and 3). The benefits are dependent on house type, increasing
based on the total space heating and hot water demand.
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Figure 4. Non-incentivised design without thermal energy storage (TES).
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Figure 7. Incentivised design (FIT) with TES.

A major barrier to implementing micro generation is cost, when the FIT is introduced in the
optimisation, the income for the home owner increases (Table 3). A further increase is possible when
TES is integrated. However, for this design the net CO2 emissions and TDE is slightly higher (Table 3)
due to an increase in the micro-CHP fuel consumption. For the design without TES, over 90% of the
heat is supplied from the micro-CHP. With TES, the boiler’s contribution is negligible for a detached
house, and nil for the remaining house types (Figure 7). Grid electricity import increases from detached
to flat for the cases, that is, without and with incentives. The contribution from the grid is more when
thermal storage is not integrated. Contribution from the grid is less with TES and incentives, however,
there is no change for terraces and flats.

Table 2. Non-incentivised design results.

Detached Semi-Detached Terrace Flat

EAI (£/year) Design with TES 100.9 −19.2 −133.84 −132.48
Design without TES 41.22 −52.5 −138.5 −156

System
payback (year)

Design with TES 14 20 36 36
Design without TES 16 24 43 51

System NPV (£) Design with TES −1348 −2680 −3860 −3830
Design without TES −1716 −2690 −3580 −3760

NTCO2
(kg/year)

Design with TES 6233 5416 4967 4876
Design without TES 6379 5514 4984 4889

TDE
(kWh/year)

Design with TES 29,286 25,609 23,640 23,242
Design without TES 30,078 26,161 23,788 23,367

TES size - 26 34 34 32
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Table 3. Incentivised (FIT) design results.

Detached Semi-Detached Terrace Flat

EAI (£/year) Design with TES 751 414 125 91
Design without TES 610 296 51 4

System
Payback (year)

Design with TES 4.9 7.4 12.8 14.0
Design without TES 5.5 8.7 15.8 18.7

System NPV (£) Design with TES 5525 2019 −928 −1266
Design without TES 4186 933 −1616 −2103

NTCO2
(kg/year)

Design with TES 6009 5407 4954 4864
Design without TES 5966 5308 4881 4802

TDE
(kWh/year)

Design with TES 28,169 25,551 23,579 23,191
Design without TES 28,025 25,138 23,275 22,933

TES size - 13 13 9 7

Without incentives, the payback of the accompanying system is greater than 10 and has a negative
return on investment. A higher payback and lower NPV is observed for design without TES.
Additionally, the TES size is greater compared to the incentivised design in Table 3. The TES is
also discharged more efficiently (Figures 8 and 9). A higher TES size is selected in order to maximise
the use of the micro-CHP for off-setting the increased costs when electricity import tariff is high.
Therefore, more heat is diverted to storage (Figure 8) compared to Figure 9. For the incentivised design,
it is economic to integrate the micro-CHP, hence the need to reduce the cost becomes less and the TES
size reduces (Table 3 and Figure 9). The x-axis in Figures 8 and 9 are the temporal precision of the first
10 days in the year.
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Figure 8. TES discharge profile for non-incentivised design: (a) detached house; (b) flat.
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Figure 9. TES discharge profile for incentivised design: (a) detached house; (b) flat.
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In the non-incentivised scenario with TES, the system payback is 14 years for a detached house;
additional benefits from TES integration (i.e., increase in the EAI), can pay for the additional investment
in TES within the first 6.24 years, with a positive NPV of £368 (Figure 10a). The TES payback and
NPV is different for each house type. Whilst in the incentivised scenario (based on the FIT) TES
investment can be paid for during the first 1.78 years for a system payback of 4.9 years. The NPV
is £1339 (Figure 10b). Another way to incentivise is savings based on reduced CO2 emissions when
TES is integrated (Table 2). In 2016, the CO2 central non-traded levy is 0.063 £/kg [36]. Using the
CO2 reduced, the savings for a detached, semi-detached, terrace and flat are £70, £57, £37 and £32.
This has potential to reduce the additional investment in TES. When incentivised using the CO2 levy,
the TES investment is paid back in the first 5.65 years, with NPV of £463.60 (Figure 10c). There is a clear
relationship with the type of house; the payback increases and NPV reduces (negative in some houses).
Hence, even when the system is not economically viable, TES integration is economically viable.

The benefit of micro-CHP and TES in a single dwelling has been established. Even though the
NPV in system investment is negative (Table 2), the NPV for TES investment is positive even in the
absence of incentives (Figure 10a).
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design; (b) incentivised design (FIT); and (c) incentivised design (CO2 levy exemption).

3.3. Limitations of This Work

The findings of this work need to be viewed alongside the assumptions on demand, energy prices,
and CO2 emission factors. Whilst the assumptions have been taken from reputable sources, they are
subject to variations. Furthermore, the support mechanisms mentioned in the report are currently in
operation and are also dynamic.

4. Conclusions

A multi-period MILP model is presented and used to provide a case to support incentivising
TES. The accuracy of the model is improved through the use of less temporal precision to
represent demand and technology characteristics. The introduction of additional binary variables for
charging/discharging the store, and import/export of electricity also reduces the model complexity.

The case to support incentivising TES was established based on a techno-economic assessment
of the design obtained with and without TES, and with and without incentives. Assessment metrics
used were the EAI for a homeowner, net CO2 emissions, the TDE, and the system payback and NPV.
A new assessment based on the payback and NPV associated with additional investment in TES was
also introduced. Results show the benefit from micro generation and TES integration depend on the
house type; in this case highest for a detached house. For a detached house, TES integration reduces
the TDE by 792 kWh/r, CO2 by 146 kg/year and the homeowner makes 60 £/year. These additional
incomes means TES investment can be paid for in the first 6.24 years during the 14 years of system
payback. This provides evidence to support incentivisation. When value is added to CO2 reduction
based on CO2 levy, the payback for TES reduces to 5.65 years and NPV also increases. With the
FIT scheme, for a system payback of 4.9 years, TES investment can be paid back during the first
1.759 years. In the non-incentivised case, even though investment in micro-CHP is not economically
viable, the additional investment in TES is economically viable. Therefore, TES incentivisation needs
to receive more attention. The future uptake of LZC technologies will be influenced by financial
incentives to encourage end-user investments.

There is need to establish which of the accompanying technologies is more beneficial. This forms
the basis of future work. Another area worth investigating is establishing the flexibility potential of
thermal storage in domestic houses.
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Nomenclature

Sets
r ∈ R Set of all time periods
Independent variables
QCHP Heat produced from micro-CHP (kW)
QBOI Heat produced from boiler (kW)
QTES,IN Heat diverted into storage, (kW)
QTES,OUT Heat delivered from storage (kW)
SizeTES Total storage capacity (kWh)
WIMP Electricity imported to satisfy demand (kW)
WEXP Electricity exported (kW)
Dependent variables
ACC Annualised capital cost (£/year)
EAC Equivalent Annual Cost (£/year)
FC Fuel cost (£/year)
MC Maintenance cost (£/year)
WGRID,NET Net electricity cost (£/year)
Binary variables
YCHP Binary variable for technology operation
YEI Binary variable for export/import of electricity
YTES Binary variable for charging/discharging the store
ZCHP Binary variable for technology existence
Parameters
FEF Fuel emission factor (kg/kWh)
GIMP Grid electricity import price (£/kWh)
GEXP Grid electricity export price (£/kWh)
GEE Grid energy efficiency (%)
GEF Grid emission factor (kg/kWh)
ICCHP Micro-CHP installed capital (£/kW)
ICTES TES installed capital (£/kW)
ISH Initial store heat (%)
IR Interest rate
θ Storage losses (%)
Lo Lower limit
MCCHP Micro-CHP maintenance cost (£/kWh)
MCTES TES maintenance cost (£/kWh)
n Technology lifetime (years)
PerfBOI Boiler performance
PerfCHP Micro-CHP performance
Qdemand Heat demand (both hot water and space heating) (kW)
SizeCHP Micro-CHP capacity (kW)
ts Time precision
UEI Upper limit for electricity export and import
Uo Upper limit for micro-CHP power
Wdemand Electricity demand (kW)
ηcharge TES charge efficiency (%)
ηdischarge TES discharge efficiency (%)
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Appendix A

Table A1. Technical attributes of technologies in superset [7,29].

Technical Attributes Natural Gas
Boiler

Micro-CHP
(1 kW)

Micro-CHP
(2 kW)

Micro-CHP
(4 kW)

Hot Water
Tank

Turnkey cost (£/kW) 163 3110 2400 1900 20
Maintenance cost (£/kWh) 0.001 0.01 0.01 0.01 0.001

Performance 0.895 0.9 0.9 0.9 2.75
Charge efficiency (%) - - - - 90

Discharge efficiency (%) - - - - 90
Initial store heat (%) - - - - 100

The micro-CHP heat to power ratio is 0.385. The design year is 2016. Off-peak and peak electricity import
tariffs are 5.5 and 15.29 p/kWh, and fuel price is 3.48 p/kWh [36]. The average CO2 factor associated with natural
gas and electricity was assumed to be 0.185 and 0.519 kg/kWh [36]. Technology lifetime is 15 years and discount
rate 5%. CEPCI cost factors were applied to adjust the costs from the year provided to 2016.
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