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Abstract: In response to climate change, which is caused by the increasing pollution of the
environment and leads to the deterioration of human health, future electricity generations should
reduce reliance on fossil fuels by growing the use of clean and renewable energy generation sources
and by using clean vehicle technologies. Battery storage systems have been recognized as one
of the most promising approaches for supporting the renewable energy generation sources and
cleanly powering vehicles instead of burning gasoline and diesel fuel. However, the cost of batteries
is still a prominent barrier for their use in stationary and traction applications. As a rule, the
cost of batteries can be decreased by lowering material costs, enhancing process efficiencies, and
increasing production volume. Another more effective solution is called Vehicle-to-grid (V2G)
application. In V2G application, the battery system can be used to support the grid services, whereas
the battery is still in the vehicle. To make a battery system economically viable for V2G/G2V
applications, an effective power-electronics converter should be selected as well. This converter
should be supported by an advanced control strategy. Therefore, this article provides a detailed
technical assessment and review of V2G/G2V concepts, in conjunction with various power-electronics
converter topologies. In this paper, modeling and detailed control strategies are fully designed and
investigated in terms of dynamic response and harmonics. Furthermore, an extensive design and
analysis of charging systems for low-duty/high-duty vehicles are also presented.

Keywords: electric vehicle; Grid-to-Vehicle (G2V); Vehicle-to-grid (V2G); control strategy; charging
methodologies; power-electronic converters

1. Introduction

Nowadays, there exist a lot of concerns related to the pollution of the air, the reliance on fossil
fuels, energy dependence, climate change, and the increase of the energy costs. The major efforts to
solve these problems are centered in the electricity generation sector, with the deployment of renewable
energies, and with the electrification of transportation [1–3].

The variability of renewable resources is a restraint to their installation. This variability could
be mitigated with the use of energy storage systems. Moreover, as recent studies have shown [4],
EVs are definitively advantageous over other traditional energy-storage technologies thanks to its easy
implementation and being environmentally friendly.
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The main characteristic of an EV is that it uses an electric motor rather than an internal-combustion
engine for propulsion. Their main components are included in Figure 1. The PEVs carry an on-board
storage system and can be recharged from an external source of electricity. PEVs include BEVs, PHEVs,
and conversions of conventional vehicles [5]. They are usually divided in 3 groups:

• Light duty: which includes passengers cars and small transports;
• Medium duty, such us vans;
• Heavy duty, like tracks and buses.
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The main advantages of using EVs are the reduction of CO2 emissions and dependence on
fossil-fuels, the higher installation of renewable resources, a better price of energy, the provision of
ancillary services, the flattening of the demand curve and theV2G application [5,6].

On the other hand, the use of these systems also carries disadvantages, such us the higher price of
the vehicle, the need of charging infrastructure, the overload of the transmission and transportation
networks, and safety risks [5,6].

The V2G application consists on having direct power flow between the vehicle and the grid.
If effectively controlled and introduced in a smart grid, the V2G application can increase the supply
grid efficiency, reliability, stability, and generation dispatch [4]. In addition, it can offer ancillary
services, support to the grid operator, load factor improvement, current harmonics reduction, and
faster repaid of the storage systems [4,7,8].

Despite its benefits, V2G application is still in the development process. To spread their use, the
manufacturers must ensure that the vehicle is charged when the user needs it [9]. On the other hand,
it is essential that the electricity grid is not perturbed by the V2G application if the power supplied by
the EV does not satisfy the quality requirements imposed by the grid, it cannot be delivered. For this
restriction, it is necessary to use a power factor correction (PFC) system, to reduce the current harmonics
(respecting the EMC regulation), and to eliminate DC currents so that the grid’s transformers are not
saturated [10]. A reduction of efficiency and voltage deviations may also be present, produced by
the overload of transformers, cables, and feeders [7]. The battery’s degradation should be considered
as well, since the increase of charging and discharging cycles can reduce its lifespan or life cycle [4].
Furthermore, the bigger is the amount of PEVs connected to the grid, the more severe are the previous
problems in the power distribution system [4].

This paper reviews and analyzes the main components of V2G and G2V topologies by
emphasizing the benefits offered by such a topology. The main objective of this paper is to demonstrate
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how both V2G and G2V topologies can be implemented by simulating Four different topologies; two
of them correspond to a low-duty vehicles of 3.3 kW (with/without DC/DC converters), while the
other two are for Fast Charging and high-duty vehicles of 22 kW (with/without DC/DC converters),
using Matlab/Simulink.

2. Battery Charging Technologies

2.1. Conductive vs. Inductive Chargers

The connection between the grid and the vehicle can be either conductive or inductive. Conductive
chargers connect the charge inlet to the connector of the EV using a cable, manually plugged in by the
driver [11], which can be fed with the three power levels. There exist safety risks in wet and damp
conditions, and an easy automation cannot be achieved [12].

On the contrary, the power transfer in an inductive charger is magnetically. This kind of charger
comprises two different parts: the grid side in which AC current is taken, rectified and converted to
a high frequency [13]; and the secondary side, situated in the vehicle, which consists on an AC/DC
converter connected to the battery. At the end of each side, a winding is located forming a transformer
through which the power is transmitted, as shown in Figure 2. As both sides of the charger are
electrically separated, they can be moved with respect to the other, entailing charging while moving.
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The major advantages and disadvantages of these systems are compared in the following Table 1.
Figure 3 shows the scores of these chargers in different aspects. In the last years, the main trend is to
focus on lower power ratings for inductive charging (because of weight, cost, safety, etc.; and higher
power for conductive charging. However, this would mean using two different chargers for a single
vehicle, which currently is economically unviable [14].

Table 1. Comparison between conductive and inductive chargers.

Type Advantages Disadvantages Ref.

Conductive

All power levels (slow and fast charging)
Simplicity
Higher Efficiency
Better price
Standardization

Manual plug-in
Safety risks in wet conditions
Difficult automation

[11–13,15]
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Table 1. Cont.

Type Advantages Disadvantages Ref.

Inductive

Convenience for user
Weather proof
Increase in safety
Galvanic isolation
More frequent charging is enabled
Charging while driving
Easier automation

Lower efficiency
Slow charging (Level 1 & 2)
Low power density
More manufacturing complexity
More size and cost
Specific equipment (no
exchangeability)

[11–13,16]
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2.2. On-Board vs. Off-Board Chargers

The charger’s structure can be included or not in the vehicle, and these chargers receive the
name of On-Board and Off-Board chargers, respectively (see Figure 4). The main advantages and
disadvantages of the previous types of chargers can be seen in Table 2. Figure 5 shows the scores of
these chargers in different aspects, being 0 the worst punctuation and 10 the best.
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On-Board chargers are limited to level 1 and 2 (slow charging) because of cost, weight, and space
constraints. Their main advantage is their capability to charge the batteries wherever a suitable power
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source, such as a household outlet [17], is available. This can increase the acceptance of Plug-in Electric
Vehicles [9,18]. On-Board chargers used at home usually charge during the night, which has minimal
impact on the supply grid [4], and they can facilitate the load level control of power utilities as the
electricity demand at night is relatively low [1].

Another considered option for On-Board chargers consists of integrating the battery charger into
the electric drive system of the PEV when traction and charging are not simultaneous, as in [4]. In this
case, the motor windings serve as filter inductors and the motor inverter is used as a bidirectional
AC/DC converter. Consequently, weight, volume and cost are minimized while faster charging (level 2
and 3) can be achieved [17,18]. In addition, these chargers are bi-directional by design [17,19]. However,
the control complexity and extra hardware needed are challenges to overcome [11,18].

Off-Board chargers do not have space or weight constraints, and that is why they are capable to
operate for fast charging. They take AC power from the grid and transform it to DC power that is
then delivered to the vehicle [9,19]. Since the EV must include some power electronics for the traction,
an Off-Board charger entails redundant power electronics and thus an extra cost. In addition, fast
charging can overload the distribution network because of its high-power demand, typically larger
than double of a household load [1,20]. Further disadvantages involve the risk of vandalism and extra
clutter in an urban environment [4,11].

Table 2. Comparison between On-Board, Off-Board and Integrated chargers.

Type Advantages Disadvantages Ref.

On-board

Lower price (500–3000€)
Small size and compact (less than 5 kg)
Charging availability
Minimal impact to the grid

Slow charging (6–8 h)
Power limitation
Weight and size constraints

[1,4,11,17–19]

Off-board
Faster charging (less than 1 h)
No size or weigh constraints
Enables long distance travelling [19]

Higher price (30,000–160,000€)
Redundant power electronics
More impact to grid
Risk of vandalism to charging stations
Cluttering in an urban environment

[1,4,11,17–19]

Integrated

Fast charging (less than 1 h)
Charging availability
Minimize weigh, volume and cost
Bi-directional by design

More copper losses of the motor
windings
Not optimal inductance for the
inverter
Control complexity
Extra hardware

[11,17–19,21]
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2.3. Unidirectional vs. Bidirectional Chargers

A battery charger is a device comprising one or more power electronics circuits that are used
to convert electrical energy. These power converters are different depending on the direction of the
power flow between the grid and the battery, the charging and discharging requirements of the battery
and the grid parameters [18]. The power flow in a general charger’s structure can be unidirectional
(G2V mode) or bidirectional (G2V and V2G modes), as depicted in Figure 6.
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The unidirectional charger is the first one considered because of its simplicity, less hardware and
interconnection requirements and less battery degradation [11]. However, as the power flows only
from the grid to the vehicle, the services that the V2G application could provide are limited. The typical
configuration comprises a diode bridge rectifier, a filter, and a DC/DC converter [22].

On the other hand, a bidirectional charger, even if more complicated, can provide further benefits
to the electricity grid and higher quality ancillary services. The typical configuration comprises two
stages: a bidirectional AC/DC converter in the grid side to control the current wave form and PF and
a bidirectional DC/DC converter in the battery side to control the battery’s voltage, current or power,
depending on its operation requirements [23,24].

The main differences between the two chargers are included in the following Table 3.

Table 3. Comparison between unidirectional and bidirectional chargers [11,25].

Unidirectional Bidirectional

Simple control Complex control

Less cost (less hardware) More cost and investment

No extra investment needed More information exchange required; Need of distribution system upgrade

Safer Need of safety measures, anti-islanding protection

Less battery degradation Degradation due to frequent cycling

Available for Level 1, 2 and 3 Expected for Level 2, and 3

Lower efficiency especially at level 1 Higher efficiency especially at Level 2, and 3

Voltage (reactive power) and frequency
(active power in one way) control

Better services; voltage and frequency regulation (down-up), spinning
reserves, energy balance, load following, harmonics filtering

2.4. Assessment of V2G and G2V Converter Topologies

Depending on the battery pack’s voltage, the EV’s charger can comprise different topologies:

1. High-Voltage Batteries

When a HV battery pack is used, only an AC/DC converter might be utilized to connect it
to the grid. The following Figure 7 and Table 4 present the main topologies that could be used.
Only single-phase bidirectional structures have been considered for AC, but it could be adapted to
three-phase structures for high power applications.
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2. Low-Voltage Batteries

On the contrary, when LV batteries are used, there must be an intermediate DC/DC converter
to boost the voltage to the needed value in de DC-Bus [6]. LV Batteries can recuperate more energy
from the DC-Bus during the regenerative braking mode [26]. The mainly used topologies are stored in
Table 5.

There exist some options, such us interleaving, soft switching, multilevel and resonant tanks that
could be implemented to increase the efficiency and improve the functionality of the converters [11].
Nowadays, European Committees like CENELEC recommend the installation of a galvanic isolation
between the grid and the local sources that use power converters, such as renewable generators
or electric vehicles [27]. Normally this galvanic isolation is provided by a High Frequency (HF)
transformer [28] located in the DC/DC converter.

In the presented topologies, MOSFETs are employed for low power, IGBTs for medium power
and GTOs for high power applications [23].Energies 2018, 11, x 7 of 23 
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V2G and G2V Converter Topologies
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Table 4. Comparison of AC/DC Converters for HV Battery connection.

Topology Advantages Disadvantages Ref.

HBC

• Fewer components
• Lower cost
• Control and design simplicity
• Assures zero IDC to grid
• Common mode Voltage constant

with one L in the output

• High components stress (may require
more transistors in series or parallel)

• Many harmonic currents (need of big
and expensive filter)

• Two big capacitors
• Not suitable for high power levels
• Need of twice the Vdc value

(compared to the FB)

[11,29]

FBC

• Lower component stress
• (cheaper ones)
• One capacitor
• High conversion ratio and

power level

• More components and PWM inputs
• Control complexity and cost
• Need a filter for harmonics
• Cannot assure zero IDC to grid

[10,11,29]
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Table 4. Cont.

Topology Advantages Disadvantages Ref.

BBC

• Versatility (buck and boost,
current-source or voltage-source
rectifier and inverter)

• Reduced energy storage elements
for fast response

• High number of switches compared to
the conventional HB and FB [23]

MLC

• Lower component stress
• Lower losses and high efficiency
• Reduced size
• Small and cheap filter
• Clean sinusoidal current with

nearly unity PF
• Reduced EMI and acoustic noise
• DC-bus ripple-free

voltage regulation

• Additional elements and
control circuitry

• More cost and complexity
[11,15,23,29]

MC

• Sinusoidal waveforms
• Minimal harmonics
• Inherent bidirectional energy flow
• Input PF fully controlled
• Minimal energy storage

requirements (no big and
expensive capacitors)

• Input/output voltage transfer ratio
limited to 87%

• More semiconductors
• Very sensitive to disturbances of the

input voltage system

[11]

ADC-GI

• Isolated in a single stage
• Resonant, ZVS and efficient
• Compared to a conventional

AC/DC + DC/DC resonant
topology :

• Less price
• Less components and

more compact

Compared to a conventional AC/DC
converter:

• More complicated
• More components
• Higher price

[30]

FBC-DC

• DC-link ripple reduction
(smaller capacitor)

• Fast and wide-bandwidth control
of dc output

• 50% more switches than a
conventional FB [23]

Table 5. Comparison of DC-DC Converters for LV-Battery connection.

Topology Advantages Disadvantages Ref.

TQC

• Simplicity
• Few components
• Simple control circuitry
• Low current ripple

• Two high current inductors (bulky
and expensive)

• Buck in one direction and boost in
the other

• Impractical for high voltage ratio
• No galvanic isolation

[11,28,29]

PPC

• Galvanic isolation
• Voltage Step-down or Step-up
• Large Achievable Duty

Cycle Range
• Multiple Outputs Possible
• Low Ripple Current

• Voltage Stress of the Primary Switches
is 2·Vin

• Smallest power capability
• Few switches (less losses)

[31]
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Table 5. Cont.

Topology Advantages Disadvantages Ref.

IDA

• High power density
• Fast and flexible control
• Galvanic isolation
• Use of transformer ratio
• Fast dynamic behavior
• No additional elements needed for

soft switching

• A lot of components
• More switching losses
• Cost
• High stress for voltage range bigger

than 2:1
• Not for high voltage applications
• High current ripple in dc bus;

filtering necessary
• No inherent dc current

blocking capability

[11,28,29,32]

IDHB

• Half number of devices than DFB
• High power density, efficient

power conversion and compact
packaging [33]

• Soft-switched (ZVS) with no
elements addition

• Less accessory power needs
• Simple control
• Low ripple current at the LV side

desirable for the batteries

• Switches with double current stress
than FB

• LV side is subject to twice the dc input
voltage than FB

• Large ripple current in the
splitting capacitors

• Unbalanced current stress between
two switches in the LV side

[28,32,34]

SPRT

• Galvanic isolation
• Limits common mode currents
• Correct operation of

protection systems
• Voltage matching
• Boost and Buck
• Flexibility (can operate as a series

or a parallel RC)

• Large size and weigh
• High cost (20% more than

a non-isolated)
• Cannot Ensure zero DC current
• More complicated

[10,33]

MIC
• Less high current inductors
• Added functionality

• Complexity
• Additional switches (higher losses)
• No galvanic isolation

[29]

IDA-AC

• Limit the overshoots caused by
transformer leakage inductance
during current commutation

• Inherent protection against
over-current and short-circuit

• Insensitive to
transformer saturation

• Relatively low-ripple current
suitable for batteries

• Difficult start-up
• High losses in high frequency due to

transformer leakage inductance
• Bulky input inductor
• Need of high quality capacitors
• Switches Voltage capability higher

than Vbus
• Susceptibility to loss of gate drive

which could lead to current
interruption and large voltage spikes

[28]

3. Modeling and Control of V2G and G2V Systems

The V2G technology can provide numerous benefits to the electricity grid as long as a good
control is implemented. It is essential to establish a charging and discharging methodology to control
the energy taken or given to the battery. This methodology generates the grid current reference for an
internal and faster grid current control loop that establishes the switching patterns for the converter,
to control the energy given or taken from the grid. The reference current is synchronized to the grid
voltage using a PLL. The block diagram of the control is depicted in Figure 8.
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The three main charging and discharging methodologies are the following [35–37].

1. Constant Voltage Charging (CV)

This technique uses the value of the highest voltage (corresponding to the totally charged battery)
during the whole charging process. The current is unconstrained, so at the beginning, its value is high,
and it decreases as the battery is charging [36].

2. Constant Current Charging (CC)

With this methodology, as explained in [35,37], the current applied is constant and the voltage
increases while the battery charges. If the battery’s impedance is not zero, the battery does not
totally charge.

3. Combined Charging CC-CV

The combined CC-CV charging is the method commonly used for lithium batteries since it enables
a complete charging without any overcharge [26]. The first stage of this method, as described in [36],
consists on CC charging until the voltage achieves its highest value. Once this value is reached,
CV charging is done, maintaining the voltage at its maximum value while the current starts to reduce
until it reaches a certain value for which the battery is considered totally charged.

The control blocks and Current and Voltage curves during the implementation of these methodologies
are represented in Figure 9.
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On the other hand, the grid current loop can be performed using different control techniques.
These techniques are known as Vehicle-to-Grid control strategies and they are responsible for the
power flow management for charging (G2V) or discharging (V2G) operating modes [6]. Three different
strategies are presented below, and their block diagrams are shown in Figure 10:

1. Hysteresis Current Control (HCC)

The hysteresis-band current control is an instantaneous feedback current technique where the
switching patterns are generated using a hysteresis band [15,29]. As it has variable switching frequency,
the losses are higher than with other strategies [26,38].

2. Proportional-Integral Control (PIC)

The Proportional-Integral Control uses a PI Controller, whose transfer function is expressed in
Equation (1), where Kp and Ki are the proportional and integral gains of the loop. This controller acts
continuously, so it is more accurate than the previous method. The switching frequency is constant
and equal to the frequency of the triangular signal used for the Pulse-Width-Modulation (PWM). This
fact improves the efficiency of the charger. On the other hand, the main problem of this controller is
that it cannot do a perfect tracking of the reference.

PI(s) = Kp +
Ki

s
(1)

3. Proportional-Resonant Controller (PRC)

The Proportional-Resonant Controller (PRC) is similar to a conventional PI, but with a theoretical
infinite gain at a given resonant frequency, so that it can make the error at that frequency equal to zero,
enhancing a good reference tracking [15,29,39]. Its transfer function is expressed in Equation (2), where
Kp determines the dynamic response of the system, Ki adjusts the phase shift between the output and
the reference signals andωr is the resonant frequency [6,26].

PR(s) = Kp +
2Kis

s2 +ωr2 (2)
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In this paper, the grid current loop comprises a PI controller, a filter and a sensor, a delay to model
the digitalization, and the FB converter. The open-loop transfer function, in s-domain, can be seen in
Equation (3).

L(s) = Kp(
Tns + 1

Tns
)(

1
Lgrids

)(
Ksi

τsis + 1
)(

1
1.5 Tss + 1

) (3)

The first step in the design of a control strategy consists on simplifying the real systems to simple
linear systems, to which the Classical Control Theory can be applied [40]. Afterwards, the stability of
the loop must be assessed using Bode Plots and Root Locus techniques, with which the controllers’
parameters are calculated.



Energies 2018, 11, 1082 12 of 24

For this current loop, the Bode Plots for different cross-over frequencies and Phase Margins
were depicted, as in Figure 11. Afterwards, the Step Response of the loop, for the same parameters,
were plotted as in Figure 12. It was concluded that the best option was to use 1000 Hz for cross-over
frequency and 45◦ as phase margin. Finally, once these two values are settled, the PI controller
parameters, Ki, Kp, and Tn are calculated with Equations (4)–(6).

PM = 45◦ = arctg(Tnωci)− arctg(τsiωci)− arctg(1.5Tsamωci) (4)

∣∣L(jωci
)∣∣ = 1 =

KpKsi

TnLgridωci
2

√√√√ (Tnωci)
2 + 1

((τsiωci)
2 + 1)((1.5Tsamωci)

2 + 1)
(5)

Ki =
Kp

Tn
(6)
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The Simulink model of this grid current control, for Light-Duty vehicles, is depicted in Figure 13.
For Heavy-Duty Vehicles, each phase of the grid current is controlled with a separate loop.
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3.1. V2G and G2V Systems for Light-Duty (LD) Vehicles

In this part, V2G and G2V systems for Light-Duty (LD) Vehicles have been analyzed. Two
bidirectional single-phase 3.3 kW chargers have been simulated by using Matlab/Simulink (see
Figures 14 and 15). Among the available battery technologies, the current two main battery technologies
used in EVs are nickel metal-hydride (NiMH) and lithium-ion (Li-ion). Due to the potential of obtaining
higher specific energy and energy density, the adoption of Li-ion batteries is expected to grow fast in
EVs, particularly in PHEVs and BEVs. Therefore, this research study focused on Li-ion batteries [41].

The first charger consists of an AC/DC converter connected to High Voltage (HV) batteries, is
depicted in Figure 14. A Full Bridge has been used for its simplicity and good operation. As reported
in [10], this converter is composed by two commutation branches, each comprising two
complementary switches, T1–T2 and T3–T4, with which 4 different commutation states can be achieved.
The combination of these states provides the desired output voltage wave form. Bipolar modulation is
implemented, and the grid inductor is divided in two to minimize the common mode currents [10].
The main parameters of this circuit are stored in Table 6.
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Table 6. Main characteristics of the Light-Duty system connected to HV Batteries.

Converter Battery Grid

Pmax 3.3 kW Vcell 3.6 V Vrms 230 V
Modulation Bipolar Ccell 10 Ah Phase Single

Vbus 400 V Ns 102 cells Fgrid 50 Hz
Lbat 10 mH Np 1 string ∆Imax 10%
Cbus 42.3 mF - - Lgrid 4.93 mH
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The second charger counts with the addition of a DC/DC converter to connect to Low Voltage
(LV) Batteries. The topology chosen for this DC/DC converter is Two-Quadrant, as seen in Figure 15,
and its main parameters are stored in Table 7. In fact, the Two-Quadrant converter consists on having
a unidirectional Boost or Buck converter in which the switches are bidirectional, composed by a
transistor with a diode in antiparallel, as in [42].Energies 2018, 11, x 13 of 23 
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Table 7. Main characteristics of the Light-Duty system connected to LV Batteries.

AC/DC Converter DC/DC Converter Battery Grid

Pmax 3.3 kW Pmax 3.3 kW Vcell 3.6 V Vrms 230 V
Modulation Bipolar Vbat 150 V Ccell 10 Ah Phase Single

Vbus 400 V ∆Vmax 0.5 V Ns 38 cells Fgrid 50 Hz
∆Vmax 2% Cbat 0.557 mF Np 3 ∆Imax 10%

Cbus 3.28 mF ∆Imax 20% - - Lgrid 4.93 mH
- - Lbat 1.136 mH - - - -

3.2. V2G and G2V Systems for Heavy-Duty (HD) Vehicles

Afterwards, V2G and G2V systems for Heavy-Duty (HD) Vehicles have been studied, where two
bidirectional three-phase 22 kW chargers are simulated by using Matlab/Simulink.

As in the previous case, the first topology consists on an AC/DC converter. The chosen topology,
as seen in Figure 16, is a Full-Bridge with three commutation branches, as the grid has three phases [43].
The main parameters are stored in Table 8.
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Table 8. Main characteristics of the Heavy-Duty system connected to HV Batteries.

Converter Battery Grid

Pmax 22 kW Vcell 3.6 V Vrms, phase 230 V
Modulation Unipolar Ccell 10 Ah Phase Three

Vbus 700 V Ns 178 cells Fgrid 50 Hz
∆Vmax 2% Np 4 strings ∆Imax 10%

Cbus 2.494mF - - Lgrid 1.1 mH
Rbus 286.4 kΩ - - - -

For using Low Voltage (LV) Batteries, the second topology’s DC-Bus has been connected to a
Two-Quadrant converter. It is depicted in Figure 17 and its main parameters are stored in Table 9.
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Table 9. Main characteristics of the Light-Duty system connected to LV Batteries.

AC/DC Converter DC/DC Converter Battery Grid

Pmax 22 kW Pmax 22 kW Vcell 3.6 V Vrms, phase 230 V
Modulation Unipolar Vbat 150 V Ccell 10 Ah Phase Three

Vbus 700 V ∆Vmax 0.5 V Ns 38 cells Fgrid 50 Hz
∆Vmax 2% Cbat 0.133 mF Np 17 ∆Imax 10%

Cbus 2.494 mF ∆Imax 5% - - Lgrid 1.1 mH
Rbus 286.4 kΩ Lbat 1.186 mH - - - -

4. Results and Discussion

Once the models of the converters and their controls have been designed and implemented in
Matlab/Simulink, some tests have been performed to check their correct operation. First of all, the grid
current and voltage are depicted in Figure 18, both for Light-Duty and Heavy-Duty Vehicles. It can
be seen than the PFC is working properly; when charging, both waves are in phase, whereas in V2G
mode they have a phase difference of 180◦.

Special attention has been paid to the harmonics in both the AC current and voltage. In particular,
for the first topology implemented, consisting on just an AC/DC converter for Light-Duty systems,
the FFT analysis is presented in Figure 19. It must be noted that the DC current to the grid is quite
high, so introducing a transformer in the charger’s structure may be considered. It is also essential to
remark that the THD for both V2G and G2V modes is the same.
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An option to reduce the current harmonics is the use of unipolar instead of bipolar modulation.
The results obtained with it are shown in Figure 20. It is clear that the THD has been reduced from
2.88% for bipolar to 0.90% for unipolar, using the same output filter. Moreover, the DC current is also
reduced significantly.

On the battery side, when G2V mode is being implemented, the voltage, power and SoC of the
battery pack increases. On the contrary, when V2G mode is operating, they decrease. Figure 21 shows
these parameters for the first topology analyzed, with Constant Current (CC) methodology. It is visible
that there exists a 100 Hz ripple in the waves which is not beneficial for the battery, since it could be
seen as using a pulsing charging methodology which may affect the State of Health and life span of
the battery. The addition of a DC/DC converter, as in the second topology, eliminates this ripple.

To check the flexibility of the control implemented, Figure 22 shows the transition between
charging and discharging modes for the first topology. It can be noted that the system reacts very
fast in the grid side, whereas the battery side is slower. Similarly, Figure 23 shows transitions for the
third topology, consisting on an AC/DC converter for Heavy-Doty Vehicles. In this case, the battery
stabilization is faster, as the 100 Hz ripple has disappeared.



Energies 2018, 11, 1082 17 of 24

Energies 2018, 11, x 15 of 23 

 

 
(b) 

Figure 18. Grid Voltage and Current in G2V and V2G systems. (a) Single Phase for Light-Duty 
Vehicles; (b) Three Phase for Heavy-Duty Vehicles. 

Special attention has been paid to the harmonics in both the AC current and voltage. In 
particular, for the first topology implemented, consisting on just an AC/DC converter for Light-Duty 
systems, the FFT analysis is presented in Figure 19. It must be noted that the DC current to the grid 
is quite high, so introducing a transformer in the charger’s structure may be considered. It is also 
essential to remark that the THD for both V2G and G2V modes is the same. 

 
(a) 

 
(b) 

Figure 19. Harmonic content of the grid current for Bipolar Modulation. (a) Charging mode; (b) 
Discharging mode. 

Figure 19. Harmonic content of the grid current for Bipolar Modulation. (a) Charging mode; (b)
Discharging mode.

Energies 2018, 11, x 16 of 23 

 

An option to reduce the current harmonics is the use of unipolar instead of bipolar modulation. 
The results obtained with it are shown in Figure 20. It is clear that the THD has been reduced from 
2.88% for bipolar to 0.90% for unipolar, using the same output filter. Moreover, the DC current is also 
reduced significantly. 

 
Figure 20. Harmonic content of the grid current in charging mode for Unipolar Modulation. 

On the battery side, when G2V mode is being implemented, the voltage, power and SoC of the 
battery pack increases. On the contrary, when V2G mode is operating, they decrease. Figure 21 shows 
these parameters for the first topology analyzed, with Constant Current (CC) methodology. It is 
visible that there exists a 100 Hz ripple in the waves which is not beneficial for the battery, since it 
could be seen as using a pulsing charging methodology which may affect the State of Health and life 
span of the battery. The addition of a DC/DC converter, as in the second topology, eliminates this 
ripple. 

To check the flexibility of the control implemented, Figure 22 shows the transition between 
charging and discharging modes for the first topology. It can be noted that the system reacts very fast 
in the grid side, whereas the battery side is slower. Similarly, Figure 23 shows transitions for the third 
topology, consisting on an AC/DC converter for Heavy-Doty Vehicles. In this case, the battery 
stabilization is faster, as the 100 Hz ripple has disappeared. 

Figure 20. Harmonic content of the grid current in charging mode for Unipolar Modulation.



Energies 2018, 11, 1082 18 of 24

Energies 2018, 11, x 17 of 23 

 

(a) 

 

(b) 

Figure 21. Battery Curves in G2V and V2G systems. (a) Charging: G2V; (b) Discharging: V2G. Figure 21. Battery Curves in G2V and V2G systems. (a) Charging: G2V; (b) Discharging: V2G.



Energies 2018, 11, 1082 19 of 24

Energies 2018, 11, x 18 of 23 

 

 

Charging to Discharging: G2V to V2G 

 
Discharging to Charging: V2G to G2V 

(a) (b) 

Figure 22. Transitions in the operation mode for Light-Duty Vehicles. (a) Battery Curves; (b) Grid 
Current and Voltage. 

 

Charging to Discharging: G2V to V2G 

Discharging to Charging: V2G to G2V 

(a) (b) 

Figure 23. Transitions in the operation mode for Heavy-Duty Vehicles. (a) Battery Curves; (b) Grid 
Current and Voltage. 

  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
70

70.002

70.004

Time (sec)

S
oC

 (
%

)

Battery

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-50

0

50

Time (sec)

Ib
at

 (
A

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
680

690

700

710

Time (sec)

V
ba

t 
(V

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-5

0

5
x 10

4

Time (sec)

P
ba

t 
(W

)

Figure 22. Transitions in the operation mode for Light-Duty Vehicles. (a) Battery Curves; (b) Grid
Current and Voltage.
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Figure 23. Transitions in the operation mode for Heavy-Duty Vehicles. (a) Battery Curves; (b) Grid
Current and Voltage.
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5. Comparative Study

A FFT Analysis has been performed for the four topologies developed. The THD of both the AC
current and voltage can be seen in Figure 24. In all cases, both G2V and V2G modes have the same
level of harmonics. It must be highlighted that the voltage harmonics are reduced to half their value
for three-phase, Heavy-Duty systems.
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Finally, a 24-kWh electric vehicle was experimentally analyzed to see the operation of the G2V
technology in a real environment. Three different measurements of the State-of-Charge (SoC), Power,
Voltage, Current, Power Factor (PF) and Deformation Factor (DF) were taken while the vehicle was
charging and they are stored in Table 10. Furthermore, the current and voltage provided at the same
time of the measurements are depicted in Figure 25, where signal A is the current and signal B is
the voltage.

In all cases, the power factor is capacitive; this means the current leads the voltage. The value of
this PF is very good, very close to 1. It can be noted that as the SoC increases, the voltage does too for
the NMC battery. This always happens in this kind of electrochemical systems, where the voltage is
higher as the system is more charged. Moreover, it has to be noted that for G2V operation, the results
from the simulations are very similar to the real ones. Therefore, as positive results were obtained for
the V2G operation in the simulation, it can be concluded that the results in a real environment would
also be favorable.

Table 10. Measured data from a 24-kWh electric vehicle while charging.

SoC (%) P (W) S (VA) W (Var) Vrms (V) Irms (A) PF DF Time

17 3797 3855 −648 225 17 0.985 capacitive 1.25 12:50
31 3661 3715 −631 225.6 16.44 0.985 capacitive 1.1 13:15
42 3741 3797 −655 226.1 16.77 0.985 capacitive 1.1 13:35
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6. Conclusions

The main research topics of this paper were the design and assessment of four topologies, for
both Light-Duty and Heavy-Duty Vehicles, with which the G2V and V2G concepts have been tested.
Bipolar modulation was utilized for its easy implementation and almost constant common mode
voltage, which enables a transformer-less system. Nevertheless, simulations have shown that the DC
currents are very high, so that the installation of a transformer is mandatory to avoid the saturation of
the grid’s transformers.

The results for Heavy-Duty Vehicles have shown that obtaining the AC voltage from a higher
amount of voltage levels reduces its THD. Thus, the use of multilevel converters could be contemplated.
Furthermore, the harmonic content in the topologies is very similar. This means that the addition of a
DC/DC converter, which provides better control options and enables the use of LV Batteries, does not
affect the quality of the power given to or taken from the grid. In addition, it attenuates the 100 Hz
oscillation appearing in the battery side for low power applications.

Finally, the results of the simulations have been compared to some measurements taken from a
real Electric Vehicle while charging. As the parameters and waves obtained are very similar for the G2V
mode, it can be concluded that they will also be very similar for the V2G mode. The simulations proved
that both G2V and V2G operations have the same perturbation on the electricity grid. Therefore, since
G2V is nowadays being implemented, we conclude that the V2G mode could be also implemented
and provides its inherent benefits to the grid.
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Abbreviations

EV Electric vehicle
G2V Grid-to-vehicle
V2G Vehicle-to-grid
PEVs Plug-in electric vehicles
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PHEVs Plug-in hybrid vehicles
OCV Open Circuit Voltage
SoC State-of-Charge (%)
CC Constant current
CV Constant voltage
PLL Phase locked loop
HV High voltage
EMC Electromagnetic compatibility
LV Low voltage
CENELEC European committee for electrotechnical standarization
MOSFET Metal-oxide-semiconductor field-effect transistor
IGBT Insulated-gate bipolar transistor
GTO Gate Turn-Off Switch
THD total harmonic distortion
FFT Fast Fourier transform
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