
energies

Article

Optimal Siting of Wind Farms in Wind
Energy Dominated Power Systems

Raik Becker 1,* ID and Daniela Thrän 2

1 Department of Bioenergy, Helmholtz Centre for Environmental Research GmbH-UFZ,
Permoserstraße 15, 04318 Leipzig, Germany

2 Bioenergy Systems Department, DBFZ Deutsches Biomasseforschungszentrum gGmbH,
Torgauer Straße 116, 04347 Leipzig, Germany; daniela.thraen@dbfz.de

* Correspondence: raik.becker@ufz.de; Tel.: +49-341-2434-593

Received: 22 February 2018; Accepted: 14 April 2018; Published: 18 April 2018
����������
�������

Abstract: Electricity from renewable energy (RE) sources gained in significance due to green-friendly
governmental initiatives in the form of either direct subsidizes, tax incentives or tradable certificates.
Thereby, RE generators are incentivized to maximize energy feed-in or the remuneration from
governmental subsidizes, meanwhile neglecting any market interaction. Consequently, wind farms
are clustered in windy regions. Along with the governmentally initiated integration of RE generation
into power markets, the siting of RE generators will change. In wind power dominated power systems
that fully integrate RE generators into power markets, wind farms will compete against each other
and try to maximize their market value. Hence, wind speed correlations with other wind farms will
become increasingly important when choosing a site in a uniform or zonal pricing system. To quantify
the impact of market integration on future wind farm siting, an approach is developed that takes into
account the local wind potential of a certain site, wind speed correlations to other sites and their installed
capacities. An optimization that minimizes the normalized sum of wind power correlations to all
other sites and their respective normalized installed wind power capacity is performed. To achieve a
predefined minimum energy output, the average wind yield is considered as an additional constraint.
The outcome is an optimal wind farm site in a wind energy dominated system. Running this for a given
wind power expansion scenario enables decision makers to foresee the spatial development of wind
farm installations. To demonstrate the model’s applicability, a case study is performed for Germany.
Thereby, wind speed data for four years from the European reanalysis model COSMO-REA6 is used.
The results indicate that a full market integration of RE generators will space out more evenly new wind
farms. Thereby, wind farms can economically benefit from the non-simultaneity of wind speed.

Keywords: wind energy; wind energy integration; market value; wind farms; correlation; siting;
wind speeds

1. Introduction

The success of electricity produced by renewable energy (RE) sources is continuing all over the
world. Especially onshore wind power plays an pivotal role in modern power systems due to its low
costs. In Germany, the installed capacity of onshore and offshore wind power surpassed 50 GW by
the end of 2016 [1]. As in Germany, the success of RE sources is carried by governmental support
schemes in many countries. Until now, various different support schemes have emerged. Generally,
they can be categorized into three main types, namely fixed feed-in tariffs, feed-in premium and green
certificates (combined with RE obligations) [2]. Fixed feed-in tariffs guarantee a fixed compensation in
a non-discriminatory manner for each unit of energy produced. This significantly lowers the risk for
investors, which explains the success of fixed feed-in tariffs in terms of the deployment of RE sources [3].
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Generally, all energy-based support schemes incentivize investors to build energy-maximized wind
farms at sites with high wind yields. This results normally in spatially non-diverse wind farm clusters
and especially in Germany in the necessity to considerably extend the transmission and distribution grid.

To foster the market integration of generation from RE sources and to incentivize demand-oriented
generation, Germany introduced a feed-in premium scheme in 2012 [4], which was further amended in
2014 [5] and lastly in 2017 [6]. Under the current regulation, remuneration comprises a so-called market
premium and the revenues from selling electricity on the day-ahead market. The market premium is
the difference between the guaranteed fixed remuneration (under the current regulation [6] determined
in a technology-specific auction) and the average monthly reference price. Thereby, the reference price
is separately determined for each technology group, e.g., wind onshore and solar power. Because the
reference price is monthly averaged, there exists a yet little incentive to plan and operate a RE power
plant market-driven.

In the near future, it can be expected that more market-oriented schemes will be introduced in
Germany and around the world. Further ahead, RE generators might bid with their levelized costs of
electricity into power markets. Such system changes are likely to foster the spatial diversification of
wind farm sites because wind farm investors will compete for shrinking market values. As discussed
and quantified in literature, the market value of wind decreases with an increasing penetration
level ([7–9]). This is caused by the simultaneity of wind power production. However, existing
approaches, such as [7–9], neglect the spatial dimension of wind power market values. So far, only [10]
provides an approach for estimating site-specific wind energy value factors but disregards market
interrelationships. In the future, sites that exhibit less average wind speeds might become more
attractive for investors when they are negatively correlated with the majority of wind farms. Such wind
farms can benefit from high prices while the majority of wind farms faces low wind speeds. This effect
will stabilize to some extent the market value of wind power in wind energy dominated systems that
have integrated RE generation into power markets.

This paper investigates the impact of a full market integration on the spatial arrangement of
wind farms. It is assumed that wind power makes up the larger share of power production and that
wind power is thus the major price driver. Instead of modeling the entire power system, the two
most influential factors on the wind energy market value in wind power dominated systems are
analyzed. This includes the correlation of wind power feed-in to other wind farms and their installed
capacities. By minimizing the sum of both, meanwhile considering minimum wind speed requirements,
the next eligible site can be identified. To achieve comparable optimization criteria, both measures
are unity-based normalized. The applicability of this approach is demonstrated in a case study
for Germany. 10 GW of wind power is added to the system that fully integrates RE generation.
A comparison with current spatial market values illustrates the applicability of the model. With only
two input data sets, namely wind speed time series and wind power installation statistics, meaningful
spatial wind power expansion scenarios can be derived.

The remainder of this paper is organized as follows. The methodology is presented in
Section 2. First, an algorithm that models the current wind yield optimal approach is introduced.
Second, the spatial dimension of wind energy value factors is discussed and, third, the main approach
to model an optimal siting of wind farms in wind energy dominated power systems is described.
Section 3 contains a case study for Germany and discusses the main findings. The results are compared
with current spatial wind energy value factors in Germany. The paper concludes in Section 4.

2. Methodology

Depending on the RE support scheme or level of market integration, different criteria influence the
choice of location for a new wind farm. Wind yield optimal siting is addressed in Section 2.1. Site-specific
wind energy value factors and their impact on the site selection in future power markets are discussed in
Section 2.2. Section 2.3 introduces an algorithm that enables modeling spatial wind expansion scenarios
in such markets using merely wind speed time series and wind power installation statistics.
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2.1. Wind Yield Optimal Wind Farm Siting

In many nowadays support schemes, the income of wind farm operators is purely based on the
energy produced disregarding electricity wholesale prices, time of feed-in and location of the power
plant (in uniform pricing schemes). Hence, wind farm operators have a clear incentive to maximize
the wind farm’s energy output over a predefined funding period and investors will pick a site that
exhibits the highest wind yield. In the paper at hand, this behavior is modeled by choosing an optimal
site sopt within a set of available sites S = {1, . . . , S} that maximizes the average expected wind yield.
Thereby, the average expected wind yield is a naive forecast using historical wind speed measurements
of several years at a site, i.e., v̄s. Given that information for S sites, the next eligible site sopt is defined by
argmax

s∈S
{v̄s}. At this site, a predefined wind farm with an installed capacity of ∆P is added to the system.

To account for space limitations, the maximum regional wind power density ρmax
r in MW/km2 is introduced.

In addition, Pmax
c represents the maximum additional admissible capacity within a country. This allows for

a consideration of national expansion plans and scenarios, respectively. Multiple sites can be within a region,
i.e., f : S � R, with R = {1, . . . , R}. Algorithm 1 determines the additional capacity for each site and
region within a country. Thereby, the maximum additional capacity Pmax

c needs to be set beforehand. Once a
site is chosen as the optimal site sopt, this site is considered to be fully developed and, hence, removed from
the set of available sites, i.e., S ← S \ sopt. If the maximum capacity density of a region ρmax

r is surpassed,
all sites within this region are disregarded from any further expansion activities, i.e., S ← S \ SR(sopt).

Algorithm 1: Wind yield optimal wind farm siting.
1: S ← 1, . . . , S
2: R ← 1, . . . , R
3: Ps ← 0, ∀ s ∈ S
4: Pr ← 0, ∀ r ∈ R
5: Pc ← 0
6: while Pc < Pmax

c do

7: sopt ← argmax
s∈S

{
v̄s
}

8: Psopt ← Psopt + ∆P
9: PR(sopt) ← PR(sopt) + ∆P

10: Pc ← Pc + ∆P
11: S ← S \ sopt

12: if ρR(sopt) ≥ ρmax
R(sopt)

then

13: S ← S \ SR(sopt)

14: end if
15: end while

2.2. Site-Specific Wind Energy Value Factors

In wind energy dominated power systems that fully integrate production from RE sources into
the power market, wind farm investors will select a site that optimizes the expected revenues that can
be earned on the spot market. Thereby, the wind value factor of the very site plays an important role.
According to [7], the wind energy value factor can be defined as:

νw =
p̄w

p̄
, (1)

In which p̄w is the wind-energy-weighted spot price and p̄ the average spot price. As discussed
in [10], wind energy value factors are site-specific and hub-height-specific due to varying wind speed
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conditions. In the paper at hand, the site-specific and hub-height-specific wind energy value factor is
denoted as νw

s . Thereby, p̄w is replaced by a site-specific average revenue for each unit of energy, so that:

νw
s =

p̄w
s
p̄

(2)

Thereby, p̄w
s is computed as follows:

p̄w
s =

∑T
t=1 pspot

t · Is,t

∑T
t=1 Is,t

, (3)

In which pspot
t is the spot price in t and Is,t is the energy feed-in in t at site s. To assess the wind

energy value factor of a single wind farm compared to the entire fleet of wind farms within a market
zone, the relative wind energy value factor νw

rel,s is introduced:

νw
rel,s =

νw
s

νw =
p̄w

s
p̄w (4)

νw
rel,s can be used to rate the quality of wind farm sites. In systems that exhibit a high share of wind

power, wind power is the main price driver. Hence, with an increasing share of wind power, νw will
converge towards 1 but will never become equal unless wind power is the sole generation technology.

When choosing a new site, the site-specific wind energy value relative to the market νw
s or

relative to the market-wide fleet of wind farms νw
rel,s should be optimized for the wind farm’s life time.

Yet, certain sites can have high market value factors while being characterized by low average wind
speeds and, thus, possibly insufficient revenues. Hence, market value factors and expected wind yields
should be considered simultaneously.

As in [7], estimating future market value factors ideally requires a detailed unit commitment model
that endogenously accounts for investments into new technologies. The paper at hand introduces an
alternative approach for identifying an optimal site in wind energy dominated systems while taking
into account the market interaction with existing wind farms.

2.3. Spot Market Optimal Wind Farm Siting

If wind power production is the major price driver within a market zone, the correlation with
existing wind farms becomes crucial. Due to the merit-order effect ([11–13]), spot prices are lower
when wind power production is high, i.e., when there is a oversupply of (wind) energy in the
market. Vice versa, prices are high when the overall wind power production is low. Hence, if the
potential production at a specific site is negatively correlated with the market-wide wind power
production, the site-specific wind energy value factor is higher than for positively correlated sites.
Modeling site-specific wind energy production with a high spatial resolution, ideally on wind farm
level, requires inter alia detailed information about all wind farms in the system. That is why we
consider a standardized wind to power curve (normalized with the rated power) for all sites instead.
The normalized power feed-in I ∈ [0, 1] is computed as follows:

I(v) =



0 if v < vmin
v3−v3

min
v3

r−v3
min

if vmin ≤ v ≤ vr

1 if v > vr

0 if v > vmax

(5)

Thereby, vr is the rated wind speed, i.e., the wind speed at which the wind power plant reaches
its rated power. vmin is the cut-in wind speed and vmax the cut-out wind speed.



Energies 2018, 11, 978 5 of 12

The correlation matrix that describes the correlation between the wind power feed-in I at all
potential sites S is denoted as RSS . Thereby, Pearson’s correlation coefficient is applied to compute
the pairwise correlations in RSS . Hence, all elements in RSS lay in the interval [−1, 1]. Ideally, a site
should be preferred if the sum of correlations to all other sites, i.e., ri = ∑i∈S RS i, ∀ i ∈ S , is minimal.
However, if a certain region has a high installed capacity already, sites in that region should be rated
as less favorable and vise versa. That is why, we propose to simultaneously consider the correlation
and the ratio of the installed capacity in the site’s region to the installed capacity in the market area

or country, i.e.,
Pinst
R(s)

Pinst
c

. For all sites, the respective capacity share is given by the vector cS . To achieve
equivalent optimization criteria, a unity-based normalization or feature scaling is performed for
the sum of correlations and the share of installed capacities. The unity-based normalized sum of
correlations is r?S and each element is computed as follows:

r?i =
ri −min{rS}

max{rS} −min{rS}
, ∀ i ∈ S (6)

Theoretically, ri can be in the interval [−|S|, |S|], in which |S| is the cardinality of the set S . After
the normalization, r?i ∈ [0, 1]. The vector containing all unity-based normalized capacity shares for
all sites is denoted as c?S . Algorithm 2 shows the algorithm that selects the optimal site based on r?S
and c?S . The basis structure of Algorithm 2 is equal to Algorithm 1. Yet, the optimization of sopt is
not purely based on the wind yield. To not fully neglect the expected wind yield, a minimum wind
yield limit v̄min

s is defined. By doing so, wind farm operators can anticipate average full load hours.
Before the optimization, all sites that do not fulfill this minimum wind speed requirement are removed
from the set of possible sites, i.e., S ← S \ Sv̄s<v̄min . Another possibility would be to consider the
wind yield as an optimization criterion as well. However, setting this minimum wind yield constraint
exogenously, enables building different scenarios what is expected to yield further insight. In addition,
the required wind yield to maximize revenues depends strongly on future back-up technologies that
set spot market prices in phases with low winds.

Algorithm 2: Spot market optimal wind farm siting.
1: S ← 1, . . . , S
2: S ← S \ Sv̄<v̄min

s

3: R ← 1, . . . , R
4: Ps ← 0, ∀ s ∈ S
5: Pr ← 0, ∀ r ∈ R
6: Pc ← 0
7: while Pc < Pmax

c do

8: sopt ← argmin
s∈S

{
r?s + c?s

}
9: Psopt ← Psopt + ∆P

10: PR(sopt) ← PR(sopt) + ∆P
11: Pc ← Pc + ∆P
12: S ← S \ sopt

13: if ρR(sopt) ≥ ρmax
R(sopt)

then

14: S ← S \ SR(sopt)

15: end if
16: end while
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3. Application and Results

Assessing wind power expansion scenarios using Algorithms 1 or 2 requires reliable wind speed
data with high spatial and temporal resolution. This data, wind farm data and their combination
is introduced in Section 3.1. Section 3.2 presents a case study for Germany that is carried out to
demonstrate the model’s merit. Moreover, main results are presented and discussed in Section 3.3.
Section 3.4 contains a comparison with currently observable market value factors in Germany.

3.1. Data

3.1.1. Wind Speed Data

A reanalysis data set was used to perform this case study. Reanalysis systems reintegrate historical
weather observations or assimilation data with state-of-the-art numerical weather models. This enables
a consistent and comprehensive long-term weather monitoring. Here, the COSMO-REA6 reanalysis
data set based on the COSMO model is used [14]. A comparison with actual wind speed mast
measurements at relevant heights that demonstrates the suitability for the case study in this paper can
be found in [15]. Moreover, daily and monthly average wind speeds are compared with wind mast
measurements in [16] and general improvements to present reanalysis models, namely ERA-Interim
and ERA-20C, are found. The spatial resolution is 0.055◦ or 6 km and the temporal resolution of
the model output is one hour or a quarter of an hour. COSMO-REA6 covers the whole of Europe
but it was cropped to Germany for this case study. The remainder comprises 9525 points within
Germany, which represent the set of possible sites S . Wind speeds of the six lowest model levels
were extracted. The wind profile power law was implemented to vertically interpolate wind speeds.
Thereby, the exponent α was computed separately for each hour using wind speeds of two neighboring
model levels to account for changing atmospheric conditions. Overall, a four-year-long data set was
used, which consists of hourly wind speeds from the beginning of 2011 to the end of 2014. For all sites,
hub heights were set to 120 m. Figure 1a shows the average wind yield over all considered years at a
hub height of 120 m for 9525 different points in Germany. A hub height of 120 m was chosen because it
roughly represents current industry standards. In general, correlations are expected to remain similar
for higher hub heights. In Figure 1a, it can be seen that wind resources are more favorable in Northern
Germany. On the contrary, mountainous regions in the south exhibit average wind yields of 3 m/s and
less. That is one reason why most wind farms have been erected in the north and northeast of Germany.
A transformation of hourly wind speed time series through the standardized wind-to-power curve
according to (5) is shown in Figure 1b. This corresponds to the share of full load hours. e.g., p̄s = 0.4
equals 3504 (8760 · 0.4) full load hours.

(a) (b)

Figure 1. Average wind in m/s at a hub height of 120 m and corresponding average normalized energy
yield during 2011–2014. (a) Hourly average wind yield v̄s; (b) Average normalized energy yield p̄s.
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3.1.2. Wind Farm Data

Both algorithms introduced in Section 2 take into account the scarcity of land by limiting the
power density per square kilometer. Hence, the currently installed capacity in each region needs
to be known. Here, the classification of territorial units for statistics (NUTS), in particular NUTS 3,
was applied. In Germany, NUTS 3 corresponds to 402 unique regions, i.e., R = 402. The area of each
region is based on areal data from the German Federal Agency for Cartography and Geodesy [17].
Distribution and transmission system operators in Germany are obliged to publish information on RE
power plants. An edited version of this master data set provided by [18] was used for this case study.
The status of the installations was 2015. Given that geographical identifiers of each RE power plant
include inter alia the postal code, German postal codes had to be assigned to NUTS 3. This assignment
is based on correspondence tables from Eurostat [19]. A more detailed wind farm data set, which
could be used for future studies, and different approaches for fixing incomplete wind farm data sets
are described in [20].

3.1.3. Combination of Wind Speed and Wind Farm Data

By combining wind speed and wind farm data, the most relevant drivers for wind farm siting
decisions in a competitive environment, namely wind power correlations and installed capacities,
can be derived. Figure 2 depicts both measures and their combination. Figure 2a shows the normalized
capacity at each site c?S , which was derived from the installed capacity in each region r (NUTS 3).
As expected, the north and northeast of Germany contain the major share of wind farms, whereas some
regions in the south contain none. The normalized sum of wind power correlations r?S is plotted
in Figure 2b. It becomes obvious that wind speeds at sites in the center of Germany are positively
correlated with many other sites. Sites at the border, especially in Southern and Northern Germany, are
only positively correlated with neighboring sites, which explains their relatively low sum of normalized
correlations. As can be seen in Figure 2c, sites in Southern Germany and generally at the border of
Germany are more preferential in terms of the two used optimization criteria. However, especially sites
in the south are characterized by low average wind speeds. To account for low average wind yields,
Algorithm 2 allows to only develop sites which are characterized by a minimum wind yield v̄min.
In addition, all sites that are within a region with a population density of 450 people per km2 or above
were removed from the set of eligible sites. Finally, Figure 3 shows all sites with the optimization
criterion r?S + c?S excluding non-eligible sites, which are marked as black dots. The lower the value,
the better the site. It can be seen that large cities within Germany are not considered given that they
are not suited for wind farm installations.

(a) (b) (c)

Figure 2. Normalized installed capacitiy c?S , normalized sum of correlations r?S and their sum for each
site s ∈ S . (a) c?S ; (b) r?S ; (c) r?S + c?S .
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Figure 3. r?S + c?S for eligible sites with v̄min = 5 m
s .

3.2. Case Study

To investigate the impact of different farm siting criteria, a case study was conducted. The wind
power installations were assumed to remain at the level of 2015. Then, 10 GW of wind power was added
to the system. Each wind farm comprised 10 MW. The maximum wind power density ρR(sopt) was set to
5 MW/km2 for this case study. Overall, three different minimum wind speeds were tested, namely 5,
6 and 7 m/s, to gain further insight. These minimum wind speeds represent typical low and medium
average wind speeds in Germany (cf. Figure 1a). Table 1 summarizes all case study parameters.

Table 1. Case study parameters.

Parameter Value

ρR(sopt) 5 MW/km2

∆P 10 MW
Pmax

c 10 GW
vmin 5/6/7 m/s

3.3. Wind Farm Siting Results

The spatial wind expansion based on Algorithm 2 for three different minimum wind speeds is
shown in Figure 4. Figure 4a depicts the spatial distribution of 10 GW when the minimum wind
speed is set to 5 m/s. It becomes obvious that the majority of new wind farms was placed in the
south of Germany. This is due to the low correlation with the majority of wind farms in Northern
Germany. Sites that are located in the borderland are advantageous as well. When comparing
Figure 4a–c, it can be seen that new installations shift further north when the minimum wind speed
requirement increases. However, new wind farms are rather build close to the border of Germany,
which corresponds to the border of the price zone. Furthermore, there are certain sites that were
developed in all scenarios. e.g., a few sites in the southeastern corner of Germany exhibit relatively
high average wind yields and are at the same time almost uncorrelated with the majority of wind
farms in the market. For comparison, a wind yield optimal distribution according to Algorithm 1 is
depicted in Figure 5. In Figure 5, all windy sites in the north are further developed and just a few sites
in the middle of Germany that exhibit relatively high average wind yields.
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(a) (b) (c)

Figure 4. Spatial wind expansion based on Algorithm 2. (a) vmin = 5 m/s; (b) vmin = 6 m/s;
(c) vmin = 7 m/s.

Figure 5. Spatial wind expansion based on Algorithm 1.

3.4. Comparison with Observed Market Value Factors

Given that the onshore wind energy’s share of gross electricity consumption is already relatively
high in Germany, namely 11.9% in 2015 [21], a spatial deviation in wind energy value factors should be
observable. Figure 6 illustrates average relative wind energy value factors according to (4) based on price
and wind power data from the period 2012–2014. Thereby, day-ahead prices from the EPEX [22] were
used. Hourly onshore wind power generation according to [23] was taken to determine the wind energy
value factor νw. Offshore wind power was neglected because of its still low impact. All site-specific
value factors were computed for an ENERCON E-101 with a rated power of 3.05 MW using the wind
speed data presented in Section 3.1. Thereby, at all sites, the hub height was set to 120 m. In Figure 6,
the highest market values could be achieved in Northern and Southern Germany. In general, market
values are higher in the borderland of Germany. The low values in the Alps might be explained by
low correlations between wind mast measurements and reanalysis model results due to the complex
topography as discussed in [16]. Hence, real market factors could be higher in the Alps. However, due to
low average wind speeds and the complex terrain, wind power installations are unlikely there.
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When comparing Figure 6 and Figure 2b, it can be seen that wind speed correlations to other sites
have a high impact on relative wind energy value factors. Hence, the normalized sum of correlations
is a key determinant of the relative wind energy value factor. By adding the wind power capacity as
a determinant, as depicted in Figure 2c, the similarities increase except of Northern Germany. As in
the period from 2012 to 2014, Northern Germany was frequently experiencing rare winds that drove
the relative market value upwards. Yet, this advantage will vanish when more capacity is added in
Northern Germany, which will be inevitably under the current support scheme.

Figure 6. Relative wind energy value factors νw
rel,s during 2012–2014.

4. Conclusions

Feed-in tariffs and other energy-based support schemes have led to a successful deployment of RE
sources in many countries. At the moment, there are ongoing debates on the modification of support
schemes and even the market design to facilitate the market integration of renewable generation.
There is a consensus that the next step will include a further integration of RE into power markets to
allow for more competition among them. This will inevitably lead to a different spatial dispersion of
wind farms compared to the current situation due to different wind resources in different locations.

To investigate the impact of market integration on the future siting of wind farms, a new model
is presented in the paper at hand. We assume that this future system is dominated by wind power,
meaning that the larger share of energy is generated by wind power plants, and that these wind farms
compete against each other. In such a competitive environment, the correlation of wind power with the
remaining wind farms becomes the key siting parameter. Given that high prices occur if the majority of
wind farms has no or little wind speeds, investors will opt for sites that exhibit a low correlation with
these wind farms. Thus, wind power correlations, average wind yields and wind power installations
constitute the three model inputs. Then, it is assumed that investors will pick a site that minimizes
the normalized sum of wind power correlations and the normalized installed capacity at these sites
meanwhile fulfilling a minimum wind yield. The normalization guarantees that both optimization
criteria are in the range [0, 1]. By running this algorithm repeatedly, spatial wind expansion scenarios
can be generated.

To demonstrate the applicability of this model, a case study for Germany is introduced. 10 GW
of wind power are added to the system under the aforementioned assumptions of a full market
integration. Results indicate that more competition among wind power producers leads to a spatial
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smoothing of wind farm installations. Correlations with the majority of wind farms is especially low
at the border of price zones, which results in additional installations there. In addition, a comparison
with a wind yield optimal expansion scenario shows that many sites that do not exhibit high wind
yields are developed. Hence, more wind farms are required to achieve the same wind energy targets,
which might limit the citizen acceptance. However, more wind power installations in the south and
close to the border certainly limit the necessity of grid expansion. This could result in lower overall
wind power integration costs. Furthermore, wind power production is also more diversified in terms
of diurnal feed-in patterns, which facilitates system integration.

The presented approach can only be seen as a first step towards regarding spatial aspects of
wind power market values. Its main advantage is its simplicity and its low data requirement.
However, the inherent simplifications do not allow for a determination of market value factors.
An important issue to resolve for future studies is the integration of multiple input variables.
Questions concerning the influence of other generation technologies, such as solar power, and the role
of demand need to be answered. Moreover, future work could focus on enhancing the input data set
in terms of longer and, hence, more stable times series. Generally, we believe that spatial aspects and
the role of correlations should be considered in future debates about market values of RE.

Author Contributions: Raik Becker had the initial idea and Daniela Thrän contributed to further develop the
idea; Raik Becker conceived and designed the overall structure of the paper; Raik Becker analyzed the data, wrote
the source code and run the simulations; Raik Becker wrote the paper with contributions from Daniela Thrän.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wind Europe. Wind in Power: 2016 European Statistics; Technical Report; Wind Europe: Brussels, Belgium, 2017.
2. Hiroux, C.; Saguan, M. Large-scale wind power in European electricity markets: Time for revisiting support

schemes and market designs? Energy Policy 2010, 38, 3135–3145.[CrossRef]
3. Haas, R.; Resch, G.; Panzer, C.; Busch, S.; Ragwitz, M.; Held, A. Efficiency and effectiveness of promotion

systems for electricity generation from renewable energy sources—Lessons from EU countries. Energy 2011,
36, 2186–2193. [CrossRef]

4. Erneuerbare-Energien-Gesetz (EEG) 2012. Available online: https://www.erneuerbare-energien.de/EE/
Redaktion/DE/Gesetze-Verordnungen/eeg_2012_bf.html (accessed on 2 August 2017).

5. Erneuerbare-Energien-Gesetz (EEG) 2014. Available online: http://www.bmwi.de/Redaktion/DE/
Downloads/G/gesetz-fuer-den-ausbau-erneuerbarer-energien.html (accessed on 2 August 2017).

6. Erneuerbare-Energien-Gesetz (EEG) 2012. Available online: http://www.gesetze-im-internet.de/eeg_2014/
(accessed on 2 August 2017).

7. Hirth, L. The market value of variable renewables: The effect of solar wind power variability on their relative
price. Energy Econ. 2013, 38, 218–236.[CrossRef]

8. Winkler, J.; Pudlik, M.; Ragwitz, M.; Pfluger, B. The market value of renewable electricity—Which factors
really matter? Appl. Energy 2016, 184, 464–481.[CrossRef]

9. Ederer, N. The market value and impact of offshore wind on the electricity spot market: Evidence from
Germany. Appl. Energy 2015, 154, 805–814.[CrossRef]

10. Capellaro, M. Prediction of site specific wind energy value factors. Renew. Energy 2016, 87, Part
1, 430–436.[CrossRef]

11. Ketterer, J.C. The impact of wind power generation on the electricity price in Germany. Energy Econ. 2014,
44, 270–280.[CrossRef]

12. Cludius, J.; Hermann, H.; Matthes, F.C.; Graichen, V. The merit order effect of wind and photovoltaic
electricity generation in Germany 2008–2016: Estimation and distributional implications. Energy Econ. 2014,
44, 302–313.[CrossRef]

13. Sensfuß, F.; Ragwitz, M.; Genoese, M. The merit-order effect: A detailed analysis of the price
effect of renewable electricity generation on spot market prices in Germany. Energy Policy 2008,
36, 3086–3094.[CrossRef]

http://dx.doi.org/10.1016/j.enpol.2009.07.030
http://dx.doi.org/10.1016/j.energy.2010.06.028
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Gesetze-Verordnungen/eeg_2012_bf.html
https://www.erneuerbare-energien.de/EE/Redaktion/DE/Gesetze-Verordnungen/eeg_2012_bf.html
http://www.bmwi.de/Redaktion/DE/Downloads/G/gesetz-fuer-den-ausbau-erneuerbarer-energien.html
http://www.bmwi.de/Redaktion/DE/Downloads/G/gesetz-fuer-den-ausbau-erneuerbarer-energien.html
http://www.gesetze-im-internet.de/eeg_2014/
http://dx.doi.org/10.1016/j.eneco.2013.02.004
http://dx.doi.org/10.1016/j.apenergy.2016.09.112
http://dx.doi.org/10.1016/j.apenergy.2015.05.033
http://dx.doi.org/10.1016/j.renene.2015.10.019
http://dx.doi.org/10.1016/j.eneco.2014.04.003
http://dx.doi.org/10.1016/j.eneco.2014.04.020
http://dx.doi.org/10.1016/j.enpol.2008.03.035


Energies 2018, 11, 978 12 of 12

14. Bollmeyer, C.; Keller, J.D.; Ohlwein, C.; Wahl, S.; Crewell, S.; Friederichs, P.; Hense, A.; Keune, J.; Kneifel, S.;
Pscheidt, I.; et al. Towards a high-resolution regional reanalysis for the European CORDEX domain. Q. J. R.
Meteorol. Soc. 2015, 141, 1–15.[CrossRef]

15. Borsche, M.; Kaiser-Weiss, A.K.; Kaspar, F. Wind speed variability between 10 and 116 m height from
the regional reanalysis COSMO-REA6 compared to wind mast measurements over Northern Germany
and the Netherlands. Adv. Sci. Res. 2016, 13, 151–161.[CrossRef]

16. Kaiser-Weiss, A.K.; Kaspar, F.; Heene, V.; Borsche, M.; Tan, D.G.H.; Poli, P.; Obregon, A.; Gregow, H.
Comparison of regional and global reanalysis near-surface winds with station observations over Germany.
Adv. Sci. Res. 2015, 12, 187–198.[CrossRef]

17. Administrative Areas with Population Numbers 1:1,000,000. Available online: http://www.bkg.bund.de
(accessed on 22 June 2017).

18. Das Amtliche Anlagenregister. Available online: http://www.energymap.info/download.html (accessed
on 22 June 2017).

19. Postcodes and NUTS. Available online: http://ec.europa.eu/eurostat/web/nuts/correspondence-tables/
postcodes-and-nuts (accessed on 22 June 2017).

20. Becker, R.; Thrän, D. Completion of wind turbine data sets for wind integration studies applying random
forests and k-nearest neighbors Appl. Energy 2017, 208, 252–262.

21. Renewable Energy Sources in Figures: National and International Development. Available online:
https://www.bmwi.de/Redaktion/EN/Publikationen/renewable-energy-sources-in-figures-2016.pdf?__
blob=publicationFile&v=5 (accessed on 22 June 2017).

22. Market Data: Day-Ahead Auction. Available online: https://www.epexspot.com/en/market-data/
dayaheadauction (accessed on 22 June 2017).

23. Online-Hochrechnung der Istwerte für Windenergie Onshore. Available online: https://www.
netztransparenz.de/Erneuerbare-Energien-Gesetz/Marktpraemie/Online-Hochrechnung-Wind-Onshore
(accessed on 22 June 2017).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/qj.2486
http://dx.doi.org/10.5194/asr-13-151-2016
http://dx.doi.org/10.5194/asr-12-187-2015
http://www.bkg.bund.de
http://www.energymap.info/download.html
http://ec.europa.eu/eurostat/web/nuts/correspondence-tables/postcodes-and-nuts
http://ec.europa.eu/eurostat/web/nuts/correspondence-tables/postcodes-and-nuts
https://www.bmwi.de/Redaktion/EN/Publikationen/renewable-energy-sources-in-figures-2016.pdf?__blob=publicationFile&v=5
https://www.bmwi.de/Redaktion/EN/Publikationen/renewable-energy-sources-in-figures-2016.pdf?__blob=publicationFile&v=5
https://www.epexspot.com/en/market-data/dayaheadauction
https://www.epexspot.com/en/market-data/dayaheadauction
https://www.netztransparenz.de/Erneuerbare-Energien-Gesetz/Marktpraemie/Online-Hochrechnung-Wind-Onshore
https://www.netztransparenz.de/Erneuerbare-Energien-Gesetz/Marktpraemie/Online-Hochrechnung-Wind-Onshore
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Wind Yield Optimal Wind Farm Siting
	Site-Specific Wind Energy Value Factors
	Spot Market Optimal Wind Farm Siting

	Application and Results
	Data
	Wind Speed Data
	Wind Farm Data
	Combination of Wind Speed and Wind Farm Data

	Case Study
	Wind Farm Siting Results
	Comparison with Observed Market Value Factors

	Conclusions
	References

