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Abstract: The state of transformer equipment is usually manifested through a variety of information.
The characteristic information will change with different types of equipment defects/faults, location,
severity, and other factors. For transformer operating state prediction and fault warning, the key
influencing factors of the transformer panorama information are analyzed. The degree of relative
deterioration is used to characterize the deterioration of the transformer state. The membership
relationship between the relative deterioration degree of each indicator and the transformer state
is obtained through fuzzy processing. Through the long short-term memory (LSTM) network,
the evolution of the transformer status is extracted, and a data-driven state prediction model is
constructed to realize preliminary warning of a potential fault of the equipment. Through the LSTM
network, the quantitative index and qualitative index are organically combined in order to perceive
the corresponding relationship between the characteristic parameters and the operating state of the
transformer. The results of different time-scale prediction cases show that the proposed method can
effectively predict the operation status of power transformers and accurately reflect their status.

Keywords: power transformer; state prediction; data-driven method; long short-term memory network;
state panoramic information

1. Introduction

Power transformers suffer from the long-term effects of high-voltage electric, thermal,
and mechanical stresses during operation [1]. In the event of a fault, not only is the transformer
seriously damaged, but people’s normal life and production are greatly threatened. Predicting the
state of a transformer would help to recognize a potential threat in time and grasp the development
trend of the fault. State prediction provides more opportunities to handle potential faults in advance
and greatly reduce negative impacts on the transformer’s reliability and availability when a fault
occurs [2,3].

Assessment and prediction technologies to determine the health condition of power transformers
have been reported in the following aspects. Some studies have focused on predicting specific state
parameters, such as gas concentration dissolved in the oil [2,3], top oil temperature [4], residual
flux [5,6], inrush current [7], moisture in the insulating cellulose [8], and furan [9], to characterize the
development of the transformer’s status. A small number of studies have put forward new ideas for
establishing a transformer failure rate model [10,11]. In addition, some scholars have paid special
attention to the remaining life [12–15] of the transformer. The state prediction models proposed in
these studies include the neural network [4], support vector machine regression [2,3], fuzzy logic [14],
nonparametric regression [10], and probabilistic graph [16]. These methods have demonstrated their
effectiveness in a number of circumstances, and some research results have been obtained.
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The transformer often deteriorates gradually, rather than abruptly. Correspondingly, the related
parameters change continuously towards the status of fault. Thus, it is natural to employ temporal
analysis methods to model the sequential dependency between the state parameters over time.
Recurrent neural networks (RNNs) [17] have been proven as an effective tool to model temporal
dependency in various applications. Xu et al. [18] introduced a novel method based on the RNN to
assess the health status of hard drives via the sequence of their attributes. Experimental results show
that the RNN method can effectively evaluate the health status of the hard drives and play the role of
fault prediction. Tian and Zuo [19] developed an extended recurrent neural network (ERNN)-based
approach for predicting the health condition of gearboxes based on the vibration data collected from
an experimental gearbox system. The long short-term memory (LSTM) network [20] [21], as an
improved structure of the RNN, to some extent, relieved the problem of gradient dissipation and
explosion in the modeling process of RNN over a long time, which gained the academic attention of
the research community. An LSTM approach for the estimation of remaining useful life was proposed
by Zheng et al. [22]. This method can make full use of the sensor sequence information and expose
hidden patterns within the sensor data with multiple operating conditions, faults, and degradation
models. Kong et al. [23] proposed an LSTM RNN-based framework to tackle the issue of short-term
load forecasting for individual electric customers.

The existing assessment/prediction methods are mainly based on a single or a few state
parameters to make the analyses and judgments. The status assessment results are always far
from comprehensive and cannot reflect the objective rules between the fault evolution and state
characteristics [24]. With the improvement of information technology and network technology, relevant
application systems such as on-line monitoring systems, production management systems (PMS),
dispatching automation systems, and meteorological information systems can realize data sharing and
interaction. It is thus urgent to conduct information fusion processing and analysis on all kinds of data
to tap the characteristic information that represents the operating state of a transformer.

The accumulation of the transformer state panoramic information provides the prerequisite
for the evaluation and prediction of the transformer operating state. In this paper, we use the
transformer-condition-related data to employ analysis of transformer status evolution via a deep
learning method. A data-driven equipment state correlation analysis and state prediction model
is built to realize the preliminary warnings of potential failures of the equipment. This can help
identify the equipment that needs specific attention. Based on the key parameters of the operating
state, this paper proposes a method for predicting the running conditions of power transformers
based on the LSTM network. By combining the quantitative and qualitative indicators, the LSTM
prediction model explores the relationship between the characteristic parameters and the transformer
state. The feasibility and accuracy of this method are verified through case studies.

The rest of the paper is organized as follows: Section 2 introduces the basic information on the long
short-term memory recurrent neural networks. Section 3 provides further information on the proposed
transformer operating state prediction approach. Section 4 validates the prediction approach with different
case studies and discusses the obtained results. Finally, conclusions are presented in Section 5.

2. Long Short-Term Memory Recurrent Neural Networks

2.1. Long Short-Term Memory Networks

A simple recurrent neural network consists of an input layer, a hidden layer, and an output
layer [17]. An input sequence is in the form x = (x1, x2, ..., xt). After receiving input xt at time t,
the hidden layer state of the RNN is ht and the output value is zt. The calculation method is shown in
Equations (1) and (2):

zt = σ(Vht) (1)

ht = f (Uxt + Wht−1) (2)
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where V is the weight matrix of the output layer, σ(·) is the activation function of the output layer, U is
the weight matrix of the input x, W is the weight matrix of the hidden layer state ht−1 at time t − 1 as
the input at time t, and f (·) is the hidden layer activation function.

Equations (1) and (2) are combined to calculate the result, as shown in Equation (3).

zt = V f (Uxt + W f (Uxt−1 + W f (Uxt−2 + W f (Uxt−3 + · · · )))) (3)

From Equation (3), we can see that the output value zt of the RNN is affected by all previous
inputs xt, xt−1, xt−2, xt−3, ...

Due to the existence of the gradient dissipation and explosion problems [25], traditional RNNs
are less effective at modeling long sequences. However, the LSTM network controls the instantaneous
information impact on the historical information by adding memory cells and gate units [21] so that
the network model can save and transmit information over a long time. The LSTM block structure at
a single time step is shown in Figure 1.

At time t, the inputs of the LSTM are the sequence input value xt at time t, the hidden layer value
ht−1 for the LSTM at time t − 1, and the state ct−1 for the memory cell at time t − 1. The outputs of
the LSTM are the hidden layer value ht at time t and the memory cell state ct at time t. In the LSTM,
the forget gate determines the impact of ct−1 on ct, the input gate determines the impact of xt on ct,
and the output gate controls the impact of ct on ht. The forget gate, input gate, and output gate are
calculated using Equations (4)–(6), respectively:

ft = σ(Wf · [ht−1, xt] + bf) (4)

it = σ(Wi · [ht−1, xt] + bi) (5)

ot = σ(Wo · [ht−1, xt] + bo) (6)

where f t, it, and ot are the states of the forget gate, input gate, and output gate, respectively; σ(·) is the
activation function; Wf, Wi, and Wo are the weight matrices of the forget gate, input gate, and output
gate, respectively; and bf, bi, and bo are the bias items of the forget gate, input gate, and output
gate, respectively.

The final output of the LSTM is determined by the state of the output gate and the memory cell,
as follows: {

ct = ft � ct−1 + it � tanh(Wc · [ht−1, xt] + bc)

ht = ot � tanh(ct)
(7)

where Wc is the weight matrix of the input memory cell state, bc is the bias item of the input
memory cell state, and � denotes element-wise multiplication. Figure 2 shows the unrolled LSTM
sequential architecture.
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Figure 1. The structure of a long short-term memory (LSTM) block.

Figure 2. The unrolled LSTM sequential architecture.

The accumulation of historical information depends not on the hidden state h itself but on the
memory cell self-connection. In accumulation processing, the most recent moment of the memory
cell information is limited by the forget gates, and the additional information relies on the input gate
for restriction.

2.2. Backpropagation through Time Algorithm

The LSTM networks adopt the Backpropagation through Time (BPTT) algorithm [26] for
training. It consists of the following steps: (1) Forward calculate the output value of each neuron.
(2) Backward calculate the error term δ for each neuron. The back propagation for the LSTM includes
backpropagation through time and backpropagation layer-wise. (3) Update the gradient of each weight
based on the corresponding error term.

By setting a specific target between the output and the input characteristic parameters,
LSTM networks automatically extract the correlation between the parameters throughout the training
to acquire the prediction or classification. The LSTM network has three gate units to protect and
control the cell status. The input, forget, and output gates correspond to the injection, accumulation,
and output, respectively, of the transformer-related state parameters. The gate units realize the memory
function in time to prevent gradient dissipation or explosion. The deep structure provides a foundation
for mining the relationship between the various state parameters.

3. Transformer Operating State Prediction Using the LSTM-Based Approach

3.1. Input Characteristic Parameters Based on Panoramic Information

The relevant data needed for the research were provided by State Grid Corporation of China
(Beijing, China). The voltage levels of the transformers are from 35 kV to 750 kV. Among them,
the transformers appearing in the historical fault data are from across the 28 provinces in China, and the
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transformers were put into operation starting in the year 1989. Information relating to the defects
and fault cases includes the basic transformer account information, inspection record information,
poor working condition records, defects and fault dates, defect types, causes, disassembly photos,
the corresponding routine test and diagnostic test data, H2, CO, CO2, CH4, C2H4, C2H2, C2H6, gas
production rates, main gas ratios (C2H2/C2H4, CH4/H2, C2H4/C2H6, CO2/CO), corresponding load
data (active and reactive power), and the corresponding meteorological data (temperature, humidity,
sunlight intensity, wind speed, rainfall, and snowfall).

In the above database, there are two categories of data for assessing and predicting the transformer
operating state: quantitative and qualitative indicators. Quantitative indicators represent data with
different dimensions and magnitudes, and qualitative indicators represent the state in descriptive
language. Qualitative indicators cannot be used directly in the assessment of the transformer status
and must be quantified for calculation. The following section introduces the specific quantification
method used.

3.2. Output Target Defined from the Transformer Operating Status

In general, the transformer operating state is divided into four patterns: normal operating state,
minor defects, severe defects, and critical state [27]. The corresponding set of states is V = {v1, v2, v3, v4} =
{good, poor, severe, and worst}.

v1 indicates that the equipment is stable and that all the state parameters are in accordance with
the standard. v2 indicates that some of the parameters of the trend are approaching the direction of
the standard limit but have not exceeded the standard and that the transformer can continue to run.
v3 indicates that some of the characteristic parameters have changed significantly and are close to the
standard limit or that some of the parameters exceed the standard limit. v4 indicates that some of the
characteristic parameters have exceeded the standard limit and manifested as one or more critical
defects. Power outage maintenance must be arranged immediately. Table 1 shows the operating state
of a transformer and the corresponding maintenance strategy.

Table 1. Transformer running status and corresponding maintenance strategy.

Symbol Running Status Maintenance Strategy

v1 good Planned maintenance
v2 poor Priority maintenance
v3 severe Maintenance as soon as possible
v4 worst Immediate maintenance

3.3. Methods for Indicator Quantification

In this paper, the relative degree of degradation (RDD) [28] is used to characterize the current
state of the transformer compared to the fault state. The RDD reflects the degree of conversion of
the transformer state from normal to fault patterns, and is expressed as a value in [0, 1]. The smaller
the value is, the better the state is. A value of 0 indicates that the transformer is in good and normal
condition, and a value of 1 signifies that the transformer is in the critical fault condition.

The optimal value of the parameter in the quantitative index is a, the alarm value is b, and the
current measured value is d. The RDD of the indicator can be expressed as

r(d) = G(a, b, d) (8)

where r represents the RDD of the indicator and G represents the deterioration function.
In this paper, the quantitative indicator function of the transformer status is established from the

perspective of natural degradation. For the maximal indicators, such as the absorption ratio, the larger
the data are, the better the state is. For the minimal indicators, such as gases dissolved in the insulation
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oil, the smaller the data are, the better the state is. The RDDs of the extremely large indicator and
minimal indicator are respectively expressed by

rl(d) =


0 , d ≥ al
(al − d)/(al − bl), bl < d < al
1 , d ≤ bl

(9)

rm(d) =


1 , d ≥ bm

(d − am)/(bm − am), am < d < bm

0 , d ≤ am

(10)

where rl and rm represent the RDDs of the extremely large indicator and minimal indicator, respectively;
al and am represent the optimal values of the extremely large indicator and minimal indicator,
respectively; bl and bm represent the alarm values of the extremely large indicator and minimal
indicator, respectively; and d represents the current measured value.

For quantitative data, we use the fuzzy distribution method to establish the mapping of
each indicator corresponding to different operating states. The triangular–trapezoid combination
membership function has a simple distribution and intuitive results [27]. The triangular–trapezoid
model is in accordance with the four types of power transformer operating states [29]. Taking the
quantitative monitoring data as the input characteristic parameter and the RDD as the output target,
the support vector machine (SVM) has a strong ability to address small sample data and is used to fit
the distribution function, as shown in Figure 3.

For qualitative indicators using descriptive language, such as manual inspection records and
some technical performance parameters, we used a fuzzy statistical experiment to determine the
membership. First, a number of experts gave the basis of the evaluation criteria and set the score
range as [0, 100]. The higher the score is, the worse the degree of deterioration is. Then, the score
was normalized to [0, 1] to determine the degree of membership. Based on the relative importance of
job title, seniority, and academic qualifications, which are related to the level of technical experience,
experts were given different weights to reduce the subjective influence on the quantitative results.
The data set provided by the State Grid Corporation of China is relatively complete and there is no
missing input information. The weighted scoring mechanism is given by:

li = ∑n
j lijwj (11)

where li is the score for different state levels of indicator i, lij is the score for different state levels
of indicator i given by the jth expert, and wj is the weight of the jth expert. The weights satisfy the
relationship ∑wj = 1, and the total number of experts is n.

In the comprehensive state evaluation of the transformer, the contribution of each indicator is
different. Different weights can distinguish the importance of the indicator. Therefore, determining the
weights reasonably is the key to an accurate assessment. In view of the complexity of the transformer
system and to minimize the subjective factors, the analytic hierarchy process (AHP) [29] was used to
give weights to each indicator.

By using the above quantitative process, we can assess the health index of the transformer and
ultimately determine the transformer operating state. This can allow us to revise and supplement the
labels for the operating state of the transformers.



Energies 2018, 11, 914 7 of 15

Figure 3. Function of power transformer operating state and relative degree of degradation (RDD).

3.4. The Proposed LSTM Prediction Model

The transformer panoramic state information is taken as the input characterization parameters.
From the information, the quantitative data are normalized, and the qualitative information is
transformed into state membership. The state probability interval to be predicted at the next moment
is taken as the output. Through nonlinear transformations and LSTM correlation feature extraction,
the Softmax classifier predicts the probability of the next moment to determine the state of the
transformer. Figure 4 shows the transformer state prediction architecture based on the LSTM network.
The detailed steps are given below.

(1) Samples are collected and divided into training sets and test sets.
(2) To reduce the influence of the data dispersion, quantitative data are normalized using the standard

deviation method:
dk = (dk − dmink)/(dmaxk − dmink) (12)

where dmin k is the minimum monitoring data of the indicator k, dmax k is the maximum monitoring
data of the indicator k, and dk is the monitoring data of the indicator k.

(3) Quantitative data is fit to the membership function of the RDD and operating state using the SVM.
(4) Qualitative indicators are quantified according to the fuzzy statistical experiment.
(5) The AHP method is used to determine the weight of each indicator.
(6) The comprehensive fuzzy evaluation results corresponding to v1–v4 are weighted with Steps (3)

and (4) according to Step (5), and the comprehensive evaluation results are taken as the LSTM
output labels.

(7) According to the BPTT algorithm, the LSTM network model is trained to extract the feature
relationships between the key parameters and the predicted transformer status, and the
parameters of the prediction model are obtained.

(8) The prediction parameters of the LSTM model are used to predict the operating state of the
transformer in the test set, and the accuracy of the model is verified.
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Figure 4. Transformer operating state prediction architecture based on the LSTM. BPTT:
Backpropagation through Time

4. Case Studies and Analysis

A total of 206 transformers showing confirmed existence of abnormal defects/faults and
174 transformers indicating early warnings/alarms from the oil chromatographic online monitoring devices
formed the sample library of the prediction model. According to the data from the 380 transformers in the
sample database, 228 transformers were randomly selected to form the training set, and the remaining
152 transformers were used to form the test set. The LSTM networks were used to extract the correlation
between the predicted transformer state and the panoramic information.

To increase the learning speed and reduce the risk of the network falling into the local minimum,
the weight matrix in the LSTM was initialized using a Gaussian distribution with a mean of 0 and
variance of 1, and the quadrature matrix was obtained from the singularity decomposition value [30].
The LSTM bias term and the output layer bias were initialized to 0. The output layer weight matrix
was multiplied by 0.01 for the random number from the Gaussian distribution with a mean of 0 and
variance of 1. The input layer size of the prediction was 72, the number of LSTM hidden layer neurons
was 100, and the output layer size was 4. To prevent over-fitting, the signal loss rate was set to 0.2.

Meanwhile, with the same input characteristic parameters and output targets, the support vector
machine (SVM) and backpropagation neural network (BPNN) model were constructed to predict the
transformer operating state using the training samples. The SVM model used the radial basis function
(RBF) as the kernel. The optimal penalty factor was 0.1, and the RBF kernel parameter was 10−3,
as obtained through cross-validation. The structure of the BPNN consisted of an input layer, a hidden
layer, and an output layer. By using a trial and error method, the optimal number of neurons in each
layer was chosen to be 72, 200, and 4, respectively. The learning rate in the BPNN model was 0.03,
and the learning cycle was 1000. The prediction models were based on the Python language in an
Ubuntu 15 operating environment.
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To evaluate the performance of the prediction model, we used the overall average accuracy.
Accuracy expresses the probability that the result for each random sample predicted using the model
matches the actual type. The overall average accuracy is defined as

A =
NP

NT
× 100% (13)

where NP denotes the number of correctly predicted samples and NT denotes the total number of
samples in the entire dataset.

The relationship between the quantitative data represented by the dissolved gas in the oil and the
operating state is calculated as follows. The RDDs of H2, CH4, C2H4, C2H6, C2H2, CO/CO2, and total
hydrocarbons are taken as the input characteristic parameters, and the operating state is the output
target. A least squares support vector machine (LS-SVM) was used to fit the distribution function.

The fitting sample database was composed of the off-line experimental dissolved gas analysis
(DGA) data of 206 transformers, which showed confirmed existence of abnormal defects/faults.
The sample data included the monitoring information from the equipment normal operation period,
deterioration period, and fault, and they dynamically characterized the trend of the equipment status.
Of these, 137 cases were used for training, and 69 cases were used for testing. The operating states
of 66 samples in the test set were predicted with an accuracy rate of 95.7%. The RDD of the gases
dissolved in the oil corresponds to the v1–v4 membership functions φvi(r), as follows.

φv1(r) =


1 , r < 0.218

−5.155r + 2.124, 0.218 ≤ r ≤ 0.412
0 , r > 0.412

(14)

φv2(r) =


5.155r − 1.124, 0.218 < r ≤ 0.412
−0.515r + 3.124 , 0.412 < r ≤ 0.606

0 , r > 0.606orr < 0.218
(15)

φv3(r) =


5.155r − 2.124 , 0.412 < r ≤ 0.606
−5.155r + 4.124, 0.606 < r ≤ 0.8

0 , r > 0.8orr < 0.412
(16)

φv4(r) =


0 , r < 0.606

5.155r − 3.124, 0.606 ≤ r ≤ 0.8
1 , r > 0.8

(17)

We take the linguistic description of the maintenance history as an example to provide quantitative
results of the qualitative variable. The results are shown in Table 2.

Table 2. Account of transformer maintenance history.

Index Maintenance History

0–0.25 Maintenance work has no difficulty. Maintenance frequency is not very high, and no
defect is left untreated.

0.25–0.5 Maintenance work has slight difficulty. Maintenance frequency is not high, and a small
defect is left untreated.

0.5–0.75 Maintenance work has some difficulty. Maintenance frequency is high, and a few
defects are left untreated.

0.75–1 Maintenance work is very difficult. Maintenance frequency is higher, and obvious
defects/faults are left untreated.
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Five experts were invited to give the relative importance of the comparison between the indicators
according to the AHP requirements. We used these data to calculate the weights. The traditional
method is to construct a judgment matrix and find the maximum eigenvalues of the matrix and
the corresponding eigenvectors. The eigenvectors are the index weights. However, in practice,
the construction of the evaluation matrix is only adjusted based on a rough estimate. It is arbitrary and
often requires multiple adjustments to satisfy the consistency check. An improved method [31] can
be adopted to calculate the optimal transfer matrix to naturally meet the consistency, and the relative
weight of each evaluation factor can be obtained directly. The calculation results are shown in Table 3,
and the specific calculation process can be found elsewhere [31].

In this work, we adopted the weighted average of the comprehensive evaluation. The element
vi corresponding to the maximum evaluation value is determined as the evaluated operating state.
The assessment results are the labels used to construct the prediction models.

Table 3. Weight of each indicator.

Indicator Weight Indicator Weight

Gas dissolved in oil 0.335 Corrosive gases and dust 0.0055
Dielectric loss value 0.168 Altitude and wind speed 0.0076

Core earthing current 0.1023 Load condition 0.0068
Moisture content 0.1202 Running temperature 0.0189

Dielectric loss of oil 0.1058 Abnormal noise 0.0024
Breakdown voltage 0.0597 Nearby short-circuit 0.0147

Air temperature 0.0034 Protection action 0.012
Air humidity 0.0041 Maintenance history 0.0345

4.1. Short-Term Prediction of the Transformer Operating State

To evaluate the short-term prediction performance of the three models, experiments with a forecast
horizon of one week were implemented. The overall average accuracies generated from the different
models for the training and test datasets are shown in Figure 5.

Figure 5. Prediction accuracies of different models (prediction scale: one week). BPNN:
backpropagation neural network. SVM: support vector machine.

Based on the prediction results, the accuracies with the prediction horizon of one week clearly
increase over BPNN, SVM, and LSTM models, in that order. The accuracy of the LSTM model is
increased significantly by 10.7% and 6.2% compared with those of the BPNN and SVM models,
respectively. The test accuracy is increased by 10.6% and 6.3%, respectively.

Taking the 500 kV #2 transformer as an example, the basic condition of the transformer is as
follows. The date of production is July 2006 and the date of initial operation is November 2006.
Routine tests on 19 March 2008 and 26 May 2011 showed no abnormalities. The transformer top oil
temperature varies in the range of 30~60 ◦C. In the summer of 2009, it suffered a lightning over-voltage,
and a defect occurred. The running environment is harsh, and the pollution level is II. The poor
working condition records show that a 30% overload lasted for 43 min on 18 July 2011. The on-line
monitoring data of the oil chromatography from 14 to 26 March 2012 are shown in Table 4.
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The data from 14 to 26 March 2012 are used to predict the operating state of the transformer
one week later, on 2 April 2012. The probabilities predicted from the BPNN, SVM, and LSTM
models corresponding to states v1–v4 are [0.2434, 0.6166, 0.1700, 0], [0, 0.4356, 0.4419, 0.1225],
and [0, 0.0191, 0.7308, 0.2501], respectively. According to the principle of maximum confidence,
the BPNN prediction result corresponds to a v2 (or poor) state. The SVM prediction result corresponds
to a v3 (or severe) state, with a small difference between the v2 and v3 state reliabilities, indicating
that the prediction recognition effect is not distinct. The LSTM prediction results correspond to the v3

(or severe) state, with an obvious identification effect.

Table 4. Oil chromatography online monitoring data for the 500 kV #2 transformer (units: µL/L).

Date H2 CH4 C2H4 C2H6 C2H2 TH CO CO2

14 March 32.77 10.29 4.56 1.64 0.13 16.62 176.3 693.1
15 March 36.58 10.46 4.87 1.57 0.15 17.05 178.7 698.6
16 March 34.89 9.98 4.33 1.71 0.15 16.17 168.5 704.8
17 March 33.21 10.9 4.72 1.68 0.16 17.46 174 707.9
18 March 35.76 10.32 4.28 1.75 0.17 16.52 185.4 697.1
19 March 38.63 10.65 4.64 1.8 0.14 17.23 171.7 701.7
20 March 40.52 10.44 4.39 1.95 0.18 16.96 180.5 682.3
21 March 37.97 10.88 4.61 1.89 0.17 17.55 183 709.3
22 March 34.51 10.49 5.09 1.71 0.22 17.51 185.9 715.1
23 March 35.39 10.61 4.68 1.74 0.21 17.24 180 724.8
24 March 37.28 10.4 4.44 1.89 0.23 16.96 178.8 715.4
25 March 55.07 15.05 12.71 4.4 0.48 32.64 184.3 720.6
26 March 70.17 18.89 17.04 6.9 0.61 43.44 185.3 717

On 2 April 2012, the content of H2 dissolved in the oil reached 185.76 µL/L and the content of
C2H2 reached 2.98 µL/L. The online monitoring system was activated. Then, the ultrasonic partial
discharge test of the transformer was carried out, and an internal discharge phenomenon was found.
During the overhaul of this transformer, the maintenance personnel found that overhang angle of the
silicon steel sheet on the transformer core iron yoke parts exhibited severe deformation, as shown
in Figure 6. The protrusive tips of the overhang angles in magnetic fields vibrated strongly and
caused the contact discharge, resulting in the abnormal content of dissolved gases in the transformer
oil. The discharge did not affect the solid insulation, so the contents of CO and CO2 exhibited no
significant change. The predicted results of the LSTM model are consistent with the actual transformer
running status.

Figure 6. The fault location of the transformer as found by maintenance.

4.2. Long-Term Prediction of the Transformer Operating State

To evaluate the long-term prediction performance of the three models, experiments with a forecast
horizon of one month were implemented. The results are shown in Figure 7.

Compared with Figure 5, with an increase in the prediction horizon, the prediction accuracies of
the three models are reduced. As seen from Figure 7, the accuracies with the prediction horizon of one
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month ranked in the order of BPNN, SVM, and LSTM from worst to best. Compared with the BPNN
and SVM models, the accuracy of the LSTM model in the training set is increased by 17.9% and 8.8%,
respectively, and the accuracy of test set is increased by 18.3% and 9.7%, respectively.

Figure 7. Prediction accuracy of different models (prediction scale: one month).

Taking a 220 kV #1 transformer as an example, the basic condition of the transformer is as follows.
The date of production is April 2000, and the date of initial operation is June 2000. The transformer
is in basically good operation, and the overall load rate is relatively high. The chromatographic
period detection found that the total hydrocarbon content of the transformer in 2010, after meeting
the peak demands in the summer, had a greater increase. Subsequently, the total hydrocarbon
content slowly increased year after year but did not exceed the alarm value. Except for the total
hydrocarbons, the remaining characteristic gases dissolved in the insulation oil were normal. Some of
the oil chromatography online monitoring data from June to July 2013 are shown in Table 5.

Table 5. Oil chromatography online monitoring data for the 220 kV #1 transformer (units: µL/L).

Date H2 CH4 C2H4 C2H6 C2H2 TH CO CO2

15 June 2.67 58.35 22.75 23.59 0 104.69 110.2 516.3
26 June 2.37 66.35 23.28 25.14 0 114.76 116.4 522.6
7 July 2.67 78.70 20.6 22.35 0 121.64 117.0 519.8
15 July 2.37 86.05 20.68 22.19 0 128.93 108.1 514.7
24 July 2.37 99.69 20.15 21.89 0 141.73 102.4 510.8

The data from June to July 2013 were used to predict the operating state of the transformer one
month later, on August 2013. As the load rate of this transformer is special, we consider both the
under-load and full-load cases in the predictions.

In the under-load condition, the probabilities predicted from the BPNN, SVM, and LSTM
models corresponding to states v1–v4 are [0.0027, 0.2956, 0.5711, 0.1306], [0, 0.2735, 0.5172, 0.2093],
and [0, 0.1038, 0.6096, 0.2866], respectively. The BPNN, SVM, and LSTM model prediction results all
correspond to the v3 (severe) state. We predict that there should be a severe fault inside the transformer.
Although the transformer can continue to run, operation and maintenance personnel should arrange
maintenance work as soon as possible.

In the full-load condition, the probabilities predicted from the BPNN, SVM, and LSTM
models corresponding to states v1–v4 are [0, 0.2173, 0.2748, 0.5079], [0, 0.1985, 0.2561, 0.5454] and
[0, 0.1835, 0.2149, 0.6016], respectively. The BPNN, SVM, and LSTM model prediction results all
correspond to the v4 (the worst) state. Thus, the transformer needs to be repaired immediately.

In fact, the operation and maintenance personnel in the substation contacted the dispatching
department and prohibited the operation of this transformer under full-load conditions. After the
summer, during the overhaul of this transformer, the maintenance personnel found that a severe
overheating fault had occurred under part of the clamp and tank potential connection. There were
more obvious signs of overheating discoloration. For the controlling load, the fault of this transformer
had not yet entered the critical worst running conditions.
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5. Conclusions

This paper studied the status of early warning technologies for power transformers and
proposed a transformer operating state prediction method based on the data-driven LSTM network.
The conclusions are as follows.

(1) By analyzing the state panoramic information of the transformer, the degree of deterioration
of the transformer is depicted in the RDD. The membership relationship between the RDD of each
indicator and the state of the transformer is obtained using fuzzy treatment. Then, the LSTM network is
constructed to automatically extract the feature relationship between each indicator and the predicted
operating state.

(2) The case studies show that the proposed method can effectively predict the operating state of
power transformers. The model based on LSTM networks predicts the state of the transformer with
an accuracy of 94.4% for a one-week forecast horizon and 81.2% for a one-month forecast horizon.
Compared with the traditional BPNN and SVM methods, the LSTM model can more accurately reflect
the real situation of the transformers.

(3) By predicting and analyzing the operating state of the transformers, the prediction results
based on the LSTM network are in accordance with the actual conditions. The difference in the
predicted state probabilities is more obvious, and the results are more convincing.

We will focus on improving the LSTM model in future research. The deep learning methods will
be combined with intelligent optimization algorithms to determine the optimal parameters of the
prediction model.
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Nomenclature

x and xt an input sequence, the input of recurrent neural network at time t
ht and zt the hidden layer state and the output of recurrent neural network at time t

V, U, and W
the weight matrices of the output layer, the input layer, and the hidden layer
state ht−1 as the input of recurrent neural network

f t, it, and ot the state of forget gate, input gate, and output gate of LSTM at time t
Wf, Wi, and Wo the weight matrices of the forget gate, input gate, and output gate of LSTM
bf, bi, and bo the bias items of the forget gate, input gate, and output gate of LSTM
ct and bc the memory cell state at time t and the bias of the input memory cell of LSTM
V and vi transformer operating state set and transformer operating state (i = 1, 2, 3, 4)
r and G(·) the RDD of the indicator and the deterioration function
rl and rm the RDD of the extremely large indicator and minimal indicator
al and am the optimal value of the extremely large indicator and minimal indicator
bl and bm the alarming value of the extremely large indicator and minimal indicator

li, lij, and wj
the score for different state levels of indicator i, the score for different state
levels of indicator i given by the jth expert, and the weight of the jth expert

d, dk, dmin k, dmax k, and dk

the current monitoring value, the monitoring data of the indicator k,
the minimum monitoring data of the indicator k, the maximum monitoring
data of the indicator k, and the standard deviation value of dk

A, NP, and NT
the overall average accuracy, the number of correctly predicted samples,
and the total number of samples in the dataset

φvi (·)
the RDD of the gases dissolved in the oil corresponds to different operating
state membership functions (i = 1, 2, 3, 4)
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