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Abstract: In this paper, an on-line parameter identification algorithm to iteratively compute the
numerical values of inertia and load torque is proposed. Since inertia and load torque are strongly
coupled variables due to the degenerate-rank problem, it is hard to estimate relatively accurate
values for them in the cases such as when load torque variation presents or one cannot obtain a
relatively accurate priori knowledge of inertia. This paper eliminates this problem and realizes
ideal online inertia identification regardless of load condition and initial error. The algorithm in this
paper integrates a full-order Kalman Observer and Recursive Least Squares, and introduces adaptive
controllers to enhance the robustness. It has a better performance when iteratively computing load
torque and moment of inertia. Theoretical sensitivity analysis of the proposed algorithm is conducted.
Compared to traditional methods, the validity of the proposed algorithm is proved by simulation
and experiment results.

Keywords: full-order observer; parameter identification; motor control

1. Introduction

The permanent magnet synchronous motor (PMSM) has several advantages such as high torque
density, high precision, and high efficiency. Thus, it has been widely applied in modern industrial
fields such as industrial robotics and electric vehicles. Much research has been conducted to improve
PMSM control performance [1–5]. Nevertheless, precise PMSM control requires accurate knowledge
of the system parameters which must be measured or identified.

Among these system parameters, moment of inertia is an essential parameter which can influence
the design of speed loop controllers [6,7]. Also, load torque information is necessary to cope with
disturbances [8,9]. Thus, their knowledge is of significance to the desired system performance.

However, moment of inertia and load torque cannot be obtained without identification methods.
Therefore, many studies have researched this field. The inertia identification methods in [10–12]
estimate offline and a specific speed command, such as a sine wave, is implemented in such
identification methods. For load torque estimation, an observer is mostly widely used [13–15].
One assumption in conventional observer design is that the moment of inertia in the system model is
known. However, due to the complex working environments, in real applications it is difficult to obtain
a relatively accurate a priori value to implement the referenced algorithms. Moreover, for industrial
robotics cases, the load torque may vary from time to time. Since inertia and load torque are variables
which cannot be precisely decoupled, if inertia is estimated by the observer and the identified inertia
is one of the parameters in the identification algorithm, the observer will be severely affected by the
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initial value of the moment of inertia, and in the worst case, the system will be unstable. The common
way is solve this issue is to combine two methods together to solve this problem [16–24].

Several studies have been done to overcome this coupling problem. The authors in [16] proposed
a digital disturbance observer integrated with an inertia self-turning function. In [17], a full-order
Luenberger Observer is used to obtain the knowledge of load torque, velocity and rotor position.
The rotor position is the only measurement signal which is used to correct the knowledge of the
machine load torque. However, the observer is severely affected by the initial value of the inertia.
Moreover, the system will be unstable in the worse cases. Like [17], in [18] an Extended State Observer
is proposed to obtain load torque and velocity, then the knowledge of load torque is used to identify
the inertia. Regardless of the accuracy of the identified inertia, there is still an estimated error of the
observer in this approach. The authors in [19] proposed an inertia identification algorithm based on a
complex frequency-domain method. A Gopinath load torque observer is also used in [19] to obtain the
knowledge of the load torque. The main disadvantage is that it requires massive computations and is
quite time consuming. Due to the fact that the Kalman filter algorithm has low dependence on the
model [20–22], thus it is a better choice for velocity and load torque observation. In [23], an algorithm
which integrates a Kalman Observer (KO) and recursive least squares (RLS) was proposed, where the
RLS estimator is used for inertia identification and the KO is mainly used to obtain the knowledge of
load torque, but the authors in [23] mentioned that it’s hard to choose appropriate values of the system
noise matrix and measurement noise matrix in the KO. Like [23], the authors in [24] also used KO and
RLS to obtain knowledge of both load torque and inertia. The main disadvantage of the algorithms
in [23,24] is that the values of the system noise matrix and measurement noise matrix are hard to
choose and difficult to transport to other platforms. Also, all the aforementioned researches do not
concern time-varying and load torque conditions.

In this paper, the RLS method is used to estimate the moment of inertia meanwhile the KO
is also adopted to observe load rotor position, velocity and load torque. Based on the original KO
and RLS, the Adaptive Kalman Observer-Recursive Least Square (AKO-RLS) is proposed by adding
adaptive algorithm to both the KO and the RLS. The main contribution is that the AKO-RLS algorithm
can realize ideal inertia identification regardless of the load torque condition. Compared with the
aforementioned existing methods, there are two main advantages to the AKO-RLS algorithm. Firstly,
AKO-RLS improves the robustness in that it can achieve a better performance under the time-varying
load condition. Secondly, AKO-RLS is more accurate when implemented with an unprecise pre-set
inertia. With the aforementioned advantages, the contribution of this research is that while nowadays
the control performance of most most servo products, such as Yaskawa, Fuji and Panasonic, is very
good (the bandwidth of their speed loop and current loop is getting higher and higher), however,
their auto-tuning function cannot operate with a sine-wave load, which is common for the robotic
manipulator arms: they cannot identify inertia under a time-varying load-torque, which is exactly
what is needed in the field of robotics. Optimization of the speed loop controller requires real-time
knowledge of the inertia and load torque, which is main concern of this paper. With the proposed
AKO-RLS algorithm, one can eliminate the impact of load torque variation below a certain frequency
and let the inertia identification adapt to the most industrial field cases.

This paper is organized as follows: first, the PMSM discrete-time model is shown. Based on this,
the structure of Kalman Observer is also presented in Section 2. Then, the RLS algorithm is explained in
Section 3 and the original KO-RLS is also derived. In Section 4, the details and design of AKO-RLS are
shown. Section 5 demonstrates the sensitivity analysis of the proposed algorithm. Then, simulations
and experiments results are presented to verify the effectiveness of proposed algorithm in Section 6.
Finally, Section 7 concludes the paper.
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2. Design of the Kalman Observer

The PMSM mechanical equation can be expressed as:

dω

dt
= −B

J
ω− 1

J
TL +

KT
J

iq (1)

dθ

dt
= ω (2)

where θ is the rotor position, ω is the motor mechanical angular velocity, TL is the external force and
disturbance torque, KT is the motor torque constant, iq is the q-axis current, J is the equivalent motor
and load inertia and B is the friction viscous coefficient

In most cases TL can be considered as a slow time-variant. Therefore, its differential can be
described as:

dTL
dt

= 0 (3)

Equations (1)–(3) can be concluded in state space form:
.
θ
.

ω
.
TL

 =

 0 1 0
0 − B

J − 1
J

0 0 0


 θ

ω

TL

+

 0
KT
J
0

iq (4)

Discretizing (4) by the Euler method, (5) can be obtained:{
x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Hx(k) + v(k)

(5)

where k is the sampling number, X = [θωTL]
T is the state variable, u =

[
iq
]

is the control signal,
Y = [θ] is the observed signal, and TS is the sampling time interval:

A =

 1 TS 0
0 1− B

J Ts − TS
J

0 0 1

; B =

 0
TsKT

J
0

; H =
[

1 0 0
]

where w =
[
wθ wω wTL

]T and v = [vθ ]
T denote the system and measurement Gaussian noises,

respectively. wθ and vθ are variables that represent the system and measurement Gaussian noises of
the rotor position signal θ, respectively. Similarly, wω and wTL denote the system noises of the angular
velocity w and the load torque TL, respectively. v is a first-order matrix because θ is the only observed
signal. wθ , ww and wTL are not related to each other and other variables. Their covariance is equal to:

Q = cov(w) =

 qθ 0 0
0 qω 0
0 0 qTL


R = cov(v)

(6)

qθ is the variance of wθ and qw and qTL are the variances of ww and wTL , respectively. From (5),
the recursive form of the Kalman Observer can be obtained. It includes two distinct phases,
the prediction phase and the updating phase:
• The prediction phase: {

X̂−(k) = AX̂(k− 1) + Bu(k)
P−(k) = AP(k− 1)AT + Q(k)

(7)
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• The updating phase: {
X̂(k) = X̂−(k) + K(k)V(k)
P(k) = (IK(k)−H) + P−(k)

(8)

where:
M̂−(k) = HX̂−(k)
V(k) = M(k)− M̂−(k)
K(k) = P−(k)HTS−1(k)
G(k) =

(
HP−(k)HT + R(k)

)−1

(9)

V(k) is the innovation. S(k) represents the covariance of V(k). I denotes the unit matrix. X̂−(k) and
X̂(k) represent the a priori estimated state variable and a posteriori estimated state variable in the
prediction phase, respectively. P−(k) and P(k) are the a priori estimated error covariance and the a
posteriori estimated error covariance after the updating phase.

3. Inertia Identification by RLS Estimator and Original KO-RLS

3.1. Inertia Identification by RLS

Equation (1) can be transformed to the z plane by applying the Z-transformation with the
zero-order hold:

ω(z) = Z{ 1−eT1s

s
1

B+sJ }(KTiq(z)− TL(z))

= b1z−1

1+a1z−1 (KTiq(z)− TL(z))
(10)

where T1 denotes the sampling time interval of the RLS algorithm and:

a1 = − exp
(
−B

J
T1

)
, b1 =

1
B

(
1− exp

(
−B

J
T1

))
(11)

Then the RLS estimator for estimating a1 and b1 can be written as:
η(n) = ψ(n−1)τ(n)

λ+τT(n)ψ(n−1)τ(n)
e(n) = d(n)− σT(n− 1)τ(n)
σ(n) = σ(n− 1) + η(n)e(n)
ψ(n) = 1

λ ψ(n− 1)− 1
λ η(n)τT(n)ψ(n− 1)

(12)

in which: 
σ(n) =

[
a1 b1

]T

d(n) = ω(n)

τ(n) =
[
−ω(n− 1) KTiq(n− 1)− TL(n− 1)

]T
(13)

This RLS algorithm can be obtained by minimizing the least squares cost function [25]:

ς(n) =
n

∑
i=0

λn−i
[
d(i)− σT(n)τ(i)

]2
(14)

λ is the forgetting factor, set in the range of 0.95–1 to ensure the rapidity of RLS. According to (11),
J and B can be obtained by solving the following equation:{

B̂ = 1+a1
b1

Ĵ = − B̂T1
ln(−a1)
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3.2. Details about KO-RLS

The KO-RLS can be obtained through connecting them by updating parameters to each other.
TL and w in (10) can be substituted by TL and ω̂ provided by the KO. Moment of inertia J in A in (5) of
KO can also be replaced by the identified inertia Ĵ provided by the RLS estimator. Since the impact of
B can be ignored compared to J [19], B in (5) is treated as a constant in this paper.

To avoid divergence problem, the observed values T̂L and ω̂ provided by the KO should be
updated to RLS estimator during the steady-state of KO, which can be identified by V(k)VT(k).

From above, through judging the innovation V(k), which situation should KO and RLS update
their parameters to each other is determined. As this is summed up in Table 1.

Table 1. The KO-RLS Algorithm.

KO-RLS Algorithm

1 k← 0
2 Set original states for KO: KO← P(0), X(0), Ĵ(0), B, H, Q(0), R
3 Set original states for RLS: RLS← σ(0), ψ(0), λ(0), TL(0)
4 While (1)
5 Read inputs: θ(k), iq(k)
6 calculate X̂k+1, Pk+1, Vk+1 by KO in (7), (8), (9)
7 calculate Ĵ(k + 1), σ(k + 1), ψ(k + 1) by RLS in (12), (13)
8 if Vk+1VT

k+1 ≤ ethreshold then
9 A(k + 1)← Ĵ(k + 1)
10 τ(k + 1)← ω̂(k + 1), T̂L(k + 1)
11 output: Ĵ(k + 1), T̂L(k + 1), ω̂(k + 1), θ̂(k + 1)
12 k← k +1

4. Proposed AKO-RLS Algorithm

4.1. Design of the Adaptive Algorithm in KO

In the traditional Kalman Observer, the covariance matrix of the system noise Q and covariance
matrix of the measurement noise R are both treated as a constant matrix. A larger Q means that the
prediction generated by the system model is less credible and the observer attains a faster transient
response, but during steady-state, this results in ripples [23]. Similarly, a larger R means that the
measurement results are relatively less credible.

In the past work, the moment of inertia J can be precisely achieved, also, the load torque doesn’t
vary with time, so an accurate system parameter of A in (5) can be achieved. The common way of
choosing Q and R is that qθ , qω and qTL in Q are set relatively small and value in R is set relatively
large because the system model is more creditable. i.e., Q = diag(0.001, 0.001, 0.1) and R = [10].

However, it is difficult to obtain a relatively accurate priori value of J to implement the algorithm
in some industrial applications. In this case, obviously, the observed load torque T̂L provided by KO
which is used in RLS is inaccurate, and the identified inertia Ĵ has a large error deviating from true
value since they are variables that cannot be decoupled. Moreover, the load torque may vary in some
applications. In these situations, a larger Q should be chosen because the system model is unprecise,
and it can make convergence process faster. Along with the iterative computations of KO and RLS,
a smaller Q should be chosen during steady-state to ensure the stability of the algorithm.

From above, it is inappropriate to treat Q as constant matrix when implement with inaccurate
initial value or load torque variation exists.

Since the innovation V(k) in (9) contains the information of error between system model and
measurement model, the adaptive algorithm can be designed as:{

V(k)VT(k) ≥ ethreshold, Q(k + 1) = (1 + ρ)Q(k)
V(k)VT(k) ≤ ethreshold, Q(k + 1) = (1− ρ)Q(k)

(15)



Energies 2018, 11, 778 6 of 17

where ρ is a scalar ranges that from 0 to 1.
In Equation (9), it can be seen that elements in the gain matrix K are directly proportional to the

corresponding elements in Q and inversely proportional to R. When the system is under dynamics,
ρ can increase the values in Q to enhance the tracking ability. When the system is under steady-state,
ρ can guarantee steady-state performance by decreasing the values in Q.

4.2. Design of the Adaptive Algorithm in RLS

The inertia identification requires accurate information of load torque. However, the load torque
provided by KO may be unprecise because of the the inaccuracy of the pre-set inertia in KO. Moreover,
from (3), the load torque is treated as a constant, so if the load torque variation exists, the results of
RLS estimator will deteriorate.

From (14), λ is the forgetting factor which gives exponentially less weight to older error samples.
λ should become smaller to weaken the effect of unprecise results such as inaccuracy information
of load torque, preventing them from contributing to the algorithm, so it is inappropriate to set λ as
a constant

e(n) in (12) is the a priori error and computed at time n − 1. Then, the a posteriori error can be
expressed as:

ξ(n) = d(n)− σT(n)τ(n) = e(n)
[
1− τT(n)η(n)

]
(16)

The forgetting factor λ can be modified according to [26]:

E{ξ(n)e(n)} = E
{

e2(n)
[

1− τT(n)σT(n)τ(n)
λ(n) + τT(n)σT(n)τ(n)

]}
(17)

where E{·} denotes the expectations operator. E{ξ(n)e(n)} = τ2
υ is the power of distortion in

the system.
The expression of the variable forgetting factor can obtained by using (17) as:

λ(n) =
χ(n)τ2

υ (n)
τ2

e (n)− τ2
υ (n)

(18)

where χ(n) = τT(n)σT(n)τ(n), E
{

e2(n)
}
= τ2

e (n).
The AKO-RLS algorithm is summarized in Table 2 and the overall control scheme implemented

with the proposed algorithm is shown in Figure 1.

Table 2. The AKO-RLS Algorithm.

AKO-RLS Integration Algorithm

1 k← 0
2 Set original states for KO: KO← P(0), X(0), Ĵ(0), B, H, Q(0), R
3 Set original states for RLS: RLS← σ(0), ψ(0), λ(0), TL(0)
4 While (1)
5 Read inputs: θ(k), iq(k)
6 calculate X̂k+1, Pk+1, Vk+1 by AKO in (7), (8), (9)
7 calculate Ĵ(k + 1), σ(k + 1), ψ(k + 1) by RLS in (12), (13)
8 calculate χ(n + 1), τ2

υ (n + 1), τ2
e (n + 1), λ(n + 1) in (18)

9 if Vk+1VT
k+1 ≤ ethreshold then

10 Qk+1 = (1− ρ)Qk
11 A(k + 1)← Ĵ(k + 1)
12 τ(k + 1)← ω̂(k + 1), T̂L(k + 1)
13 else
14 Qk+1 = (1 + ρ)Qk
15 output: Ĵ(k + 1), T̂L(k + 1), ω̂(k + 1), θ̂(k + 1)
16 k← k +1
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In Figure 1a, the rotor position signal θ provided by the encoders is not implemented in the
control scheme. It just serves as the input of the proposed AKO to generate θ̂ and ω̂. They are
more precise than measurements and they can improve the performance of the servo system, which
is demonstrated in [13]. However, this only works well during steady-state. θ̂ and ω̂ cannot be
implemented during transient conditions because they are unprecise. From above, in this paper, θ and
ω should be implemented during transient, θ̂ and ω̂ should be implemented during steady-state.

Figure 1. Overall Schematic diagrams and photographs of hardware platform for system parameter
estimation. (a) Structure diagram of the integral PMSM drive system with AKO-RLS algorithm;
(b) photographs of experiment platform.

5. Sensitivity Analysis of the Proposed Algorithm

From (7) and (8), the description of T̂L can be obtained:

T̂L(n) = T̂L(n− 1) + K(n)×
(
θ(n)− θ̂(n)

)
(19)
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where K(n) denotes the gain of T̂L in K(n).
Similar to (10), applying a Z transformation to (1) and (2), θ can be described in the z plane with

zero-order hold:
θ(z) = Z

{
1−esTs

s
1

Bs+s2 J

}(
KTiq(z)− TL(z)

)
=
(

1
B

Tsz−1

1−z−1 − J
B

b1z−1

1+a1z−1

)(
KTiq(z)− TL(z)

) (20)

where a1 and b1 are identical to those in (10).
Applying a Z transformation to (19), and substituting θ(z) with (20) into (19), yields:

T̂L(z)
TL(z)

=
K(z)z

(
Ts

B(z−1) −
Jb1

B(a1+z)

)
K(z)z

(
Ts

B(z−1) −
Jb1

B(a1+z)

)
− z + 1

(21)

When T is sufficiently small, z ≈ 1 + sT. Then the continuous transfer function is obtained
as follows:

T̂L(s)
TL(s)

=
−K(s)

(
1

Bs −
Jb1

B(a1+1+sTS)

)
(1 + sTS)

sTS − K(s)
(

1
Bs −

Jb1
B(a1+1+sTS)

)
(1 + sTS)

(22)

All motor parameters agree with those in Table 3. All parameters of the AKO are identical to
those in the simulation section.

Table 3. PMSM Specifications.

Parameter Quantity

Rated Power 750 W
Rated Torque 2.39 Nm
Rated Speed 3000 r/min

Rated current 4.8 A
Pole-pairs number 4

Moment of inertia J with Loading motor 5.2 × 10−4 kg·m2

The amplitude characteristics with different K values are plotted in the Bode diagram in Figure 2,
according to (28).

Figure 2. Frequency characteristic with different K (input: TL, output: T̂L).

The ideal transfer function is T̂L(s)
TL(s)

= 1. Figure 2 shows that since the load disturbance is
low-frequency or constant in most situations, the tracking ability can be enhanced when the K can
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make the low-frequency gain bigger. Since K is a variable of K(n) which is related to Q and R. From (7)
and (9), a larger Q can result in a larger K. When the load torque varies, from the adaptive algorithm
in Table 2, Q is increased and results in an increased K to trace the load torque and attain better
transient performance.

Figure 3 shows the observed load torque T̂L implemented with different ρ. A 1.2 Nm load torque
suddenly increased at 0.1 s. All other parameters of AKO-RLS are set the same as those in Section 4.
ethreshold and ρ are hyper-parameters of the adaptive algorithm. A larger ρ in (15) can enhance the
tracking ability of the KO, which are in accordance with the results of Figure 2. However, if ρ is set
too large, it will result in shaking during steady-state. This can be explained by (15); if ρ is very large,
Q will change dramatically, it will fail to obtain the optimal values of Q. ethreshold is less important,
it can be regarded as an empirical value. It’s appropriate to set it within 1 × 10−4−1 × 10−7.

Figure 3. Simulation Comparison of T̂L implemented with different values ρ (a) Comparison of T̂L

with different values ρ (b) Large chart of (a).

According to [26], the variable forgetting factor is obtained by minimizing E
{

e2(n)
}
= τ2

e (n)
using the gradient-based method. When V(k)VT(k) in Table 2 are large, T̂L and ω̂ provided by KO,
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which are used as the inputs of RLS, subsequently causing a larger e(n) in (12), and in this situation,
from (18), λ becomes smaller to give less weight to these unprecise historic data, which can speed up
the process of the inertia identification and adapt to the load torque variation.

6. Simulation and Experiment

6.1. Simulation Analysis

To verify the validation of the AKO-RLS algorithm, simulation results are presented in this section.
The main parameters of PMSM used in this paper are shown in Table 3. The PI gains of the speed loop
are designed just follow Equations (40) and (41) in [19]. PI gains of the current loop are designed similar
to those of the speed loop according to pole zero cancellation. From Sections 2–5, it can be seen that
all parameters and equations in the paper are mechanical parameters and equations. We assume the
bandwidth of the current loop is infinite. It cannot be true in the industrial fields. However, as shown
in Section 6.2, the bandwidth of the current loop of our experiment platform is 500 Hz. In robotic
fields, the load torque changes much slower than 500 Hz, iq* can easily follow the true time-varying
load torque. Even with the delay of the current loop, it has little influence on the proposed algorithm.

The covariance of system noise Q and the covariance of measurement noise R are the weight
factors of the prediction model and measurement model, respectively. According to the method to
select weight factors in [27], since the rotor position θ is the only measured signal and relatively high
uncertainty of TL, in this paper, parameters of the AKO-RLS are chosen as Q(0) = diag(0.001, 0.01, 0.1),
R = [0.001], ethreshold = 1× 10−4, P(0) is set as a unit matrix. From Section 5 and Figure 3, ρ in (15) is
set as 0.1. For simplicity, all the initial values in (12) are set as 0, ψ(n) is set as a unit matrix. The initial
value of forgetting factor λ(0) is chosen as 0.99.

In traditional KO-RLS methods, its main parameters are chosen as Q = diag(0.001, 0.01, 1), R = [1],
λ = 0.99. All other parameters are identical to the AKO-RLS. Computational period of AKO-RLS and
KO-RLS are both 0.1 ms.

The actual inertia of the drive system is not time-varying during the simulation and experiment.
Also, because the inaccurate information of the inertia and load torque present (which is necessary to
verify the validation of the proposed algorithm), so under such condition, the observed θ̂ and ω̂ cannot
be implemented during transient conditions. All speed response in the simulation and experiment
results during transient are theω calculated by the θ.

In Figure 4, simulation contrastive results of AKO-RLS and KO-RLS are illustrated. The steady
state estimation errors of in AKO-RLS method and KO-RLS method are 1.2% and 5.6%, respectively.
Ĵ(0) in Â in Table 2 is set as 5J (J denotes the actual total inertia of the interconnect loading system).
From (1), the inertia identification requires changing speed. Since the speed command is 0–1000 rpm
repeated step command. Thus, the identified inertia resembles a staircase wave. The results of the
identified inertia Ĵ converge toward the true value when the speed changes. The identified inertia Ĵ
estimated by AKO-RLS converges faster than KO-RLS and during steady-state, it has a smaller error.
Also, the load torque observed by AKO-RLS shows no fluctuation during steady-state conditions.

In Figure 5, contrastive results of AKO-RLS and KO-RLS are illustrated. Load torque in sine
form (the value of peak-peak is 0.6 Nm and the period is 2 s, with a 0.2 Nm offset) is being added.
Besides, speed reference in triangle-wave (the range is from 300 rpm to 2800 rpm, the period is 0.599 s
approximately) is chosen. A repeated speed step command is not appropriate because the load torque
varies from time to time.
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Figure 4. Simulation Comparison of the two algorithms with initial value Ĵ(0) = 5J under 1.2 Nm
load torque and repeated speed command. (a) Speed response (blue); (b) Observed load torque T̂L

(black line denotes AKO-RLS result, red line denotes KO-RLS result); (c) identified inertia Ĵ (black line
denotes AKO-RLS result, red line denotes KO-RLS result).

Figure 5. Simulation Comparison of the two algorithms under sine-wave load torque and triangle-wave
speed command. (a) Speed response (blue); (b) Observed load torque T̂L (pink line denotes the true
load torque, black line denotes AKO-RLS result, red line denotes KO-RLS result); (c) identified inertia Ĵ
(black line denotes AKO-RLS result, red line denotes KO-RLS result).

A time-varied speed command is necessary to ensure the identified inertia converges faster.
AKO-RLS’s identified inertia needs about 0.5 s to converge to the steady-state. However, KO-RLS’s
identified inertia cannot converge under sine-wave load torque. Steady state estimation errors of in
AKO-RLS method and KO-RLS method are 3.8% and 11.6%, respectively. The load torque provided by
the KO-RLS method has big ripples, besides, the inertia provided by KO-RLS method has a relatively
large error than that of AKO-RLS and it fluctuates during speed dynamic processes, because the
load torque and the moment of inertia are strongly coupled variables. Both the observed load torque
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shows a little lag compared to the true load torque. However, it has little impact on the results of the
identified inertia.

6.2. Experimental Analysis

Figure 1b shows the experiment platform adopted in this paper. All control algorithms were
implemented in a TI DSP TMS320F28335 microcontroller. The current loop bandwidth of the
experiment servo motor is 500 Hz. The current loop bandwidth of the experiment servo motor
is relatively low, but it does not deteriorate to the validation of the algorithm.

The parameters of the KO-RLS and AKO-RLS algorithm are same as those in the simulation.
The actual inertia of the drive system is not time-varying during the experiment.

The initial value of identified inertia Ĵ(0) in Â in Table 2 is set as 0.2J or 5J (J is the actual total
inertia of the interconnect loading system). Since the inertia of the experiment motor system is
relatively small, the choices of initial values Ĵ(0) = 0.2J and Ĵ(0) = 5J will greatly affect the control
performance, thus it is adopted to prove the validity of the proposed algorithm. Figures 6 and 7 show
the experimental comparison between the AKO-RLS and KO-RLS with initial values Ĵ(0) = 0.2J and
Ĵ(0) = 5J under 1.2 Nm load torque, respectively. The speed command is a repeated 0–1000 r/min
change. In Figures 6 and 7, it can be seen that both KO-RLS and AKO-RLS’s identified inertia need six
speed change instances to converge to the steady-state. The inertia identification needs time-varying
speed. The identified inertia converges faster during the speed variation. Thus, the converge time
is mainly determined by the rise time and fall time of the speed. The identified inertia in Figures 5
and 8 converges faster than it in Figures 6 and 7, because the speed command in Figures 5 and 8 is a
triangle wave and speed changes all the time. The results are summarized in Table 4. There are patent
differences between two algorithms. During steady-state, the load torque observed by AKO-RLS
shows no fluctuation when speed changes and identified inertia Ĵ provided by AKO-RLS is more
precise. The observed load torque T̂L of two algorithms all have relatively larger errors, which might
be caused by the fact that knowledge of the viscous coefficient B in real systems cannot be accurately
obtained and it deteriorates the performance of the observer.

Figure 6. Comparison of two algorithms with initial value Ĵ(0) = 0.2J and 1.2 Nm load torque,
0–1000 rpm repeated step speed command. (a) Speed response (blue); (b) Observed load torque T̂L

(black line denotes AKO-RLS result, red line denotes KO-RLS result); (c) identified inertia Ĵ (black line
denotes AKO-RLS result, red line denotes KO-RLS result).
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Figure 7. Comparison of two algorithms with initial value Ĵ(0) = 5J and 1.2 Nm load torque,
0–1000 rpm repeated step speed command. (a) Speed response (blue); (b) Observed load torque
T̂L (black line denotes AKO-RLS result, red line denotes KO-RLS result); (c) identified inertia Ĵ (black
line denotes AKO-RLS result, red line denotes KO-RLS result).

Figure 8. Comparison of two algorithms under sine-wave load torque and triangle-wave speed
command. (a) Speed response (blue); (b) Observed load torque T̂L (pink line denotes the true load
torque, black line denotes AKO-RLS result, red line denotes KO-RLS result); (c) identified inertia Ĵ
(black line denotes AKO-RLS result, red line denotes KO-RLS result).
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Figures 9 and 10 show the contrastive results between AKO-RLS and KO-RLS with initial values
Ĵ(0) = 0.2J and Ĵ(0) = 5J, respectively. Under 1.2 Nm load torque condition and a random step
speed command. In Figure 9, AKO-RLS’s identified inertia needs six speed changes to converge to the
steady-state. But KO-RLS’s identified inertia needs about 10 speed changes. In Figure 10, both KO-RLS
and AKO-RLS’s identified inertia need six speed changes to converge to the steady-state. It can also be
explained by the inertia identification needs time-varying speed. The torque limitation of the loading
servo is set as ±1.2 Nm. The waveform of the observed load torque in Figures 9b and 10b is like a
square wave. This is not an error. It is caused by the PI controller of the load PMSM. The speed error of
the loading servo is negative when the speed of the driving motor is positive and load torque provided
by the loading servo is 1.2 Nm. When speed changes from positive to negative, the accumulator of the
integrator of the PI controller desaturates. The load torque provided by the loading servo changes
from 1.2 Nm to −1.2 Nm. In transient process, T̂L of KO-RLS fluctuates when the speed changes,
while AKO-RLS ‘doesn’t overshoot. During steady-state, the estimated errors of Ĵ in steady state of
AKO-RLS are much smaller than KO-RLS. The results are summed up in Table 5.

Figure 9. Comparison of two algorithms with initial value Ĵ(0) = 0.2J and 1.2 Nm load torque, random
step speed command. (a) Speed response (blue); (b) Observed load torque T̂L (black line denotes
AKO-RLS result, red line denotes KO-RLS result); (c) identified moment of inertia Ĵ (black line denotes
AKO-RLS result, red line denotes KO-RLS result).

In Figure 8, contrastive results of AKO-RLS and KO-RLS are illustrated. Load torque in sine form
(the value of peak—peak is 0.6 Nm and the period is 2 s, with a 0.2 Nm offset) is added. Besides, speed
reference in triangle-wave (the range is from 300 rpm to 2800 rpm, the period is 0.599 s approximately)
is chosen. The frequency of the time-varying load torque is much slower than the current loop
bandwidth of the experiment platform. The influence of the current loop can be ignored. The process
of AKO-RLS inertia identification needs about 1 s to converge to steady-state. It’s faster than the
results in Figures 6, 7, 9 and 10 because the speed command in Figure 8 is a triangle wave. However,
KO-RLS’s identified inertia cannot converge under sine-wave load torque. Steady state estimation
errors in the AKO-RLS method and KO-RLS method are 3.8% and 11.6%, respectively. Also, it can
be seen that dynamic responses between the two are quite different, and share a smaller distortion
when under AKO-RLS method, but it has high frequency ripple, and this is caused by the inherent
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system delay. The observed load torque shows a little lag compared to the true load torque, but it has
little impact on the identified inertia. Considering the current loop period is 0.1 ms and the speed loop
period is 1 ms, so the mechanical time constant is much larger than the electrical constant, this will
lead to fluctuation during speed variation, but, it can be seen that the inertia identification is still good,
even with this ripple.

Figure 10. Comparison of two algorithms with initial value Ĵ(0) = 5J and 1.2 Nm load torque, random
step speed command. (a) Speed response (blue); (b) Observed load torque T̂L (black line denotes
AKO-RLS result, red line denotes KO-RLS result); (c) identified moment of inertia Ĵ (black line denotes
AKO-RLS result, red line denotes KO-RLS result).

Table 4. Experiment Identification Results (under 1.2 Nm and repeated speed step command).

Values under Different Methods Speed Command
Final Values (Steady State)

Ĵ(0) = 0.2J Ĵ(0) = 5J

AKO-RLS
∣∣TL − T̂L

∣∣/TL repeated 7.8% 8.2%∣∣J − Ĵ
∣∣/J speed 4.5% 3.9%

KO-RLS
∣∣TL − T̂L

∣∣/TL step 8.7% 8.9%∣∣J − Ĵ
∣∣/J command 19.2% 12.8%

Table 5. Experiment Identification Results (under 1.2 Nm and random speed step command).

Values under Different Methods Speed Command
Final Values (Steady State)

Ĵ(0) = 0.2J Ĵ(0) = 5J

AKO-RLS
∣∣TL − T̂L

∣∣/TL Random 8.5% 8.6%∣∣J − Ĵ
∣∣/J speed 4.5% 5.4%

KO-RLS
∣∣TL − T̂L

∣∣/TL step 8.6% 8.8%∣∣J − Ĵ
∣∣/J command 20.8% 12.8%
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7. Conclusions

Load torque and moment of inertia are coupled variables, so the results of identified inertia
will deteriorate when the load torque varies or implemented with unprecise initial values. In this
paper, a more robust and adaptive algorithm for inertia identification called AKO-RLS is proposed.
Compared with the traditional KO-RLS method, the proposed algorithm can work well even when
implemented with an initial value 0.2 or 5 times the true inertia value. Also, the impact of a frequency
0.5 Hz, peak-peak value 0.6 Nm sine-wave load torque can be eliminated and the AKO-RLS can have
a relatively good performance under such load torque variation. The identification results of the
proposed AKO-RLS algorithm are more accurate and robust, which is validated by both simulations
and experiments. The proposed algorithm can let the inertia identification adapt to the most industrial
field cases. Further work will focus on industrial robotics applications, a field where moment of inertia
and load torque are both time-varying [28].
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