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Abstract: Radio frequency (RF) enabled energy harvesting has garnered increasingly broad
applications in energy-constrained wireless networks. In this context, the actual available energy
is constrained by the harvesting threshold of RF harvesters. In this paper, we first propose two
new metrics, effective energy harvesting probability (EEHP) and spatial mean harvestable energy (SMHE)
to characterize the availability of ambient RF energy. Assuming that the transmitters are spatially
distributed according to a d-dimensional homogeneous Poisson point process (HPPP), we derive the
distributions of the ambient RF energy for networks, from the perspective of information receivers,
with and without interference control (IC). The corresponding EEHP and SMHE are given in integral
forms for the case with IC and inverse Laplace transform form for the case without IC, respectively.
For a special case where the dimension to path loss ratio equals 0.5, closed-form exact/approximate
expressions for EEHP and SMHE are derived. Analytical results are validated by Monte Carlo
simulations. Numerical results with distinct network parameters indicate that the harvesting
threshold always has a significant effect on the EEHP, while the impact on SMHE can be ignored as
the transmitter density increases. The general unified framework considered in this paper expands
the applicability of the derived results to arbitrary dimensional networks.

Keywords: energy harvesting; stochastic geometry; harvesting threshold; RF powered communications

1. Introduction

Wireless networks with energy-constrained nodes typically have a limited lifetime severely
limiting their sustained application [1]. RF energy harvesting is becoming a promising approach to
power such energy-constrained wireless nodes. Specifically, RF energy harvesting capability allows
wireless devices to exploit energy from radio signals for their information transmission. RF enabled
wireless powered communications (WPC) is attracting increasing interest in many domains, especially
in wireless sensor networks and the Internet of Things (IoT) [2]. As radio signals are quite weak
(due to exponentially decaying path loss effects), improving energy harvesting efficiency finds broad
acceptance and new applications. To this end, possible approaches include: (i) shortening the distance
between the transmitter and RF energy harvesting node and (ii) exploiting co-channel interference
from other access points (APs) (usually named ambient RF energy) as energy sources. Fortunately,
dense large scale wireless networks (LSWN) like urban vehicle ad hoc networks and future 5G
cellular networks may meet these two requirements [3]. These networks provide wireless devices the
opportunity to harvest energy in sufficiently short distance and/or accumulate possibly more energy
from nearby transmitters.
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RF energy harvesting in large-scale networks has been analyzed in [4–8]. In the inspiring
work of [4], opportunistic energy harvesting in cognitive radio networks has been studied where
the secondary users harness the energy radiated by nearby active primary transmitters. In [5],
simultaneous information and energy transfer with feasible power control strategy have been studied
in large scale networks without/with relaying, under constraints of average harvested-energy and
outage probability. In [6], the feasibility of simultaneous information and energy transfer in LTE-A
small cell networks was discussed, the energy harvesting performance was maximized subject to
information transfer constraint. Che et al. propose a harvest-then-transmit protocol for WPC networks
by partitioning each frame into a downlink phase for energy transfer, and an uplink phase for
information transfer [7]. By jointly optimizing frame allocation strategy and the transmit power,
the wireless nodes’ spatial throughput is maximized. The performance of network coding-aided
cooperative communications in large scale networks is studied [8], where the relays are powered by
RF energy.

In the trade-off design of WPC, the evaluation of energy harvesting performance is critical.
There are two main challenges in this endeavor. The first challenge involves the accurate modeling of
the harvested-energy, which is closely related to the path loss model and the channel fading model.
In [4,7], taking into account its tractability, an unbounded path loss (UBPL) model is employed to
analyze the amount of harvested-energy. However, the UBPL model suffers from the issue of infinite
harvested energy when the transmitters get arbitrarily close to the receiver. While this singularity can
be ignored in relatively sparse networks [9], the harvested-energy would be overestimated in denser
networks. The path loss model adopted in [5] is bounded and nonsingular, yet it only formulates
the average harvested-energy over the plane, and it is insufficient to analyze the performance of
individual nodes. The second major challenge in quantifying performance is the availability analysis
of the harvested-energy. The root of this challenge lies in the fact that only the RF power that exceeds a
certain threshold can be harvested (due to the harvester’s circuit limits [4,10]). This factor is considered
by defining a harvesting zone around the transmitter in [4]. It is important to note that, in a dense
network, it is also possible for nodes located at the intersection of transmission ranges of adjacent APs
harvest enough energy to exceed the harvesting threshold.

1.1. Related Works

There have been some recent efforts on quantifying energy harvesting capacity in large scale
networks. Most of these works adopt stochastic geometry tools to model and analyse the RF energy
harvested from randomly located transmitters. The two most important network models are Ginibre
α-determinantal point process (DPP) [11] and homogeneous Poisson point process (HPPP) [12–16],
due to their mathematical tractability. Besides, the channel model (including large and small scale
fading) also affects the harvesting performance. We summarize and present a comparison of system
models and the associated performance results presented in related works in Table 1.

In [11], the mean RF energy harvesting rate was characterized and the upper bound of power
outage probability was derived without considering small scale fading. A K-tier HPPP cellular model
accompanying with Rayleigh fading channel was investigated in [12]. The CDF of RF energy was
leveraged to evaluate the uplink transmission probability and the coverage probability of cellular
users. To study the energy efficiency of wireless-powered cellular networks, authors of [16] derived the
closed-form mean of RF energy for BPL and Rayleigh channel model. Instead of modeling transmitters
as infinite PPP, the authors of [13] used a set of a finite annulus with PPP distributed nodes to model
the transmitter locations. The CDF of incident power was formulated and represented by an infinite
series. In [15], the mmWave energy harvesting performance was studied in the network where power
beacons and energy harvesting nodes both constitute a PPP. Considering BPL and Nakagami fading
model, the CDF of RF energy was obtained by integrating the Gamma function. Other than mmWave
base stations, the work of [14] also investigated the RF energy harvesting capacity for Sub-6GHz
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small cellular networks. The CDF of RF energy from sub-6GHz and mmWave base stations were both
presented in integral form.

Table 1. Comparison of related works.

Literature Network Model Large Scale
Fading Model

Small Scale
Fading Model RF Energy Harvesting Performance

Flint et al. [11] Ginibre α-DPP in
R2 BPL Not considered Exact mean; Upper bound for CCDF

Sakr and Hossain [12] K-tier HPPP in R2 UBPL Rayleigh CDF in integration form; closed-form
for α = 4

Oliveira and Oliveira [13] finite HPPP in R2 BPL Rayleigh
Approximated CDF in infinite series,
modeled by generalized Gamma
distribution and Normal distribution

Wang et al. [14] 2-tier HPPP in R2

Sub-6GHz:
UBPL/
mmWave:Blockage
path loss model

Sub-6GHz:
Nakagami;
/mmWave:
not considered

sub-6GHz:CDF in integral form; exact
form for infinite antennas number/
mmWave: CDF in integral form

Khan and Heath [15] HPPP in R2 BPL Nakagami CDF in integral of Gamma function

Zewde and Gursoy [16] HPPP in R2 BPL Rayleigh Mean in closed-form

Our work HPPP in Rd BPL Rayleigh

LSWN-IC: CDF in integral form;
closed-form for δ = 0.5. Mean in
integral form; exact upper bound /
LSWN-noIC: CDF in inverse Laplace
function; lower bound for δ = 0.5. Mean
in inverse Laplace function; exact upper
bound and compact approximation for
δ = 0.5.

1.2. Contributions

In this paper, by modeling the transmitter positions as a d-dimensional homogeneous Poisson
point process (HPPP), we investigate the availability of the ambient RF energy at a typical point in a
large scale wireless network. The availability includes two aspects: the effective energy harvesting
probability (EEHP) and the spatial mean harvestable energy (SMHE). The former is defined as the
probability that the harvested-energy of a node exceeds harvesting threshold, which indicates the
effectiveness of the incident power. The latter indicates the average available energy over the entire
space. To remove the singularity of UBPL model, we adopt a bounded path loss (BPL) model and get
finite mean of the RF energy. Another distinct aspect of this work that differentiates it from prior efforts
is that we consider a multidimensional model which has not been investigated in RF energy harvesting.
Beyond conventional 2-D network [11–16], the analysis under the multidimensional model can find
wide applications for 1-D vehicle networks [17,18], as well as 3-D wireless sensor networks [19–21].

Furthermore, in determining whether a node can harvest energy from transmitters other than the
nearest one, we will study the networks with and without interference control (IC), respectively. It is
worth noting that the term interference control comes not from the perspective of energy harvesters,
but instead from the information receivers. With IC techniques like directive antennas, OFDM or
MAC layer scheduling, the concurrent transmitters use orthogonal radio resources to communicate
with their associated users, or the transmitters are far enough that the interference to each other is
negligible [22]. Thus, in networks with IC, we only calculate the energy harvested from the nearest
transmitter. On the contrary, in the system without IC, we consider the cumulative effect of received
energy from all transmissions.

In summary, the key contributions of our work include:

• By modeling transmitters as a d-dimensional large-scale network, we derive the mean and
the CDF of the harvested-energy under BPL and Rayleigh fading model using tools from
stochastic geometry. The networks with and without interference control are separately considered.
Our unified framework is general and the derived results can be applied to 1-D, 2-D and 3-D
networks.
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• Considering the practical constraint imposed by the RF harvesting circuit, we propose two metrics:
the EEHP and the SMHE to measure the availability of the ambient RF energy. Other works
like [11] have proposed metric such as power outage probability. However, the threshold they
refer to in their work is the circuit power consumption, not the suggested turn-on power of the
harvester (considered in this paper).

• We derive compact expressions for the CDF and mean of the RF harvested energy including
some closed-form expressions for a special case (which is practical in the real environment).
The numerical method to calculate the RF energy distribution is given. To gain insight into the
results, we derive and analyze the lower bound of distribution function and the upper bound of
the mean. These results can be readily used to evaluate the communication capacity of wireless
powered nodes.

• We validate the theoretical analysis with Monte Carlo simulations. The proposed bounds of
the EEHP and the SMHE for different settings are verified. We show that while the harvesting
threshold has a significant effect on the EEHP, it has a negligible impact on the SMHE, especially
for dense networks. Also, we illustrate that in terms of improving the SMHE, the increase
of transmitter density is more efficient than increasing transmit power. Last but not the least,
we show that interference control has a trivial effect on RF energy harvesting performance for
a sparse network; Since the performance of LSWN-IC and LSWN-noIC is comparable in sparse
networks, the mathematically tractable expressions for SMHE and EEHP for LSWN-IC can serve
as surrogate metrics to analyze LSWN-noIC.

The rest of this paper is organized as follows. The system model and the performance metrics
are described in Section 2. In Section 3, the EEHP and the SMHE in LSWN-IC are formulated and
derived. Section 4 presents the availability analysis of LSWN-noIC. Finally, the simulation results and
discussions are presented in Section 5 before the paper is concluded in Section 6.

2. System Model and Performance Metrics

2.1. System Model

We assume that the position of receiver (Rx), y, follows a d-dimensional HPPP with density λr,
i.e., y ∈ Φr(λr). In addition, we also assume that the position of the transmitter (Tx), x, follows a
d-dimensional HPPP with density λt, i.e., x ∈ Φt(λt); We will also use x and y to refer to the node itself.
According to Slivnyak-Mecke Theorem, the reduced Palm distribution of a PPP is equal to its original
distribution [23]. Therefore, without loss of generality, we assume that the origin is the typical position
of energy harvesters. The spatial models of the 1-D [17], 2-D [24] and 3-D [21] network are depicted in
Figure 1. For the 1-D case, the transmitters are placed on the line according to a HPPP with density
λt (in nodes/m), the RF energy harvester is located in the middle of the segment of length l. For the
2-D case, the nodes within a square of side length l are distributed according to HPPP with dentiy λt

(in nodes/m2), the RF energy harvester is located in the center of the square. For the 3-D case, the
transmitters’ position follow HPPP with density λt (in nodes/m3) within a cube of side length l, the
RF energy harvester is situated in the center of the cube.
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Figure 1. Spatial model of d-dimensional networks for d = 1, 2 and 3.

According to Friis formula, the received power of Rx at distance z from the transmitter in free
space is [25]:

Pr(z) =
PtGtGrλt

2

(4π)2z2L
, (1)

where Pt is transmitting power, Pr(z) is received power, z is the T-R distance, L ≥ 1 is the system loss
factor, and λ is the wavelength. To simplify the expression, we formulate all the factors in Formula (1)
into an equivalent transmit power Pet, where Pet = PtGtGrλ2/(4π)2L that excludes the distance factor
z−2. Considering a general path loss exponent (α, α > 2) and the effect of small scale fading, the
received RF signal power at the origin based on a signal emitted by transmitter x is given by

Pr(‖x‖) = Pet,xhx‖x‖−α, (2)

where ‖x‖ denotes the Euclidean distance between point x and the origin. The symbol hx denotes
the channel fading coefficient. Note that the case ‖x‖ ≤ 1 may occur as the position of transmitter is
random. In addition, this will result in the received power to be larger than the transmitting power
violating the law of conservation of energy. To prevent this case, we adopt the bounded path loss (BPL)
model following [26], where,

`(‖x‖) = min(1, ‖x‖−α). (3)

The received power at the origin from the transmitter x is given as

Pr,x(‖x‖) = Pet,xhx`(‖x‖). (4)

The received power at the origin accumulated from all the transmitters over the entire space then
corresponds to

PH = ∑
x∈Φct

Pet,xhx`(‖x‖), (5)

where Φct denotes the set of concurrent transmitters in the same frequency band.
In this paper, we consider two types of networks. For large-scale wireless networks with

interference control (LSWN-IC), we assume that the harvesting node always chooses the nearest
AP as its transmitter, denoted by x1, and the power radiated by other transmitters can be ignored. We
state that this model can simulate networks well with directive energy harvesting, which has higher
energy harvesting efficiency [14,27]. For omni-directive energy harvesting, as shown in Section 5.2, the
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analysis with IC also gives a compact bound for networks without IC with lower computation cost.
For the large-scale wireless networks without interference control (LSWN-noIC), we assume the node
can harvest RF energy from all the transmitters over the entire space. Then the set Φct in (5) can be
expressed as,

Φct =

{
{x1}, LSWN-IC

Φt, LSWN-noIC.
(6)

Note that for the case that partial transmitters are scheduled to use the same frequency band to
avoid interference, like ALOHA protocol with transmit probability p, the set of concurrent transmitters
forms a PPP with intensity pλ. This follows from the independent thinning property of the PPP [26].
We can just replace the density λt (in case that all APs transmitting) by pλt and the follow of results
retain the same form.

To simplify the harvesting energy availability analysis, we assume that all transmitters use
the same transmit power as Pet,x = Pet. Without loss of generality, we assume all the wireless
links experience independent Rayleigh fading with unit mean. Integrating the equivalent transmit
power and channel fading effect, we get the equivalent channel gain as h = Pethx, which follows an
Exponential distribution with parameter 1/Pet, i.e.,

h ∼ Exp(1/Pet). (7)

Based on the above assumption, (5) can be simplified as

PH = ∑
x∈Φct

h`(‖x‖). (8)

2.2. Metrics of Availability

We propose two indexes measuring the availability of RF energy harvested from randomly
deployed Txs: effective energy harvesting probability (EEHP) and spatial mean harvestable energy (SMHE)
that are defined below.

Definition 1. Effective energy harvesting probability refers to the probability that the received power of the
energy harvester exceeds the harvesting threshold Θ. That is,

peeh = P(PH ≥ Θ) = 1− FPH (Θ), (9)

where FPH(x) is the CDF of the received power.

Remark 1. For large-scale networks consisting of randomly located receivers, the EEHP can be viewed as the
average ratio of chargeable receivers’ number to non-chargeable ones’. This metric indicates how many receivers
in a large scale network can benefit from the RF energy radiated by randomly located transmitters. Also, this
metric implies the probability that the typical receiver could be charged with a given threshold.

The harvesting threshold determines the EEHP. Lower the threshold Θ, higher the achievable
EEHP. The typical value of Θ is between −20 dBm and 30 dBm, which depends on specific rectenna
and operational frequency [28].

Definition 2. Spatial mean harvestable energy refers to the mean energy harvested by all the nodes in a
d-dimensional space which consists of PPP distributed transmitters (In this paper, without loss of generality, we
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assume the coherence time or the energy harvesting duration is unit time. Therefore we will not differentiate the
word power and energy. Sometimes we may use them interchangeably.). That is,

EH =
∫ ∞

Θ
η(x)x fPH (x)dx, (10)

where fPH(x) denotes the probability density function (PDF) of the received power, η(x) is the energy harvesting
efficiency for input power x.

Remark 2. SMHE indicates how much energy can be actually used in the networks. This metric measures the
RF energy transfer capability from a system perspective.

The energy harvesting efficiency depends on the input power, matched networks, operational
frequency, etc. [29]. It is hard to describe η(x) in a unified formula, and it is also beyond the scope of
this study. Therefore, we assume the power conversion efficiency is ηa for all input power levels. Then,
the expression of SMHE simplifies to

EH = ηa

∫ ∞

Θ
x fPH (x)dx. (11)

Equations (9) and (11) illustrate that the above two indices to measure availability can be derived
from the distribution of the received power, fPH(x). In Section 3, we will directly evaluate the received
power distribution for LWSN-IC. For LWSN-noIC, we will derive the received power distribution by
using inverse Laplace transform, as shown in Section 4.

3. RF Energy Harvesting in LSWN-IC

In this section, we will first derive the received power distribution at the origin in LSWN-IC.
Then we will calculate the mean harvestable energy. To directly interpret the effect of system parameters
(like network density and channel fading) on RF energy harvesting performance, we will derive exact
expression for EEHP and an upper bound of SMHE for a special case.

3.1. Distribution of Received Power

We denote P1
H as the received power at the origin in LSWN-IC. From (8) we get

P1
H = h`(‖x1‖), (12)

where x1 is the position of the nearest transmitter to the receiver. The distance between x1 to the origin
is assumed to be r1, the CDF of which is given as [30]:

Fr1(r) = 1− e−λtcdrd
, (13)

where cd = |b(o, 1)| is the volume of a d-dimensional unit ball (cd can be expressed in terms of gamma
function as cd = πd/2

Γ(1+d/2) ), λ is the density of the network. Then we obtain the CDF of the received
power as follows,

Proposition 1. The CDF of received power at the typical point in a d-dimensional PPP network with IC is

FP1
H
(x) = 1− (1− e−λtcd)e−x/Pet − λtcd

∫ ∞

1
K(v, x)dv, (14)

where K(v, x) = exp(−xvδ−1
/Pet − λtcdv), the symbol δ = d/α denotes dimension to path loss ratio.



Energies 2018, 11, 668 8 of 22

Proof of Proposition 1.

FP1
H
(x) =P(P1

H < x) = Er[P(hr−α < x)|r]

=
∫ 1

0
P(h < x)dFr1(r) +

∫ ∞

1
P(hr−α < x)dFr1(r)

=(1− exp(−x/Pet))(Fr1(1)− Fr1(0)) +
∫ ∞

1
(1− exp(−xrα/Pet))dFr1(r)

=1− (1− e−λcd)e−x/Pet −
∫ ∞

1
exp(−xrα/Pet)dFr1(r)

v=rd
= 1− (1− e−λtcd)e−x/Pet − λtcd

∫ ∞

1
exp(−xv

α
d /Pet − λtcdv)dv. (15)

Let δ = d/α, then Proposition 1 is proved.

Considering the special case of δ = 0.5, e.g., the path loss exponent to be 4 within 2-dimensional
space, we can get the semi-closed-form expression for the CDF of the received energy. By using
the result [31] ∫ ∞

u
exp

(
− x2

4β
− γx

)
dx =

√
πβeβγ2

erfc

(
γ
√

β +
u

2
√

β

)
, (16)

where erfc(x) is the complementary error function, we obtain the following Lemma,

Lemma 1. For δ = 0.5, the CDF of the incident power at a typical receiver is

FP1
H
(x) = 1− (1− e−λtπ)e−x/Pet − λtπ

2

√
πPet

x
exp

(
λ2

t π2Pet

4x

)
erfc

(√
x

Pet
+

λtπ

2

√
Pet

x

)
. (17)

Introducing FP1
H
(x) in Definition 1, we arrive at the expression for EEHP in LSWN-IC.

Proposition 2. For a given harvesting threshold Θ, the Effective Energy Harvesting Probability of a typical
receiver in LWSN-IC is

p1
eeh = (1− e−λtcd)e−Θ/Pet + λtcd

∫ ∞

1
K(v, Θ)dv, (18)

where the integration
∫ ∞

1 K(v, Θ)dv can be numerically calculated. For special case of δ = 0.5, there is an exact
form corresponding to,

p1
eeh = (1− e−λtπ)e−Θ/Pet +

λtπ

2

√
πPet

Θ
exp

(
λ2

t π2Pet

4Θ

)
erfc

(√
Θ
Pet

+
λtπ

2

√
Pet

Θ

)
. (19)

3.2. Spatial Mean Harvestable Energy

We now calculate the SMHE of LSWN-IC for a given harvesting threshold Θ.

Proposition 3. The Spatial Mean Harvestable Energy of PPP distributed receivers in LSWN-IC is

E1
H = ηaPet

(
1− e−λtcd + (λtcd)

1/δΓ(1− 1/δ, λtcd)
)

− ηa

(
(1− e−λtcd)P−1

et H(Pet, Θ) + λtcdP−1
et

∫ ∞

1
H(Petv−1/δ, Θ)e−λtcdvv1/δdv

)
, (20)

where H(b, θ) = b2 − (b2 + bθ)e−θ/b.
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Proof of Proposition 3. According to Definition 2, the SMHE over d-dimensional space in LSWN-IC is:

E1
H = ηa

∫ ∞

Θ
x fP1

H
(x)dx

= ηa

(∫ ∞

0
x fP1

H
(x)dx−

∫ Θ

0
x fP1

H
(x)dx

)
= ηa

(
E[P1

H ]−
∫ Θ

0
x fP1

H
(x)dx

)
. (21)

Since the distribution of the channel fading gain and the receiver position are independent, the
expectation of the received power P1

H can be obtained as

E[P1
H ] = E[h`(‖x1‖)]

= E[h]E[`‖x1‖]

= Pet

∫ ∞

0
`(r) fr1(r)dr

= Pet

(∫ 1

0
fr1(r)dr +

∫ ∞

1
r−α fr1(r)dr

)
= Pet

(
1− exp(−λtcd) + (λtcd)

1/δΓ(1− 1/δ, λtcd)
)

. (22)

The second item in (21) can be calculated as follows.

∫ Θ

0
x fP1

H
(x)dx =

∫ Θ

0
x
(
(1− e−λtcd)P−1

et e−x/Pet + λtcdP−1
et

∫ ∞

1
K(v, x)v1/δdv

)
dx

= (1− e−λtcd)H(Pet, Θ)P−1
et + λtcdP−1

et

∫ ∞

1
H(Petv−1/δ, Θ)dv (23)

where H(b, θ) =
∫ θ

0 xe−x/bdx = b2 − (b2 + bθ)e−θ/b. Substituting (22) and (23) into (21), Proposition 3
is proved.

We note that the SMHE consists of two parts. Only the second part involves the harvesting
threshold. Thus the first part E[P1

H ] can be seen as the upper bound of SMHE as

Ẽ1
H = ηaPet

(
1− exp(−λtcd) + (λtcd)

1/δΓ(1− 1/δ, λtcd)
)

. (24)

It is also observed from (20) that increasing transmitting power Pet will drastically mitigate the
impact of harvesting threshold on SMHE. This result will be verified in Section 5.

4. RF Energy Harvesting in LSWN-noIC

Due to the presence of infinite summation, the received power distribution is hard to derive
directly in LSWN-noIC. In this part, we first obtain the Laplace Transform (LT) of the received power
via mapping theorem and then get the distribution of the received power by Inverse Laplace Transform
(ILT). Lastly, the EEHP and the SMHE is evaluated.

4.1. Laplace Transform of the Received Power

We use a method similar to the analysis of shot noise process to obtain the distribution of the
received power [32]. Firstly, by mapping theorem, the d-dimensional homogeneous PPP with density
λt can be mapped to a one-dimensional in-homogeneous PPP with density λ

′
, where

λ
′
= λtcddrd−1.
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The received power at the origin in LSWN-noIC, according to (8) , can be given as

P∞
H = ∑

x∈Φt

h`(‖x‖). (25)

The Laplace transform of P∞
H is defined as follows:

LP∞
H
(s) = E [exp(−sP∞

H )] . (26)

Before continuing, we restate a known result from interference analysis of a finite Poisson
network [33].

Corollary 1. The Laplace transform of the interference at the typical node in a finite homogeneous Poisson
network with density λ is:

LI(PPP)(s) = exp (−λcdEh[D(s)]) , (27)

where

D(s) =Bd
[
1− e−shB−α

]
− Ad

[
1− e−shA−α

]
+

(sh)d/α

[
Γ
(

1− d
α

, shB−α

)
− Γ

(
1− d

α
, shA−α

)]
.

(28)

Symbol A and B denotes the inner and outer radius of a finite Poisson network, respectively. In addition,
Γ(a, z) is the upper incomplete Gamma function.

In light of Corollary 1 , we obtain the Laplace function of the received power at the origin as

LP∞
H
(s) = exp (−λtcdEh[D(s)]) . (29)

The total received power can be computed as the sum of two terms : (1) PH,r≤1 ,the power received
from the transmitters within d-dimensional unit sphere, and (2) PH,r>1, the power accumulated from
all transmitters at distances greater than 1. As the transmitters follow PPP, the PH,r≤1 and the PH,r>1

are independent. By applying A = 0, B = 1 and B−α = A−α = 1 (bounded path loss model) to (28),
we get LPH,r≤1(s) as follows:

LPH,r≤1(s) = exp
(
−λtcdEh[1− e−sh]

)
. (30)

The corresponding function for LPH,r>1(s) is the case that A = 1 and B→ ∞, then

LPH,r>1(s) = exp
{

λtcd

[
Eh[1− e−sh]− sδEh[hδ]Γ(1− δ) + sδEh[hδΓ(1− δ, sh)]

] }
. (31)

Note that the first item of D(s) converges to −(1− e−sh) only when α ≥ d. Fortunately, this
condition is always met in real life. Then the Laplace function of the received power is:

LP∞
H
(s) = E

[
exp

(
− s(PH,r≤1 + PH,r>1)

)]
= LPH,r≤1(s)LPH,r>1(s)

= exp
{

λtcd

[
− sδEh[hδ]Γ(1− δ) + sδEh

[
hδΓ(1− δ, sh)

] ]}
. (32)

By introducing

Eh[hδ] =
∫ ∞

0
hδP−1

et e−h/Pet dh = Pδ
etΓ(1 + δ) (33)
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and

Eh[hδΓ(1− δ, sh)] =
∫ ∞

0
hδΓ(1− δ, sh)P−1

et e−h/Pet dh

=
s1−δPet

(1 + δ)(sPet + 1)2 2F1(1, 2; δ + 2;
1

sPet + 1
)

(34)

(refer to 6.445.1 in [31], where 2F1(a, b; c, z) is the hypergeometric function) into (32), we then get the
following proposition.

Proposition 4. Laplace function of the received power at the typical point in LSWN-noIC is

LP∞
H
(s) = exp

{
λtcd

[
− πδ

sin(πδ)
(sPet)

δ +
s1−δPet

(1 + δ)(sPet + 1)2 2F1

(
1, 2; δ + 2;

1
sPet + 1

)]}
. (35)

4.2. Distribution of Received Power

We compute probability distribution of the received power by inverse Laplace transform of
LP∞

H
(s) [34], i.e.,

FP∞
H
(x) = L−1

{
LP∞

H
(s)

s

}
(x). (36)

While there is no closed-form expression for (36), we can use the Euler inverse Laplace algorithm
to get a numerical solution [35]. In particular, we assume a real valued function f (t) with Laplace
function f̂ (s), then f (t) can be computed as

fe(t, M) =
10M/3

t

2M

∑
k=0

ηkRe
(

f̂
(

βk
t

))
. (37)

Here, M is used to adjust the calculation precision.

βk =
M ln(10)

3
+ πik, ηk ≡ (−1)kξk, (38)

ξ0 =
1
2

, ξk = 1, a ≤ k ≤ M, ξ2M =
1

2M ,

ξ2M−k = ξ2M−k+1 + 2−M
(

M
k

)
, 0 < k < M.

(39)

Although this numerical algorithm can give an approximate distribution of the incident power at
a typical receiver, the effect of system parameters (like transmitter density or transmitting power) on
energy harvesting performance cannot be intuitively observed. It is known that for the dimension to
path loss ratio being 0.5, the closed-form CDF of the received power exists [24]. To this end, we derive a
compact lower bound with a closed-form for P∞

H . We will show in Section 5 that this bound is tight in
the low power regime.

Lemma 2. (Lower bound for the CDF of P∞
H with δ = 0.5). Assuming the channels follow Rayleigh fading

with expectation Pet, the transmitters form a PPP with density λt, the dimension to path loss ratio is 0.5, the
CDF of the incident power of a typical receiver is lower bounded by

FP∞
H
(x) ≥ FP̄∞

H
(x) = erfc

(
π2λt

√
Pet

4
√

x

)
. (40)

Proof of Lemma 2. Suppose that the incident power under UBPL model is P̄∞
H = ∑x∈Φt h‖x‖−α, the

probability that the incident power for UBPL model is greater than a given x cannot be less than that
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for BPL model, as shown in (41). That is because, under UBPL model, the transmitter can be deployed
boundlessly close to the receiver, which results in higher incident power in a statistical sense. Thus,

Pr(P̄∞
H > x) ≥ Pr(P∞

H > x) (41)

or equivalently,
FP∞

H
(x) ≥ FP̄∞

H
(x). (42)

According to Corollary 1 , the UBPL model implies that the inner radius is 0 and the outer radius
is infinity. Introducing A = 0, B→ ∞ into (28), we get Laplacian of P̃∞

H as:

LP̄∞
H
(s) = exp

(
− λtcdEh[hδ]Γ(1− δ)sδ

)
. (43)

Substitute (33) and δ = 0.5 in (43) and with a few simplification steps, we get

LP̄∞
H
(s) = exp

(
− λtπ

2√sPet/2
)

. (44)

Insert (44) in (36), we arrive at

FP̄∞
H
(x) = L−1

[
s−1 exp

(
− λtπ

2√sPet/2
)]

(x)

= erfc
(

π2λt
√

Pet

4
√

x

)
.

Having obtained CDF of the received power, it is straight forward to derive the EEHP for a given
harvesting threshold Θ using Definition 1. As EEHP is just the CCDF of the received power with
parameter Θ, it is unnecessary to restate the conclusion. Accordingly, we can get the upper bound of
EEHP for case δ = 0.5 from Lemma 2 as follows

peeh ≤ p̄eeh = erf
(

π2λt
√

Pet

4
√

Θ

)
, (45)

where erf(x) is the error function.

4.3. Spatial Mean Harvestable Energy

Proposition 5. Assuming that all the links between transmitters and receivers follow Rayleigh fading with
unit expected power, the spatial mean harvestable energy of receivers over a PPP network is:

E∞
H =

ηaλtcd
1− δ

Pet − ηaΘL−1

[
LP∞

H
(s)

s

]
(Θ) + ηaL−1

[
LP∞

H
(s)

s2

]
(Θ). (46)

where Θ represents the harvesting threshold, LP∞
H
(s) is given by (35)

Proof of Proposition 5. From (11), we get

E∞
H = ηa

∫ ∞

Θ
x fP∞

H
(x)dx (47)

= ηa


∫ ∞

0
x fP∞

H
(x)dx︸ ︷︷ ︸

(a)

−
∫ Θ

0
x fP∞

H
(x)dx︸ ︷︷ ︸

(b)

 . (48)
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Expression (a) is the average received power ignoring the harvester’s sensitivity. We calculate
(a) by two parts, one part is the average power radiated by transmitters within the unit sphere.
Another part comes from the transmitters outside the unit sphere. The mean of PH,r≤1 is given by

E[PH,r≤1] = − d
ds lnLPH,r≤1(s)

∣∣∣
s=0

= λtcdEh[h].
To evaluate the mean of PH,r>1, we resort to the corollary from [33] that gives the nth cumulant of

interference power for a Poisson network as follows:

Cn = λtdcdEh[hn]
Bd−nα − Ad−nα

d− nα
. (49)

Replacing B with ∞ and A with 1, we get E[PH,r>1] = C1 =
λtdcd
α− d

Eh[h] . As PH,r≤1 and PH,r>1

are independent,

(a) = E[PH,r≤1] +E[PH,r>1] =
ηaλtcd
1− δ

Eh[h] =
ηaλtcd
1− δ

Pet. (50)

As fP∞
H

has no closed-form, one can employ numerical Laplace inverse to calculate (b).

∫ Θ

0
x fP∞

H
(x)dx = xFP∞

H
(x)
∣∣∣Θ
0
−
∫ Θ

0
FP∞

H
(x)dx (51)

= ΘFP∞
H
(Θ)−L−1

[
F̂P∞

H
(s)

s

]
(Θ) (52)

= ΘL−1

[
LP∞

H
(s)

s

]
(Θ)−L−1

[
LP∞

H
(s)

s2

]
(Θ). (53)

where (51) is integrated by parts. F̂P∞
H
(s) in (52) denotes the Laplace transform of FP∞

H
(x). In light of

temporal integration property, F̂P∞
H
(s) = s−1LP∞

H
(s).

Let the threshold Θ tends to 0, we obtain the upper bound of the SMHE as

E∞
H ≤ Ē∞

H =
ηaλtcd
1− δ

Pet. (54)

For case δ = 0.5, we can obtain an accurate approximation to SMHE, which will be verified in
Section 5, as follows

Lemma 3. (Approximation to SMHE for case δ = 0.5). If δ equals 0.5, the SMHE under harvesting threshold
Θ can be approximated as,

E∞∗
H = 2ηaλtπPet − ηa

ξ2
√

π
Γ
(
−1

2
,

ξ2

Θ

)
, (55)

where ξ = λtπ
2√Pet/4.

Proof of Lemma 3. To be shown by simulations in Section 5, the CDF bound of RF power given in
Lemma 2 is compact. Thereby, we replace FP∞

H
(x) approximately by FP̄∞

H
(x), then the expression (b)

in (48) can be given by
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(b) ≈
∫ Θ

0
xdFP̄∞

H

=
∫ Θ

0
xd
(
erfc(ξ/

√
x)
)

t=ξ2/x
=====

ξ2
√

π

∫ ∞

ξ2/Θ
e−tt−3/2dt

=
ξ2
√

π
Γ
(
−1

2
,

ξ2

Θ

)
. (56)

Introducing (50) and (56) to (48), we complete the proof.

To summarize, we present the main results derived in Sections 3 and 4 in Table 2.

Table 2. Main results.

Network Type EEHP SMHE

LSWN-IC Integral form in (18), exact form in (19) for
δ = 0.5 Integral form in (20); Upper bound in (24)

LSWN-noIC ILT of (35); Compact upper bound in (40)
for δ = 0.5

Compound expression of ILT in (46); Upper
bound in (54) and accurate approximation
in (55) for δ = 0.5

5. Simulation Results and Discussion

In this section, we first verify the proposed numerical or exact results by Monte Carlo simulations
in Section 5.1. Then, in Section 5.2, we illustrate the impact of network parameters: transmit power
and transmitter density, on the energy harvesting performance using numerical methods.

5.1. Verifying the Proposed Analysis Framework

To confirm the proposed analysis framework, we simulate large scale 2-D and 3-D Poisson
networks without/with IC in Matlab. The Tx-Rx channel gains are independent and identically
distributed (IID) Rayleigh fades with unit mean. The transmit power is set to 30 dBm. The energy
harvesting efficiency is set to 1. The network parameters are listed in Table 3, where L denotes side
length of the square (for 2-D model) or of the cube (for 3-D model); N denotes the realization times
of fading channels for every implementation of Poisson network. For 2-D ultra dense networks, the
density of access points ranges from 0.001 to 1 [36], while for 4G cellular networks the density of base
stations approaches 0.0001 in the city of London [37]. To gain an sight into the energy harvesting
performance in a dense and a sparse network, we set the density to 0.1 and 0.0001, respectively.

Table 3. Simulation parameters.

Density α = 4, d = 2 α = 4, d = 3

λt = 0.1 L = 1000, N = 104 L = 200, N = 104

λt = 0.0001 L = 1000, N = 106 L = 400, N = 105

In Figure 2, we plot the simulation and the numerical results of EEHP for a dense large scale
network with interference control. The transmitter density is set to 0.1. The performance is presented
in 2-D and 3-D network with path loss exponent 4. The simulation and analysis curves match well
validating our theoretical results. The same outcome can be observed for a sparse network with density
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0.0001, as shown in Figure 3. However, as expected, the EEHP for a sparse network is much lower
than for a dense one. In Figures 4 and 5, we compare the simulated EEHP and the numerical result for
LSWN-noIC with transmitter density λt = 0.1 and λt = 0.0001, respectively. It is seen that relative to
LSWN-IC, the EEHP for LSWN-noIC is significantly higher. This result is consistent with our intuition,
as for case without IC, more transmitters contribute to the accumulation of RF energy at the receiver.
Besides, the upper bound is shown to be extremely compact, especially for a low-density network.
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Figure 2. Effective energy earvesting probability for LSWN-IC with λt = 0.1, α = 4, ηa = 1 and
Pet = 30 dBm.
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Figure 3. Effective energy harvesting probability for LSWN-IC with λt = 0.0001, α = 4, ηa = 1 and
Pet = 30 dBm.
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Figure 4. Effective energy harvesting probability for LSWN-noIC with λt = 0.1, α = 4, ηa = 1 and
Pet = 30 dBm.
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Figure 5. Effective energy harvesting probability for LSWN-noIC with λt = 0.0001, α = 4, ηa = 1 and
Pet = 30 dBm.

The SMHE curves of LSWN-IC with density λt = 0.1 are presented in Figure 6 and with density
λt = 0.0001 in Figure 7. The figures show that the simulation once again agrees with the numerical
results well validating our proposed analysis framework. We also verify the numerical and the
approximated results for LSWN-noIC by Monte Carlo simulations (with density λt = 0.1 and
λt = 0.0001) in Figures 8 and 9. We draw two main conclusions from the above results: First, in
regime of interest, i.e., below 10 dBm, the harvesting threshold has a negligible effect on the SMHE for
networks with and without interference control. Second, the SMHE of LSWN-noIC is obviously larger
than that of LSWN-IC for a dense network. However, their differences become less significant for a
sparse network. This implies that the concurrent transmitters in a sparse network will not introduce
perceptible RF energy increase on average.
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Figure 6. Spatial mean harvestable energy for LSWN-IC with λt = 0.1, α = 4, ηa = 1 and Pet = 30 dBm.
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Figure 7. Spatial mean harvestable energy for LSWN-IC with λt = 0.0001, α = 4, ηa = 1 and
Pet = 30 dBm.
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Figure 8. Spatial mean harvestable energy for LSWN-noIC with λt = 0.1, α = 4, ηa = 1 and
Pet = 30 dBm.
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Figure 9. Spatial mean harvestable energy for LSWN-noIC with λt = 0.0001, α = 4, ηa = 1 and
Pet = 30 dBm.

5.2. Availability Analysis of Ambient RF Energy

Having verified the proposed analysis framework, we now examine how EEHP and SMHE
are affected by varying transmitter density and transmit power, with both protocols: LSWN-IC and
LSWN-noIC. In Figure 10, we depict the EEHP for the receiver with harvesting thresholds e.g.,−10 dBm
and 20 dBm representing a typical sensitive and insensitive RF energy harvester, respectively. It can
be seen that increasing density can dramatically improve the EEHP for both harvesting thresholds.
It is worth noting that for a lower harvesting threshold, the performance gap between two protocols is
larger than for a higher harvesting threshold. A similar trend is observed for EEHP versus transmit
power curve as shown in Figure 11. In fact, there is almost no difference for LSWN with and without
IC for a higher threshold. From this experiment we draw the following insights: harvesters with
higher sensitivity can benefit more from dense networks or high-power transmitters, indicating that
designing the circuit with low harvesting threshold is critical for improving the availability of ambient
RF energy.
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Figure 10. Effective energy harvesting probability versus transmitter density with α = 4, d = 2 and
Pet = 30 dBm.
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Figure 11. Effective energy harvesting probability versus transmitting power with α = 4, d = 2 and
λt = 0.001.

In Figures 12 and 13, the relationship between SMHE and transmitter density and transmit power
are presented, respectively. The main observation is that the impact of harvesting threshold Θ on
SMHE is negligible. For our simulation setup, since only a small fraction of the transmitters contribute
energy less than the harvesting threshold, changes in the threshold value minimally impacts the
overall harvested energy. Besides, we find that interference control has limited influence on SMHE
for varying transmitter density or transmit power. However, after examining Figure 12, we find that
increasing transmitter density narrows the performance gap between LSWN-IC and LSWN-noIC for
same harvesting threshold. The difference in SMHE between networks with and without IC is almost a
constant with increasing transmit power, as shown in Figure 13. That is to say, increasing density will
bring more availability of ambient RF energy than increasing transmit power with respect to SMHE.
This is consistent with the interference analysis in [38] which states that quadratic increase of transmit
power is equivalent to linear increase of transmitter density from an interference perspective.
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Figure 12. Spatial mean harvestable energy versus transmitter density with α = 4, d = 2, ηa = 1 and
Pet = 30 dBm.
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Figure 13. Spatial mean harvestable energy versus transmitter density with α = 4, d = 2, ηa = 1 and
λt = 0.01.

6. Conclusions

This paper has examined the availability of ambient RF energy harvested in d-dimensional large
scale networks with/without interference control. The availability has been captured via two metrics
namely the effective energy harvesting probability and the spatial mean harvestable energy. In contrast
to previous efforts, we have considered both a bounded path loss model and impact of the energy
harvesting threshold on harvesting performance. The mean and distribution of the ambient RF energy
are presented exactly or approximately. For the special case of dimension to path loss ratio equal to
0.5, closed-form results are derived. Our unified framework is general and therefore the results
can be applied to 1-D, 2-D, and 3-D networks. For multiple network models, the EEHP and SMHE
performance are verified via simulations. We observe that the sensitivity of RF energy harvester has
a significant impact on EEHP of a typical receiver. Alternately, the effect of harvesting threshold on
SMHE is negligible, particularly in dense networks. Also, we point out that increasing transmitter
density can enhance RF energy availability more efficiently than improving transmit power. Finally,
we argue that for a sparse network, interference control has little influence on energy harvesting
performance. In a further study, we plan to employ the derived results to optimize the information
transfer in ambient RF energy powered networks.
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