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Abstract: Urban networks aim at facilitating users for better experience and services through smart
platforms such as the Intelligent Transportation System (ITS). ITS focuses on information acquisition,
sensing, contrivance control, data processing and forwarding to ground devices via user-specific
application-interfaces. The utility of ITS is further improved via the Internet of Things (IoT),
which supports “Connectivity to All”. One of the key applications of IoT-ITS is urban surveillance.
Current surveillance in IoT-ITS is performed via fixed infrastructure-based sensing applications which
consume an excessive amount of energy leading to several overheads and failures in the network.
Such issues can be overcome by the utilization of on-demand nodes, such as drones, etc. However,
drones-assisted surveillance requires efficient communication setup as drones are battery operated
and any extemporaneous maneuver during monitoring may result in loss of drone or complete failure
of the network. The novelty in terms of network layout can be procured by the utilization of drones
with LoRaWAN, which is the protocol designated for Low-Power Wide Area Networks (LPWAN).
However, even this architectural novelty alone cannot ascertain the formation of fail-safe, highly
resilient, low-overhead, and non-redundant network, which is additionally the problem considered
in this paper. To resolve such problem, this paper uses drones as LoORaWAN gateway and proposes
a communication strategy based on the area stress, resilient factor, and energy consumption that
avail in the efficient localization, improved coverage and energy-efficient surveillance with lower
overheads, lower redundancy, and almost zero-isolations. The proposed approach is numerically
simulated and the results show that the proposed approach can conserve a maximum of 39.2% and
a minimum of 12.6% of the total network energy along with an improvement in the area stress
between 89.7% and 53.0% for varying number of drones over a fixed area.

Keywords: LoRaWAN; urban surveillance; energy efficiency; drones; Intelligent Transportation System

1. Introduction

Intelligent Transportation System (ITS) includes strategies for traffic management, navigation,
user-tracking and coordinated information processing for better services to the users [1,2]. ITS includes
the coalescence of different technologies for achieving involute applications associated with wireless
communication, image processing, audio-video monitoring, sensor and vehicular communications in
an urban environment. Existing networks can be improved for performance by associating different
devices as a transmitting and receiving component in ITS. Evolution of Internet of Things (IoT) has
further improved the existing applications of ITS by connecting most of the devices with data-supporting
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servers [3-5]. ITS, in combination with IoT, can support Vehicle to Vehicle (V2V) as well as Vehicle to
Infrastructure (V2I) connectivity through wireless connections [6]. ITS can be utilized for enhancing the
user experience and incrementing the safety of transmissions via urban networking.

Apart from traffic localization, one of the paramount applications of IoT-ITS includes urban
surveillance that includes the formation of safety system for citizens of a particular region as well
as support for sharing current situations. Urban surveillance additionally fortifies tactical decisions in
case of city-crimes or traffic infringements [7-10]. An efficient surveillance system through ITS can lead to
a keenly intellective city which has a better facility and better quality of living through all time information
processing and availability for communication. This all-time availability is enhanced by fetching
information from all across the cities by utilizing a colossal set of sensors and transmitting processed
data in the form of subsidiary information to the intended users through connected devices. Modern-day
Geographical Positioning Systems (GPS), with traffic information, V2I and V2V communications, are
one of the best examples of such scenarios.

Nowadays, urban surveillance in ITS has reached altogether to an incipient height by utilizing
drones as a key component [11,12]. These drones are either flown by a human operator or autonomously
for information accumulating through onboard sensors and mounted devices. Another major advantage
of utilizing drones is their capability for on-demand data acquisition, processing, and transmission
through Network Function Virtualization (NFV) and Software-Defined Networking (SDN) [13].
Apart from these, modern day networking has withal highlighted the utility of drones for the full-time
availability of connectivity. Drone networking and its issues have been a key highlight for many
researchers across the globe and different strategies have been proposed for their full functional
deployment in the next generation of wireless networks or data acquisition over the sensor fields [13-15].
It is undoubted that drones can enhance the scalability of surveillance, but there are certain challenges
that are to be tackled for their utilization, which includes issues cognate to path planning, deployment,
task allocation, location identification, coverage and capacity modeling, trajectory optimization,
flight time improvement, secure-transmissions, cyber-physical connectivity, reliable computing and
cooperative network formations [16-26]. Solutions to these problems are a must while deploying drones
in ITS for urban surveillance.

Along with the above-mentioned issues, urban-surveillance is much affected by the resources
consumed by the participating entities of the network. The excess utilization of resources, such as
energy, increases the operational cost of the network and decreases the lifetime of the system. Such a
situation raises issues related to the failure, and lack of survivability and reliability of nodes during
continuous network operations. Use of application-specific frameworks and software-oriented
networks can help minimizing the wastage of resources through intelligent decision modeling [27-30].
However, these solutions can resolve issues at application level only and strategies are required
for problem resolution at the system level. A solution that can consume lower energy and provide
wide connectivity can resolve this issue. One such possibility can be the use of Low-Power Wide
Area Networks (LPWAN) [31-33]. Networks operating with sensors or battery operated devices
can take advantage of LPWAN module as it uses low-bit rate communication but to a large extent.
This helps in transmitting information for longer duration and without much wastage of energy
resources. While using IoT devices on LPWAN, LoRaWAN is developed as a protocol specifically for
handling low-energy consuming transmissions [34,35]. LoRaWAN uses a novel ideology of network
for bi-directional communication, mobility-management and localization services for IoT devices [36].
It provides a novel architecture for LPWAN implementation for long-range communications. It is
capable of operating for a network over an ISM band (868 MHz and 900 MHz) and in the range
of 5-15 km at data rates between 0.3 kbps and 50 kbps [37]. The bandwidth is specified separately
for urban and rural scenarios as well as for the countries of operations. An overview of LoRaWAN
specifications, its advantages, and disadvantages are presented in Figure 1 [38,39].
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Figure 1. LoRaWAN properties, advantages and disadvantages.

This paper demonstrates that LoRaWAN can be improvised for including drones as on-demand
nodes to fortify energy efficient surveillance in ITS. Further, requisites such as fail-safe connectivity for
battery-operated contrivances, high resilience, lower overheads, and lower resource utilization can
be procured via LoRaWAN architecture. However, there are limited studies available at the moment,
which have actually utilized LoRaWAN for designated application such as surveillance in urban
scenarios. Thus, this paper, to the best of authors” knowledge, is the first to exploit the features of
LoRaWAN-based drones for energy efficient surveillance in urban-ITS.

1.1. Problem Statement

Currently, most of the ITS systems use V2V or V2I communication models for sharing data
required to build information of the entire geographical area. This information is transmitted as ad hoc
formations and uses on-demand algorithms for data-sharing between the involved entities. However,
the prosperity of information depends on the number of sensors deployed in a geographical area and
the regions with lesser sensors or conveyances pass little information required for surveillance. Such a
situation leads to an extremely high number of isolated areas where surveillance is impractical. On the
contrary, urban surveillance can be conducted by the accumulation of sensors with the monitoring
drones for understanding the current state of the transportation system. The coalescence of ITS with
drones can support urban computing architecture and execute on-demand dissemination of data
to the intended end-users. However, the involution of drones and their communication with the
ground sensors are subject to energy overheads and may result in obstructed transmissions. Such a
situation may expeditiously deplete all the resources of the system and result in a failed setup. It is
required that surveillance should be energy efficient, scalable, non-redundant, low on overheads and
non-isolated. Further, the surveillance should be conducted at the real time with a direct connection
between the end-user and the deployed sensors. In addition, the communication system should be
fail-safe and highly resilient in terms of processing and power consumption. Thus, it is required to
develop a communication architecture which supports on-demand urban-surveillance via drones with
energy efficient setup in ITS.
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1.2. Our Contribution

The proposed approach is capable of supporting energy efficient surveillance in ITS by using
drones as on-demand LoraWAN gateways. The proposed approach is able to enhance the lifetime
of the network with a fail-safe and resilient strategy for using drones in an energy-deficit urban
environment. The highlights and the major contributions of the proposed work are:

e Incorporation of drones in ITS by using them as LoRaWAN gateways.

e  Drone modeling and traffic estimation in ITS.

o Intelligent solution for location identification and coverage by drones.

e  Energy efficient surveillance and LoRaWAN-based drone communication.
e  Resilient factor and fail-safe conditions for drone-based transmissions.

e  Numerical case study for performance analysis of the proposed approach.

The remainder of the paper is structured as follows: Section 2 presents the related works on
energy efficient surveillance, use of drones in networks, LoRaWAN models and sensing applications in
ITS. Section 3 gives an overview of the network model, drone model, and traffic estimation. Section 4
provides insight into the proposed work with energy efficient setup for allocation, coverage, and
surveillance. Performance evaluations are conducted in Section 5 . Section 6 presents discussions of
the proposed approach with the state-of-the-art solutions. Finally, Section 7 gives conclusive remarks
for the paper along with future directions.

2. Related Works

Surveillance in ITS is challenging because of a sizably voluminous number of users simultaneously
probing for information that causes many overheads. Applications associated with surveillance such as
traffic monitoring, location-identification, device tracking, etc, are further affected by the interference
caused by the sensors or the locators deployed in an urban setup. These issues of overheads and
interference due to overlapping result in wastage of energy resources and a decrementation in the
lifetime and resilience of the network. Over the last few years, there have been several solutions
proposed by leading researchers from all over the world. Some of them has additionally accentuated
on utilizing on-demand drones as a key node (gateway) in the network setup akin to the one considered
in this paper, but with divergent perspective and approach. In this section, some of those solutions are
discussed that have the potential of being utilized for surveillance in ITS.

Motlagh et al. [40] proposed an Unmanned Aerial Vehicle (UAV)-based IoT platform that can
be used for data offloading in mobile edge computing. The authors focused on vision-based data
offloading by saving the operational energy of the drones. However, at the moment, mutual tasks and
energy consumption during the simultaneous applications are yet to be explored for their proposed
solution. This is a limitation as surveillance is a mutually cooperated task that cannot be resolved
by direct application of their proposed solution. Wu et al. [41] developed a data dissemination
model for drones in urban networks. Their developed approach uses online learning techniques to
adaptively balance the broadcast rate and knowledge loss rate while communicating with each other.
Their approach is efficient and can be used for enhanced lifetime-based network formation. At the
moment, their approach emphasizes much on the use of onboard sensors for collecting information on
urban environment and issues related to survivability and energy efficiency are yet not evaluated.

Naqvi et al. [42] discussed the drone-enabled communication for public safety networks.
The authors discussed various challenges and issues involved in the utilization of drones for futuristic
communication. The authors concluded that the self-adaptive power control of drones depends on
the interference and data rate requirements, which are used as key metrics in the proposed work
of this paper. Menouar et al. [43] discussed the challenges associated with the use of drones in ITS.
The authors discussed that data rate and coverage play a crucial role in surveillance by drone in ITS,
which is affected by obstacles and require rigorous path planning and location-allocation strategies.
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Zeng and Zhang [44] focused on the energy efficiency of a drone by trajectory optimization.
The authors proposed a strategy for conserving energy for drones by using various optimization
conditions. Their approach is theoretically efficient and can be used as a placement strategy for using
drones in LoRaWAN-like networks. However, performance, in terms of bit rate and survivability,
cannot be assured alone on their proposed solution. Sharma et al. [45] developed an energy efficient
system for collecting sensor data via drones. The authors used firefly optimization algorithm for solving
issues related to data dissemination while conserving energy of the network. However, allocation of
drones to ITS and their utility in an urban environment is not discussed by the authors. Trotta et al. [46]
emphasized the problem of maximizing the lifetime of a drone fleet while monitoring a set of points.
The authors put forward an optimal routing and optimization evaluations for charging and discharging
of drones while manoeuvring over the desired location.

With LoRaWAN, the sensing applications can be enhanced for improving the in-depth
communication via network-densification. However, the low data-rate of LoRaWAN and much
energy consumption are open issues yet to be resolved for applications involving urban computing.
Recently, Mathur et al. [47] analyzed the energy efficiency of LoRaWAN for traffic sensing applications.
The authors discussed the pros and the cons of using LoRaWAN technology in an urban environment.
According to the authors, LoRaWAN can be extended with an intelligent solution for various guidance
applications in smart city setups. Adame et al. [48] proposed a solution for using multi-hop approach
without affecting the network reliability through LPWAN. The authors illustrated self-organizing
capabilities of LPWAN with 15% conservation of energy resources. This approach is efficient and can
be extended for urban surveillance.

Most of the issues related to the surveillance via efficient network formations are studied
as optimization problems, which primarily include the designing of optimal wireless networks.
An optimal network can help to improve the utilization of resources as well as improve performance
via optimal configurations of certain metrics, such as energy, operational time, and link speed [49].
These optimization aspects for wireless networks can also be accounted for deploying LoRaWAN
services, especially for urban surveillance. Some of these important works for network optimization
include, network planning under demand uncertainty by Bauschert et al. [50], super fluid management
of 5G by Chiaraviglio et al. [51] and Shojafar et al. [52], power-indexed formulations and robust
network design via heuristics for wireless communications by D’ Andreagiovanni et al. [53,54].

Apart from these, there are certain solutions proposed by different researchers for energy efficient
surveillance and data collection in ITS, however, without considering the survivability, resilience
and operational overheads. These include a policy-aware model for ITS by Garofalaki et al. [55],
diver behaviour detection by Sharma et al. [56], energy efficient and reliable communication by
Portelinha et al. [57], energy efficient traffic scheduling by Afzal et al. [58], media-based surveillance
in urban cities by Memos et al. [59], learning-based data collections by unmanned vehicles by
Zhang et al. [60], etc. Despite these articles, there is a gap in the literature that needs to be fulfilled with
a strategy that can guarantee energy efficient surveillance using LoRaWAN through drones without
much redundancy, failures and operational overheads.

3. Network Model

This section presents the network model used as a base for defining the proposed approach.
The network comprises all the core components of the LoRaWAN, as shown in Figure 2, along with
additional features as explained below:

e  Application Server: The application server plays the role of central authority and regulates the
data flow in the general LoRaWAN. However, in the proposed model, it is used for delivering
applications related to surveillance to the end-users. It supports downloading by an interface,
which is classified into sensor App, drones App or network App. Every end-user in the network
is assumed to possess all the three Apps that help to communicate with each other.
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e  Network Server: The network server is the connecting entity between the application servers
and the LoRaWAN gateways. A series of network servers helps to expand the network and
manages connectivity with the public/private cloud infrastructures. It is capable of managing
transmissions with the data centers via real or virtual nodes. Network servers are connected
through series of routers with information flow management only at the application server. In the
proposed setup, the network servers are used as assigning entity that also checks the performance
of the end-user devices, sensors, and actuators.

e  LoRaWAN Gateways: The LoORaWAN gateway operates just like any other gateway and provides
a bridge between the network servers and the end-users, sensors or locators. Unlike the traditional
LoRaWAN gateways with fixed roles, the proposed model uses on-demand drones as LoRaWAN
gateways that provide direct connectivity to the end-users. At the moment, the LoRaWAN
gateway is divided into two components, which include a set of drones and a switch. The switch
helps to localize the drones in the network and checks for incoming connections from other drones.
Generally, a network may have switches for different service providers and all the drones respond
to their particular switch. Information broadcasting and sharing between the sensors and the
end-users via drones is independent of the service provider and depends on the accessibility roles
and conditions between them.

e  Sensors or Locators: Sensors or locators are the fixed devices in ITS which helps in gathering
information across its transmission range and share with the nearest requesting end-user.
Sensors or locators also communicate with the drones for long-distance surveillance. This helps
in gathering information from any isolated areas. In case, there is no sensor or locator
information available, surveillance drones can directly be used for transmissions and accessing
geographical information.

e  End devices: These are the users which take services from the entire setup and use the information
to know the current state of the transportation system. The usability of information by end-users
depends on the type of Apps which are used for evaluation as well as the type of services being
provided by the service providers. End-users have pre-installed applications that are provided by
the centralized application server. It is to be noted that in the proposed approach, the centralized
procedures between the end-users and the application servers are only carried during the network
initialization. Once a device is registered, there is a limited role of the application server for
information accessibility. This makes LoORaWAN on-demand and scalable.

Mathematically, the network can be expressed as a single application server operating with a set N/
of network servers, which are connected to a set D of data centers and a set C of cloud servers. Further,
the network servers are served by a number of drones represented by a set /. The number of switches
is denoted by a set W that may vary for each application server. As explained below, a separate
network server is used for each service provider. The entire ITS setup is served by the combination of
sensors or locators denoted by a set S, and the end-users are represented by a set £. The details of
symbols used in this paper are presented in Table 1. The communication between the drones and the
sensors are subject to cause interference with the signals for the end-users. This interference over a
particular signal, observed by i th end-user, is computed as signal to interference plus noise ratio, i.e.,

(B0 _ Tokatt * (1)
! ERERE /
L ToKaH  +V
j=1,j#i k=1m=1

where 7}, is the transmission power, K is the antenna constant for a given path loss exponent a, H is
the transmission range and V is the spectral density of the network for a given noise model. Inter-drone
communication is assumed to be free from noise and a separate beamwidth is used for the drone to
drone communication. It is to be noted that each drone is equipped with a LoRaWAN-antenna as
specified for its ISM band. In contrast to drones in 5G setups, LoRaWAN-enabled drones operate on
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anarrow ISM band in the range of 902-928 MHz (US) or 863-870 MHz (Europe) [61]. Thus, minimization
of interference can help in better signal strength to each user or sensor/locator. The entire setup is driven
by the received power at a drone as expressed in [61,62]. The proposed approach uses a combination of
transmission, which includes a drone and an entity (end-user/sensor or locator), or a sensor/locator
and the end-user itself. Both these are driven by Line of Sight (LoS) and Non-LoS (NLoS)-based
transmissions. Such transmissions and their signal strengths depend on the received power of the
devices. Now, using [62,63], the received power for LoS and NLoS are calculated as:

PIgLOS) =T, — 10a(L0S) log (?‘) +4.34log (Cs), 2)
0
and 5
PNES) — T 104 (NLoS) Jog ((;;) — Lopstacte +4.3410g (Cs), ®)
respectively, where
S 1)
‘Cobstacle = ‘CO + 100‘5;\;&0 )10g ((sk) . (4)
0

Here, J is the path, Jy refers to the transmission distance, Cs is the shadowing component,
and Ly is the path loss at the reference distance. The received power at a respective location for

(©)

a particular device helps to maintain a reliability of connectivity R in the network. This reliability

is calculated by defining received power thresholds, which are denoted by PlgL;f_} and PIgZ,\ITngs) for

LoS and NLoS modes, respectively (Thresholds in this paper are calculated as an average of the mean
and the minimum value of a given metric). Both these thresholds help to find the failure factor of the
connection that determines the possibility of transmission in the network. R(gc) is calculated for the
independently operating components of the network that shares a wireless connectivity, i.e., drones,
end-users, and sensors. Each of these devices is considerably operational on multiple channels and
may or may not possess redundant connectivity for each of them (In this paper, it is assumed that all
the channels over a single entity are identical). Thus, reliability, in any given instance t for X number
of concurrent channels, is calculated as:

RE) (1= Feensty>(1)™, ©)

& t,<entity> =

where < entity > refers to drones, end-users or sensors. If, each entity is operational in multiple states
or tested after G number of states, then,

g
©) _ 1 X;
R&g,<entity> - a Zl (1 - ]:<entity>)]' " 6)
]:
t
such that }; (Réci)@nmp) > R((gcé <entity>» Decause state-wise reliability is always less than or equal
iz1N o 9,

to the overall reliability of the network. F it~ is the failure factor, which is calculated as [64]:
Feentity>() = 1=, @)

where f, is the frequency of received power of an entity being lower than the threshold values.

It is calculated as the ratio of instance when ”PéLOS) < PI({L;?{) and PlgNLOS) < PI({{VTL;I'S) for LoS mode

and NLoS mode, respectively. Equation (7) can also be defined for link availability £ 4, such that
Fentity>(t) =1 — e~ (1-£4), where L4 = 1 — ¢, and € is the outage probability. Now, by definition,
failure distribution function for a particular duration, say 7y and 1, can be calculated as:

F @
Pie;itity> = /Tl ]:<entity>(t)dt. )
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(e)

This model can be extended for probability of connectivity P, which can be defined as
a function of network load. This load is dependent on the arrival rate A of incoming packets. For this,

Pée) = f (A) that can be modeled for 7/, which is the required rate for the network, and A/, which is

the minimum rate that can prevent congestion. From these, 776@ can be given similar to Equation (8),
!

such that, Pée) =e (1_7), s.t., A’ < A. Now, considering that ' is the actual time for which the
network should be operational to support realistic data transmissions between the end users via
LoRaWAN architecture, the probability of failure before this time, is calculated as [65]:

/
(F) - ]:<entity>(t + tO) - ]:<entity>(t0)
7)(,’,<entity> - toto<t' T STMAEO M#£EX, 9)
(= 5) o
j=1 1/ <entity>

where t is the available time equivalent to current time (typ = t), and M is the total connected device
with the entity which have a high depletion rate. Using these, the expected future lifetime is given
as [65]:

t X
() _ 1 j
5[:,<entity> T <y T 1__[ 1-— M, dt. (10)
H 1— ﬁ) t j=1 ] <entity>
j=1 J/ <entity>
Application File Server and Real and Virtual
Public/Private Cloud Data Centers

4
¥
Sensor _ ¥
App  Drone Network
App App

Surveillance Applications

LoRaWAN
“Gateway

N,

5

Sensors Gateway 9] O

Figure 2. An exemplary illustration of drone-enabled LoRaWAN-based surveillance in ITS.
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Table 1. Symbols used in the paper.

Symbol Meaning Symbol Meaning

z Signal to interference plus noise ratio ¢ Transmission time

Ty Transmission power A Area under coverage

Ka Antenna constant I Sensors in a zone

H Transmission range Z Set of zones

1% Spectral density of the network ug) Uplink time

o Path loss exponent Dg) Downlink time

N Set of network servers 4 Mean lifetime

D Set of data centers g,), tity> Remaining energy of an entity

c Set of cloud servers (<OE)” lity> Initial energy of an entity

u Set of drones Tp Wait time for a drone

& Set of users Vi Velocity of a drone

w Set of switches Ry, Radio range of a drone

S Set of sensors or locators ty Minimum active time for a drone

w(LoS) Path loss exponent for LoS Agir)gss Area stress

a(NLoS) Path loss exponent for NLoS Reentity> Range of a particular entity

’PI(QN Los) Received power for NLoS Ag) Coverage area

’PI(QL”S) Received power for LoS 0 Number of overlaps

Cs Shadowing component D(m Distance between centers of overlapping zones

Ok Path length ngone) Energy requirements of a zone

do Transmission distance ye(p’ediCt"d) Predicted energy requirements

Ly Path loss at reference distance B Number of channels for end users

Lobstacle Path loss for an obstacle J Number of channels for sensors

Res <en tity> Reliability of an entity Ey, Processing energy

F <entity>(t) Failure factor E; Transmitting energy

X Number of concurrent channels E; Energy loss due to interference

g Number of states E4 Energy consumed in idle phase
g’z tity> Failure distribution function Merror Error rate for energy difference
éi)ew lity> Probability of failure of an entity ,BE(R) () Resilient factor

52}2 entity> Expected future lifetime of an entity wép) Fail safe metric (Probability of no failure)

M Total connected devices with an entity X{r Xz, Number of entities operating in a given drone zone

and number of entities a drone can support

3.1. Drone Modeling

Drone modeling and traffic estimation are performed on the basis of total area under evaluation

)

[l .
A. Assuming that each drone covers an area defined as zone, such that A < Y LIS , Where

i=1
LIS), f), ceey Uﬂm) are zones for |U| drones. This condition holds as each drone may overlap some
of the area covered by another drone. It is to be noted that each drone should be active for a time
period ty, such that, there exists a full-time connectivity between the drones and the end-users or
the sensors, and between the drones and the LoORaWAN gateways (Backhaul for the drones and the
LoRaWAN switches is not evaluated in this paper). Each zone has a particular number of sensors
represented by {;, where i is the zone number, such that |S| = 5 i, where Z is the set of zones into
1

i=
which the sensors are divided. If U£T) and D(LT) are the uplink and downlink time, respectively, for

the involved end devices, then t, > U£T) and t, > DgT). This means that the resource depletion
(T)

time for each of the involved entity should be higher than D; ’ + UéT) for two-way communication.

-1
(M
The resource depletion time can be given as network lifetime, i.e., ¢ log % , where ¢ is the
<entity>
mean lifetime expressed as reciprocal of the energy consumed for every uplink or downlink over
a single channel (Follow Equation (20)). £ (<Oe)n tity> is the initial energy of an entity, and £ (<te)n tity> is the

remaining energy of an entity after a time instance ¢. This same model can be used to calculate the
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expected number of drones required for a particular zone by trivial calculations for the number of
supported uplinks/downlinks on a drone and the requested uplinks/downlinks from a ground-zone.
All the above-described communications are governed by the wait time 7, of a drone over
a particular location in the defined range of ground entity. This 7}, is measured as 1‘%’,, where V, and R,
are the velocity and range of drone transceiver, respectively. 7, can be used to identify the location of
a drone at any given instance as well as it can be used to predict network state after a given number of
iterations, such that,
Out of Range, if V}, > W or T, < U£T) |D£T)

L L
Location = At the Border, ifV, = W or T, = U£T) |D£T) . (11)

L L

Within Range, Otherwise

3.2. Traffic and State Estimation

This setup can be formulated into the number of steps required for predicting the state of the
network after a required time. These states are marked as transitions between the zones into which the
sensors are deployed. Such an overview of predicting network state via drone modeling and traffic
conditions is presented in Figure 3 (This same model can be extended for any type of ground entity,
be it the LoRaWAN switches, end-users or even other drones). The details of network state prediction
are as follows:

(i) At first, the network is accounted for the number of allocated drones. These are checked for
all the zones with communicating entity. The communicating entity can be a sensor, end-user,
or another drone.

(i)  Next, the evaluations are conducted for required transmission time by using the above-given
formulations. This helps to understand the exact duration for which each drone must be active
over all the given zones.

(iii)  Next, the details of incoming drones are marked. This is done by understanding the directional
maneuvering of each drone and its present location.

(iv)  The incoming drones are useful only if they possess a certain number of free channels to support
extra sensors from the zones they are entering.

(v)  Once the evaluations are done for the number of channels supported by incoming drones,
the number of left out devices can be identified on the basis of no connections. Note that failed
communications and no-connectivity also refers to a state of being left out.

(vi)  This helps to calculate excessive drones required to maintain the connectivity to all and that too
at all the instances.

(vii)  Now, the excessive requirements for channels can either be resolved by deploying more drones
or by understanding the maneuvering cycles of already deployed drones.

(viii)  The maneuvering cycles of incoming drones are also identified as this identification helps to
understand the state of drones which will leave the current zone during one set of communication
(uplink or downlink).

(ix)  These cycles help to identify the network delay as well as the allocation delay, which tells about
the time required by a drone to reach a particular zone for connectivity.

(x)  Next, the number of current transitions on each drone is logged and the current traffic is marked.

(xi)  Finally, the remaining traffic is calculated with a stipulated delay after a given number of states.
This helps to decide the performance as well as the state of the network by considering new
deployment or by improving the maneuvering cycle of each drone.
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Figure 3. An overview of drone modeling and traffic estimation via network state formations.

4. Proposed Approach

This section proposes a LoRaWAN-based drone transaction model which helps in fail-safe network
formation with high resistance towards overheads. The proposed approach uses energy efficiency
function for controlling the connectivity and maintaining a non-redundant as well as non-isolated
surveillance. The proposed approach first uses location identification procedures to account for the
location of each drone in the network. Then it evaluates the model via energy conditions and forms the
drone transactions for efficient communication. The details are presented in the following subsections.

4.1. Location Identification and Coverage

The proposed approach uses area-stress modeling, inspired by stress-mechanics [66], for calculating
the location as well as the load of the network w.r.t. deployed number of drones. For this, the area stress
is calculated as:

() _ 1 (e)
'Astress o (1 + In (1 + (Il) )) f <NS )resultant ! (12)
where f (/\f L(ge)> is the function for network stress, which is calculated as [67]:
f (Néf))) = f (RMIR<€ntity>IN’éf(>]> ’ (13)

such that
f(NE) = N8 (1 +2y/ L};:w) . (14)

Now, the resultant value is obtained as:

U] 7
(e) J— (e) L ﬁ RﬂUL’Yﬂgé’
f <NS )resultant o NS'O [A] El (1 +2 \/ Xz/ V. Ry )1.' (15)

where Xl/ and le are the number of entities operating in a given drone’s zone and the actual number
of entities a drone can support, respectively. Rgperqge is the average transmitting range of each ground
entity and
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g1+l
N = () [ g ) (16
¢ jg] (Xz)]_
where
U] ¢ (0)
A(CT) = 421 (mR%), — ( 1R%, cos™! %) . (17)
i= j=

Here, O and DC(IO) are the number of overlaps (The coverage area is considered as a circular ring
for each drone) and the distance between the centers of overlapping zones for any drones, respectively.
The entire system can be used for location identification of drones in the LoRaWAN setup and to
decide whether new drones are required or surveillance can be completed by utilizing the existing
infrastructure. The details of these procedures are presented as steps in Algorithm 1. The algorithm
operates by taking inputs from the network components as well as the operational time of each entity.
Next, it initializes all the components and checks for continuity while finding coordinated information,
incidence and adjacency matrices. After these computations, a decision on reshuffling or reallocation
is taken by evaluating the area stress of the network. The algorithm is operated continuously until the
required communication is not halted. The complexity of the algorithm depends on the number of
drones and is equivalent to the complexity involved in building incidence and adjacency matrices for
communication and collision avoidance.

Algorithm 1 Location Identification and Coverage Analysis

1: Input: Network components, operational time
2: Output: Drone allocation
3: Initialize network and beacon messages

4: while (Transmission !=Halt) do

5: Input sensor location (SH) and Drone altitude matrix (QH)
6: Find drone coordinates w.r.t. sensor field through distance formula and its antenna’s angle of elevation.
7 Build incidence matrix and share it with other drones
8: Build adjacency matrix and discard others
9: Check for overlapping conflicts of coordinates for adjacent drones
10: Calculate area stress and coverage area using model in Equations (12)-(16)
1 i (A < Aor (AL, > AL ) then
12: Reshuffle and re-allocate drones
13: if (Reshuffle== True && (A > A) &b (A, < AL ) then
14: Continue operations, mark locations, update logs
15: else
16: Involve more drones and optimize via energy modeling
17: end if
18: else
19: Exit (—1) or reset
20: end if

21: Maintain logs
22: end while

4.2. Decision Modeling for Energy Efficient Surveillance

The proposed approach performs surveillance by mapping energy requirements and overheads
associated with the zone, which comprises sensors or end-users looking for uplinks or downlinks.
The proposed approach takes surveillance as a decision problem and uses energy-conservation
mechanism for improved connectivity and long-term transmissions. The entire system can be modeled

into energy requirements of each link formed in the network. Let y§“) be the energy consumed by
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each drone to remain in-flight during transmissions. Now, the energy requirements for each zone can
be calculated as:

L &l 154l
(Zone) _ 1 <y§“>) +BY (E;(f) n Et(ﬁ) +E§€) + Eff))j + Jkgl (E;S) + Efs) + Egs) + E§S>>k, (18)

i=1 i j=1

where Uy, €5, S; represents the sets for number of drones, end-users and sensors in a particular
zone, respectively. Ep, Ei, E;, E; denote the processing energy, transmitting energy, energy loss
due to interference and energy consumed in idle phase, respectively. B and J are the number of
channels operating on end-users and sensors, respectively. Now, the overall energy consumption can
be modeled as:

2l O /i
(2) _ @Y ) 19
v =1 (%) jgl(y ) (19)
%= 30
where Y- ),” accounts for the ground entities in the overlapping zones. This computed energy
j=1

can be used to identify the zone that may consume excessive energy in contrast to other zones.
Such procedures help to deploy countermeasures that can regulate the usage of energy throughout
the network. This model can further be strengthened by defining energy prediction equations and
using optimization theory for associating drones as LoRaWAN gateways. Now, the predicted energy
consumption can be calculated as:

; | Be+Je

ye(Predzcted) _ .Zl <ye(u)>i + .Zl ((Pp + Pt) ¢ b)j , (20)
i= j=

where B. + J; denotes the total active channels, Py and P; are the processing power and transmission

power for one byte, respectively, and b is the total bytes to be shared between the two ground entities

(The operational cost (in terms of power) for the wired connections (backend LoRaWAN devices) is not

evaluated in this paper). For an optimal energy efficient surveillance and deployment in LoRaWAN,

min <y§z)) , VA, max(B), max(7J), (21)
s.t. ‘

min (YPredieted)) iy v, ve,
yéz) < ygpredicted),vul VS, Vg, (22)

max (AS)) VU, VS, VE,

min (AL, ) VU, VS, VE.

Further, '

Verror (£) = Y€t 1y — y12)(p), (23)

which can be scaled to model the error rate for the entire duration with an optimization condition of
min (M pror(t)), where
Merrar(tlz t2) = yerror,o + ft? yerror(t)dt- (24)

The above conditions help to minimize the error in energy optimization conditions that govern
the LoRaWAN-based drone surveillance. All these conditions can be modeled into series of steps
for fail-safe operations as presented in Algorithm 2. Similar to Algorithm 1, Algorithm 2 takes into
account the initial components of the network and their operational time while checking the conditions
for halting the transmission. Once all the calculations for the defined system model are obtained, the
algorithm checks the conditions for area stress, area coverage and energy requirements to analyze
the surveillance by marking zones w.r.t. their required energies. Once these conditions are satisfied,
surveillance procedures are initiated along with maintenance of logs.
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Algorithm 2 Energy efficient surveillance

1: Input: Network components, operational time

2: Output: Energy efficient surveillance and drone maneuvering
3: Initialize network and beacon messages

4: while (Transmission !=Halt) do

5: Calculate )752) from Equation (19)

6: Calyculate ), (predicted) ¢om Equation (20)
7. (A > A) && (A, < AL 1) then
8: Calculate Verror (t)
9: if (V5 < ylpredieted)y ¢ g (min (Mepror (t))== True) then
10: Continue with current deployment
11: else
12: Mark zones with high energy and max (Mrror (1))
13: Re-initiate allocation procedures and continue until step 9 holds
14: if (steps 12 && 13== Success) then
15: continue and maintain updated logs with fresh incidence and adjacency matrices
16: else
17: exit(—1) or reset
18: end if
19: end if
20: else
21: Perform steps from Algorithm 1
22: end if

23: Maintain logs
24: end while

4.3. LoRaWAN-based Drone Model for End to End Communication

The drone communication in the proposed approach is based on the location of the dynamic
(R)

gateways, i.e., drones and the resilient factor, P for links involved in communication. According to
the defined system model and network governing equations in the proposed model,

B Ly,

Dd
« Ry, (25)
« B.or J.,
s
such that
B0 = (ke )+ (8 ) 4+ (£+ 7). (26)

where 71, 172, and 73 are the weights for energy resilience, range resilience and channels resilience,
respectively, such that, % < 1, with; # 0, 7 # 0 and 73 # 0. Now, by using the
properties of survival functions [68], the probability that there will be no failure and a connection can

exist between two entities is calculated as:

) _ BP0 (+an)

- f
w =t 27
c T 27)
p(F) pF)
and the hazard functions will be given by CC(“"”‘(I”;IW and fé?’"’”’”“”" for resilience and reliability,
t ,
& t,cumulative

respectively. Note that for efficient communicatlon during any given instance, the network must fulfil
the following conditions:

(F)

P .

C,C(L%ulanve < W£7D), (28)
8
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and

(F)
Pe cumulati (P)
R(Ciumu ative S wp . (29)

& t,cumulative

By using the above defined model, the proposed approach is able to select the nodes, which will
result in highly resilient and fail-safe network over the properties of LoRaWAN. The selection of nodes
can be further understood from the steps presented in Algorithm 3. The algorithm helps in creating
a subset of nodes and links that have very minute likelihood of failing on the basis of present depletion
rate. The algorithm is iterative and continuously monitors the network for any changes in properties
and the defined system model. Further, by using its steps, every node can maintain a connectivity with
the above maneuvering drone leading to zero-isolation and fail-proof connectivity over LoRaWAN
properties and infrastructure.

Algorithm 3 LoRaWAN-based Drone Communications for urban-Surveillance

1: Input: Network components, system model
2: Output: Incidence and Adjacency matrices for communication
3: Initialize network and beacon messages
4: Evaluate initial system model
5: ADJ|), INJj=Calculate initial adjacency and incidence matrices through Algorithms 1 and 2
6: counter=count of links in INJ) or ADJ))
7: while (Transmission !=Halt) do
8: Fetch current time
9: while (i < counter) do
10: Calculate ﬁ;m (t) using Equation (26)
11: Calculate wf(:)) using Equa’ii;))n (27)
12: Calculate ch(u%u(l:)riw Pc,cmnzmm
F ()
13: if (\gpcff;%‘”ﬂ“w < w£7’>> && <P(%;‘"”“““W < wﬁp)> > then
By (1) Reg p,cumulative
14: ark link and the nodes connected by it
15: Proceed with new incidence and adjacency matrices
16: Check for isolation
17: if (isolation == True) then
18: exit(—1) or reset model to remove isolation
19: else
20: Continue
21: end if
22: else
23: discard node and continue until all the links are not checked
24: end if
25: i=i+1

26: end while

27: Communicate and maintain links until conditions in step 13 holds
28: end while

29: Maintain logs and build connectivity graphs
30: Share logs with the Application Server

31: Update database and generate files for analysis

5. Performance Evaluation

The proposed approach is analyzed for its performance over a scenario that considered hovering
drones in a smart city environment through system simulations in Matlab™. The drones are assumed
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to be transmitting traffic locations over LoRaWAN connections. The proposed solution is tested on
an area of 2500 x 2500 m? with number of drones varying between 10 and 20. A total of 10 zones is
considered each having number of sensors equal to 50 and the number of users less than or equal
to 500. The drones are set at a cruising speed of 30 kmph and can operate continuously for whole
simulations provided that the depletion rate of resources is not too high. The other parameters and
their values used for analysis are provided in Table 2.

Table 2. Parameter Configurations.

Symbol Value Symbol Value
Tp 30 dBm t 200's
Ka ~11dB A 2500 x 2500 sq.m.
H 500 m ¢ 50
% ~174 dBm/Hz z 10

« 4 ul” 10s

N 10 p{" 55

D 5 111, 772, 113 0.3

¢ 2 (<(23)ntity> 2000 J

u 20 Vi 30 kmph

£ 500 Ry 500 m

W 10 t 20s

S 500 b 1024 bytes
w(LoS) 2 Reentity> 100 to 500 m

a(NLoS) 24 P, 0.00125 W
Cs 0.1 P 0.0016 W
Ok 500 X, X, 50, 100
d 10 B. 4
Lo 10 dB T 4
X 2 B 2
g 10 J 2
E; 0.1] E, 0.25]
E, 0.05] E; 0.32]

A 30 Kbps 7’ 50 Kbps

Initially, the network is set as per the configured entities and Algorithms 1 and 2 are used for
allocation of drones for the given number of sensors and users. The proposed setup operates with an
average degree of connectivity varying between 1 and 6 for each of the users that have at least one of
their channels operational all the time. The plot for the degree of connectivity for an active number of
users is presented in Figure 4. This plot helps to understand the connectivity of the network and also
assists to predict the traffic which will be generated once all the users are online and transmit through
the same network.

The proposed approach operates for defining a system which can withstand the low bit rate
pressure of LoORaWAN as well as can ensure high reliability of connections with less redundancy and
almost zero-isolation. Figure 5 presents the plot for reliability for time-based as well as state-based
network with varying frequency of received power to its thresholds. The thresholds are set at a range
equivalent to an average of the minimum and mean value of received power during one cycle.
It is evident from the graph that with increasing limits for thresholds, the reliability of the network
decreases, as with time the received power for each entity in the network decreases. This decrease is
due to the depleting energy for each link operating from a zone of users and sensors. However, the
reliability lowers to a minimum value only if the f, reaches its maximum ratio of 1, which is a harsh
scenario and usually, all the networks are recharged for their resources before reaching this limit. It is
observable that the proposed approach can offer high reliability in a scenario where drones are used
as LoRaWAN gateways. Also, the trends in the reliability graphs justify the conditions imposed on
Equation (6). Thus, verifying the defined system model.
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Figure 5. Reliability of the network vs. frequency of received power to the thresholds for transmission.

The entire model is efficient if it imposes lower stress on its resources. This is calculated in terms
of area stress in Equation (12). The area stress is directly proportional to the network stress and the
number of overlaps in the network (O). The number of overlaps causes excessive interference in the
network and wastes much of the network resources in counterfeiting the effects of signals from other
simultaneously communicating entities. From the density plot in Figure 6, it is noticeable that as the
area stress of the network follows a logarithmical increase, the entire network observes a high number
of overlaps. Further, this graph can be reversely studied, which means that the area stress of a network
will increase with the increasing number of overlapping zones that will lower the transmission rate of
the network and in lieu, the reliability of the entire system will decrease. There are certain durations
in the network when the network stress is unaffected by the increasing number of overlaps. Such a
situation includes more drones than normal setup over a single communicating zone.

From the system modeling, it is understandable that the transmission range plays a crucial role
in sustaining of the network and its survivability, which is studied in form of the resilient factor in
Equation (26). A network with better connectivity, lower consumption of energy, high yield in terms
of remaining energy, better capacity and coverage area, possesses high resilient factor along with the
reliability. Further, these values increase with an increase in the radio range of drones as a single drone
can serve multiple users from different zones provided that the incoming requests are within the limits
of connections supported by it. The results for reliability and resilient factor with an increasing radio
range are presented in Figure 7. The resilient factor can attain a high value depending on the factors
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controlling it. The values can also be presented as normalized output by controlling the range of %1, 172
and 773. However, at the moment, the real values are included for actual evaluation of the system.

251 —
(e)
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f(NS )
20 —_ne
stress
> 15 — h
‘©
c
(0]
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0
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Figure 6. Number of overlaps identified vs. observation values for area stress.
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Figure 7. Resilient factor and reliability vs. radio range of drones.

The proposed approach is analyzed for its energy consumption throughout the transmission.
With an increasing number of overlaps, the energy wastage increases, which decreases the overall
available energy of the network as shown in Figure 8. The results in the figure show the confidence
bounds at 95% interval and illustrate that a generalized quadratic equation can be used to analyze
this decrease in available energy with an increasing number of overlaps. However, this lowering can
be improved by subdividing the zones or by deploying more number of drones at varying altitude.
Such an approach can lead to a longer duration of the network, but at an expensive operational cost.

Apart from the above results, the system is also tested for results with the varying number of
drones as shown in Figures 9 and 10. The plots in Figures 9 and 10 illustrate the outcomes for area
stress and available energy of each link, respectively, for a different set of drones. The result for area
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stress shows that the setup with 20 drones causes 89.7% and 53.0% lower burden on the network
than the setups with 10 and 15 drones, respectively. This suggests that increasing drones can help
managing network connectivity as well as support multiple LoRaWAN gateways than can support
surveillance even at a lower bit rate. Further, the per-link available energy of the network increases
with an increase in the number of LoORaWAN gateways (drones). It is noticed that a network with
20 drones observes 39.2% and 12.6% more available energy for each active link in comparison with
the networks operating with 10 and 15 drones, respectively. The decrement in the observed values
in Figure 10 even for a higher number of drones is due to reallocation and reshuffling operations
conducted through Algorithms 1-3. Further, it is noticed that the proposed approach operates with a
no failure probability (wgp) ) equal to 0.99, which is sufficient enough for demonstrating the capabilities
of the proposed model. Thus, from the results presented in this paper, it is evident that the proposed
approach of using drones as LoRaWAN gateways for energy-efficient surveillance in ITS provides a
fail-safe and highly resilient connectivity even at a low rate of transmissions. Further, the observed
overheads and energy consumptions are lowered with no-isolations and low-redundancy even at the
higher overlapping of communicating zones.

1000 f

Y(eZone)

900\

Quadratic fit on Yéz)
800

Predictive bounds at 95% confidence I

700
600
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400
300

200

Available energy for overlaps
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Figure 8. Available energy for overlapping zones for time ¢ vs. increasing number of overlaps.
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Figure 9. Area stress vs. number of drones.
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Figure 10. Available energy per link for each zone vs. number of drones.

6. Comparison with State-of-the-Art Solutions

The proposed approach provides fail-safe as well as resilient connectivity between the sensors
and the drones during surveillance leading to high conservation of energy. The proposed approach
uses drones as LoORaWAN gateways and allows extensive monitoring, coverage and communication
with the underlying users. With the help of area stress metric, the proposed approach is able to
identify the amount of energy that will be consumed by the involved entities during their operations.
The novelty of the proposed approach is depicted in terms of the network model, energy-efficient
surveillance and low-failure probability. Over the years, drones or UAVs have been exhaustively used
for surveillance but there are limited studies which actually emphasizes the role of drones in ITS. Also,
the ones with energy efficient architecture, are unable to support fail-safe communications, and the
others with effective surveillance are unable to provide low-power and long-range support as that of
LoRaWAN setup. Further, there are limited works that exploited the features of LoRaWAN setup for
surveillance purposes.

Most of the existing works focused on capacity, scalability, cooperation and task allocations for
drones in ITS [69,70], but advancement to energy-efficient surveillance is little. Despite limited works
on the applications of LoRaWAN, some of the key solutions which emphasize on surveillance are
identified and compared with the proposed approach as shown in Table 3. The comparisons are
drawn for different parameters such as ideology, use of drones, support for cellular and wireless
communications, surveillance, energy-efficient deployment, resilience, fail-safe operations, and use of
LoRaWAN features. From these comparisons (to the best of authors” knowledge), it is evident that
none of the existing works has utilized the features of drones as well as LoRaWAN for energy-efficient
surveillance, and the proposed approach is successful in supporting energy-efficient, fail-safe and
highly resilient surveillance by drones for ITS.
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Table 3. Comparison of the proposed approach with the state-of-the-art solutions for surveillance.

21 of 26

Wireless Energy-Efficient
Approach Author Ideology Drones Communication Surveillance 8y ! Resilient  Fail-Safe LoRaWAN
Deployment
Support
Meteorolp g1ca} Reda et al. [71] LoRa wireless communication No Yes No - - - Yes
information display
Visual surveillance Pham [72] Low-cost, low-pow ero No Yes Yes Yes - - Yes
and long-range visualization
UAV path planning Zhan et al. [73] Mul.hconStramtS ina3b Yes No Yes No - - Yes
environment
UAV-WSN networks Sharma et al. [45] Multi-UAV coordination Yes Yes Yes Yes No No No
Urban Surveillance Samad et al. [74] Networm centric systems Yes Yes Yes - - - No
Feature dete.ctlon (?f Xu et al. [75] Key points matching problem Yes No Yes No - - No
nonconforming objects
Amateur surveillance . Surveillance system based
System Dingetal. [76] on the cognitive Internet of Things Yes Yes Yes No ) ) No
Motion planning Scherer et al. [77] ~ Multi-UAV surveillance Yes Yes Yes Yes - - No
Proposed Sharma et al. Drones as LoRaWAN gateways Yes Yes Yes Yes Yes Yes Yes
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7. Conclusions and Future Remarks

Energy efficient surveillance in IoT-ITS is a major issue which needs effective strategies as most
of the devices involved in monitoring are battery operated. Majority of the devices involved in
urban-surveillance in IoT-ITS are always at an edge of depleting resources that may result in the
complete failure of the network. To resolve such a problem, a drone-assisted strategy was proposed
in this paper which utilized the concept of LoRaWAN and its architecture for conserving energy via
an efficient deployment of drones between the end users and the ground sensors. The proposed
approach emphasized on using drones as LoORaWAN gateway and support communication without
letting it travel to the application server, thus, saving unnecessary dependence on a centralized server.
Further, drone modeling and traffic estimation were performed over the defined network model to
form a base for energy efficient connectivity. Next, an intelligent solution for location identification
and coverage by drones was proposed followed by energy efficient surveillance and LoRaWAN-based
drone communication. Area stress, resilient factor, and energy conservation were the key metrics
used for the operations of the proposed approach. The numerical results suggested that the proposed
approach can conserve a maximum of 39.2% and a minimum of 12.6% of the total network energy and
can improve the area stress by a maximum of 89.7% and a minimum of 53.0% for varying number of
drones over a fixed area. It was also observed that the proposed approach can support continuous
connectivity with no failure probability as high as 0.99. Thus, it can be concluded that the proposed
approach is capable of providing energy efficient surveillance by using drones as LoRaWAN gateway
in energy-deficit urban IoT-ITS.

At the moment, the proposed model does not account for the backhaul formed with the drones
and LoRaWAN switches. This is marked as a future work and will be developed as an extension to
the proposed work. Communication strategies and protocols for data dissemination over the defined
network model are also required. Being energy constrained setup, the LoORaWAN infrastructure can
be tested with different types of hardware that can facilitate the practical utilization of drones for
LoRaWAN:-based urban surveillance.
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