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Abstract: The suitability of stainless steel 316L and Inconel 625 for use in a latent heat thermal energy
storage (TES) system was investigated. A NaCl–NaF eutectic mixture with a melting temperature of
680 ◦C was used as the phase change material (PCM). Containers were filled with the PCM prior to
heating to 750 ◦C, then examined after 100 and 2500 h of high-temperature exposure by analyzing the
material surface and cross-section areas. A small amount of corrosion was present in both samples
after 100 h. Neither sample suffered significant damage after 2500 h. The undesirable inter-granular
grain boundary attack found in SS316L samples was in the order of 1–2 µm in depth. On Inconel
625 sample surface, an oxide complex formed, resisting material dissolution into the PCM. The surface
morphology of tested samples remained largely unchanged after 2500 h, but the corrosion pattern
changed from an initially localized corrosion penetration to a more uniform type. After 2500 h,
the corrosion depth of Inconel 625 remained at roughly 1–2 µm, indicating that the corrosion rate
decelerated. Both materials demonstrated good compatibility with the chosen NaF–NaCl eutectic
salt, but the low corrosion activity in Inconel 625 samples shows a performance advantage for long
term operation.

Keywords: thermal energy storage (TES); phase change material (PCM); concentrating solar power (CSP);
molten salt; material compatibility; corrosion rate

1. Introduction

One of the main challenges limiting the widespread implementation of solar and wind energies
for grid-scale electricity generation is the transient nature of the renewable energy resources.
One promising technology is solar thermal power generation because surplus solar radiation can be
stored directly as thermal energy without costly conversion losses. Thermal energy storage (TES) has
been implemented at operational concentrating solar power (CSP) plants using the sensible heat of
a large amount of molten salt [1–3]. These systems require complex pumping systems, large storage
mass volumes for megawatt power generation, a high degree of insulation to prevent the molten salt
from solidifying, and they have a low solar to electric efficiency of only 15 to 20 percent. A latent
heat-based TES system vastly reduces the overall size and thus the cost of storage systems by utilizing
the vast amount of energy required to change a material’s state. The reasonably high heat of fusion
and relatively small volumetric change of solid-liquid phase transition in comparison to solid-solid
and liquid-gas transitions make it well suited for various TES applications. Numerous materials
have been investigated as potential phase change materials (PCM) over a wide range of temperatures
including paraffin wax, fatty acids, NaNO3, KNO3, NaNO3–KNO3 eutectics, NaCl, and sodium borate
oxides [1,4–6]. Ushak et al. [7] and Gomez et al. [8] reviewed the appropriate usage of some molten
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salts along with other storage media in TES systems including Hitec solar salt, mineral oil, synthetic oil,
silicone oil, nitrate salts, carbonate salts, and liquid sodium. However, most of the studied materials
had a low solid thermal conductivity which vastly reduces the heat transfer rate during solidification.
Research into various means of increasing the heat transfer rate is a wide topic that includes embedding
a highly conductive material into the PCM [9–14], encapsulation [4,5,15–22], embedding fins into the
PCM [23–25], and using heat pipes [26–35].

In the development of a TES system, one of the major challenges is the appropriate selection of
materials for the construction of the salt container. Key requirements include strength and corrosion
resistance at elevated temperatures, raw material cost, commercial availability, and manufacturability
using common fabrication methods. Kuravi et al. [2] provided a list of materials that are suitable
for use in TES systems based on the type of PCM salt utilized and the operating temperatures.
These materials include (but are not limited to) AISI 1015 carbon steel, AISI K01200, stainless steel
304, stainless steel 316, A36 carbon steel, and high nickel alloys. Zhao et al. [5] reported that there
was no degradation of a MgCL-SS304 encapsulated PCM capsules after prolonged exposure to high
temperatures. Zahrani and Alfantazi [36] presented their findings on the corrosion behavior of Inconel
625 in a PbSO4–Pb3O4–PbCl2–Fe2O3–ZnO molten salt environment. The mixture of the molten salt was
tested in the air at temperatures of 600, 700, and 800 ◦C. They identified the following as corrosion attack
modes: the formation of voids, general surface corrosion, intergranular corrosion, internal oxidation and
sulfidation, and a network of distributed pores on the surface and the cross-section. Sarvghad et al. [37]
conducted a compatibility study of SS 316, duplex steel 2205, and carbon steel 1008 with NaCl–Na2CO3 at
700 ◦C and Li2CO3–K2CO3–Na2CO3 at 450 ◦C in air for TES. Stainless steel 316 displayed the greatest
resistance to corrosion due to the formation of films on its surface. At 450 ◦C, the corrosion mechanism
for all alloys considered was uniform without localized attack. At 700 ◦C, oxidative attacks on grain
boundaries were the primary corrosion mechanism. A review of the literature by Gil et al. [1] indicated
that the corrosion rate of stainless steel is increased by approximately 25–50% during thermal cycling
compared to isothermal immersion in molten nitrate salts and that the chloride content of the molten
salt has an impact on the corrosion rate. The authors also state that carbon steels may be considered
as potential TES containers in applications where exposure to nitrate salts can be limited to less than
400 ◦C. Liu et al. [38] conducted a study of isothermal corrosion of TP347H, C22 alloy, and laser-cladding
C22 coating in molten alkali chloride salts in air at 450–750 ◦C. Gomez-Vidal and Tirawat [39] presented
the results of corrosion tests for several alloys in a eutectic molten chloride solution at 650–700 ◦C in
a nitrogen atmosphere. The alloys tested included stainless steel 310, stainless steel 347, Incoloy 800H,
and Inconel 625, with Inconel 625 having the greatest corrosion resistance at 2.80 ± 0.38 mm/year.
Sarvghad et al. [40] examined the compatibility of Inconel 601 with NaCl–Na2CO3 and NaCl–Na2SO4 at
700 ◦C in air. They also studied the compatibility of Inconel 601 withLi2CO3–K2CO3–Na2CO3 at 450 ◦C
in air. It was determined that oxidation was the primary mechanism leading to oxide deposits on the
oxide surface, and de-alloying was detrimental to the material to 700 ◦C, with the availability of oxygen
controlling its rate.

The material compatibility study was conducted to determine the suitability of two metal alloys
for TES vessels containing a phase-change material. The PCM used in the study was a NaF–NaCl
eutectic mixture. This NaF–NaCl eutectic mixture was chosen as PCM due to (1) extremely low
cost; (2) availability; (3) the melting temperature of 680 ◦C, which is close to the optimal operating
temperature of the commercially available Stirling engine used for the project. Most of the PCM
studied in the past was for an operating temperature much lower than what we were looking for.
Other materials, such as liquid metals are good for a high operating temperature, but the cost is too
high. The long-term testing data for this specific eutectic mixture of NaF–NaCl was not available.
The closest PCM materials for high temperature TES are the ones used for NASA Solar Dynamic Space
Power Systems in the 1980s [41]. NASA data was used as the guidance for our selection of the PCM
and sample container materials and the testing, but no direct comparison could be made.
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CSP with Dish Stirling has been explored over many years as it offers excellent prospects for
mass production of low-cost, high efficiency electric power [3,42] and TES has begun to be integrated
with these systems [43,44]. For a typical integrated TES/CSP system, sunlight is directed onto the TES
receiver via mirrors on a parabolic dish concentrator. A heat transport device such as high-temperature
heat pipes or a pump loop system is often used to transfer thermal energy to the PCM. This heat
transport device also transfers heat to the Stirling engine during PCM discharge. Figure 1 shows
the integrated dish Stirling CSP system with a TES module. The operating temperature of the TES
module varies from local ambient to 700 ◦C due to solar insolation variations throughout the day.
To be representative of a TES system, the test of the TES material samples was operated at 750 ◦C.
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2. TES Vessel Material Selection

Molten salts are used in a variety of fields including nuclear, air and space, as well as solar power
generation. An extensive review of the literature was performed to evaluate the applicability for their
use in a TES system. The data gathered from NASA Solar Dynamic Space Power Systems Program
have the closest similarities to the current TES as they used alkali halide salt based PCM at high
operating temperature. A down-select process resulted in five candidate materials for potential use
as the TES container material with alkali halide salt based PCM. Of these five materials, stainless
steel 316L (SS316L) and Inconel 625 were selected for testing because of their raw material cost and
availability. Although numerous compatibility studies have previously been conducted with alkali
fluoride salt mixtures, studies of NaF–NaCl eutectic mixtures were not found. Based on the chemical
similarities of the chosen salt with those in previous studies, the previous studies were used to guide
the current material section. The results of previous alkali fluoride salt material compatibility studies
are summarized in the following points:
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• High-temperature alloys can be used as containers for molten salt TES. Most notably, Inconel 617
and stainless steel 304 have demonstrated limited degradation with no signs of failure even after
five years of thermal cycling.

• Oxygen, water residue, and sodium cations are the three oxidizing agents present in the PCM
salt system.

• Over time, the corrosion rate of the metallic alloys in a molten salt will decelerate due to the
limited availability of strong oxidizing agents.

• Minimizing the levels of oxygen and water vapor inside a TES vessel is crucial to the life of the
hardware. Corrosion can cause material failure in under a week if significant traces of water and
oxygen are present.

• Due to low electronegativity amongst the elements present in the material, sodium cations are not
expected to be an active oxidizer within the system.

Table 1 lists the alloys that were initially considered for use in the TES module. Due to high
cost, lack of availability, and manufacturing difficulties, Hastelloy N, Inconel 617, and Incoloy 800HT
were eliminated.

Table 1. TES vessel material candidates.

Candidate Material Alloy Ni Fe + Cr $ Rank

Stainless Steel 316L Fe–Cr Low High Low
Incoloy 800HT Ni–Fe
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3. Sample Preparation and Testing

Figure 2 shows a sample container with an interior volume of 35 mL, fabricated out of both
Inconel 625 and stainless steel 316L. To avoid contamination, the end caps and a small fill tube were
electron beam welded to the cylindrical body. Using the fill tube, salt was added to the container.
The fill tube was crimped and sealed using fusion welding after the samples were filled.
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The sample containers were first cleaned in a solvent using ultrasonic agitation and deionized
water. The samples were dried using nitrogen gas and then baked-out at 200 ◦C for over 3 h under
atmospheric conditions in an oven. After baking under atmospheric conditions, the samples were
heated for 4 h at 400 ◦C in a vacuum furnace at 1.6 × 10−4 Torr. In an effort to minimize excess oxygen
and water contaminants before filling the samples, the salt PCM constituents were heated to 200 ◦C
by a hotplate in a glove box for 10 h. The sample containers were filled with a NaF–NaCl mixture
at 4N grade (99.99% purity). The filling was conducted in the glove box. The volume change upon
melting was accounted for when filling the samples. The container was oversized to accommodate the
thermal expansion of PCM from solid to molten salt at the desired operating temperature. The PCM
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was initially in powder form with very low compaction factor. The PCM filling was accomplished
by taking several steps. Each time, only a portion of PCM powder was filled into the container and
a band heater wrapped around the container was turned on to let PCM melt completely. The band
heater was shut off after the melting to let the PCM cool down until it completely solidified to high
compaction solid. This process was repeated until the container was filled with the desired amount of
PCM. The filling process was conducted in a glove box. The glove box can provide environmental
conditions of O2 <10 ppm and H2O <10 ppm. Once the samples were filled the container had the
vacuum pulled down to 10−6 Torr. A hydraulic crimping tool was used to punch the fill tube. After the
punch, the fill tube was cut and fusion welded across the crimp.

Multiple samples of both Inconel 625 and stainless steel 316L were fabricated and then heated in an
oven to 750 ◦C. The melting temperature of the NaF–NaCl eutectic salt is around 680 ◦C. Although the
outer surfaces of the containers were exposed to ambient condition, the interior salt is under a 10−6 Torr
vacuum. The samples were held at 750 ◦C for 100 or 2500 h at which point they were taken out from the
oven for examination.

4. Test Results and Discussion

After 100 and 2500 h of heating, the Inconel 625 and stainless steel 316L samples were taken out
from the furnace and then cut open. Scanning electron microscopy (SEM) and energy dispersive X-ray
spectroscopy (EDX) were used to analyze the interior surface and the cross-section of the containers.
Other techniques for characterizing the samples were also explored. It would be better if both the
vessel materials and the PCM were examined. The dissolution of the chemical elements of the vessel
materials into the PCM can be better characterized by conducting a chemical analysis on the molten
salt. Additionally, examining the molten salt may further aid the study of the impact of the dissolved
chemical elements on the degradation of the molten salt’s performance. Note that this paper will only
present the measurements and analysis results of the container materials as the focus of the project was
on the container materials. The primary chemical compositions of both stainless steel 316L and Inconel
625 were measured from the same material batch used for the fabrication of the sample containers.
Tables 2 and 3 present the key alloy compositions of the unheated materials.

Table 2. Chemical composition of SS 316L, raw material prior to fabrication.

Sample Material C Fe Cr Ni Mo Mn Cu

SS 316L 0.21% 78% 16.5% 10.1% 2.05% 1.7% 0.43%

Table 3. Chemical composition of Inconel 625, raw material prior to fabrication.

Sample Material C Fe Cr Ni Mo Nb Al

Inconel 625 0.005% 1% 20.5% 66% 8.3% 3.38% 0.21%

A sample from the side wall of the vessel that was near the end cap and the weld zone was used
for SEM. The sample was mounted on the holder using carbon coated, conductive adhesive tape.
A Quanta 3D FEG by FEI Corp was used for SEM analysis.

An unused sample container was used to develop a baseline for comparison and therefore was
analyzed first. No corrosion was observed, as expected the surface was protected by a chromium
oxide layer. However, a top surface EDX analysis revealed that there was an enrichment of manganese
and copper, Table 4. Of all of the alloy constituents, manganese and copper have the highest
vapor pressure at elevated temperatures [45]. Thus it is probable that the elements preferentially
evaporated during the welding process and were then re-deposited on to the surface during cooling.
To gain a better understanding of how the microstructure and chemical composition of the raw
stainless steel 316L material were impacted by both machining and the electron beam welding process,
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an in-situ ion milling process was performed using focused ion beam technology to obtain detailed
information from the cross-section of the samples. First, the alloy cross-section surface was roughly
milled by the ion beam and then finely polished/etched by the secondary ion beam to expose the
underlying microstructural details. The surface morphology of the untested sample is shown in
Figure 3. The defects seen in Figure 3 are machining marks.

Table 4. EDX chemical analysis and key element concentration at SS316L surface after machining and
Electron Beam welding, untested.

Sample Material O Fe Cr Ni Mn Cu

SS 316L 1.6% 46% 18.4% 5% 23% 2%
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reduce the material thickness significantly, resulting in early failure. This was not seen in the 
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Figure 3. Top-down SEM image of an untested SS 316L sample surface (5000×).

An SEM image of the cross-section of the untested stainless steel 316L sample is presented in
Figure 4. Between the sample surface and the deposited carbon protection layer, a half micron thick
layer can be seen. In Figure 4, the top layer is the deposited carbon layer used to protect the material
during the ion milling process. The manganese content of the layer was further confirmed by EDX
analysis and a level of over 20% was measured. This further confirms that the enrichment of Mn and
Cu at the surface results from the metal elements being vaporized during the electron beam welding
process and were then deposited back onto the substrate.
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4.1. Stainless Steel 316L, 100 H Test

The interior surface of a stainless steel 316L sample after 100 h of heating is shown in Figure 5.
The sample for examination was selected at a location far from the weld zone. A significant amount of
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roughness can be seen on the sample’s surface. Both grain boundaries and polycrystalline grains are visible.
The homogeneous surface roughness and a shallow V-shaped groove on corrosion sites indicate that
corrosion progressed uniformly in all directions. The least desired form of corrosion for TES applications is
unidirectional corrosion penetration along a grain boundary. This type of corrosion progresses mainly in the
Z direction along the grain boundary and the metal loss within the grains is insignificant. It is undesirable
because even a very small amount of metal loss could reduce the material thickness significantly, resulting
in early failure. This was not seen in the examined sample. The morphology seen further indicates
that two localized metal dissolutions started: pitting and inter-granular. The dissolution level changes
profoundly along the grain boundaries, but the majority had a very small amount of corrosion. At grain
boundary junctions, the corrosion pits were also observed. This suggests that all localized attacks started
at the boundaries. Lastly, corrosion products were found in the sample substrate. This indicates that
dissolution of the corrosion products into the molten salt occurred via Louis acid reaction process between
the hot molten inorganic halides and the surface oxide [46,47].
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Figure 5. (a) Top-down and (b) tilted SEM images of SS 316L sample surface after 100 h heating (5000×).

Figure 6 shows the four sample surface locations selected for EDX chemical analysis. The results
of the EDX analysis are presented in Table 5. The distribution of salt particles and surface oxide on
the sample surface were not even. In Figure 5 the dark areas have low oxygen and sodium levels,
indicating minimal to no oxide or salt present. The levels of sodium, oxygen, and fluorine were
undetectable at site 1 indicating no salt and oxide in this area. Both sites 2 and 3 show a slight amount
of salt and oxide. Not only does site 4 have typical salt morphology with oxygen, fluoride, and sodium
concentrations over 10%, but also a chromium enriched surface oxide is present. Noteworthy is the
enrichment of molybdenum at sites 1 and 2 and the manganese depletion at sites 1 to 3.
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Table 5. EDX chemical analysis, weight percentage of SS 316L sample surface after 100 h testing.

Sample Site O% F% Na% Fe% Cr% Ni% Mo% Mn%

1 - - - 71 11.62 10.9 6 -
2 2.55 - - 61 10.54 8.7 10.2 -
3 1.78 - 1.57 70 11.24 10.3 3 -
4 11 13.4 16.7 11.5 33.06 1.6 - 2.1

Figure 7 shows a cross-section view of the sample after 100 h heating. The micro-voids resulting
from element depletion were not visible. The deep grain boundary corrosion penetration was not present.
As a result of annealing, grain recrystallization and growth occurred replacing the refined and highly
distorted grains seen in the untested sample. This is desirable because the larger annealed grains are more
stable and thus provide a higher resistance to corrosion than that of the grains that are plastically deformed.
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The cross section of the 100 h stainless steel 316L sample was analyzed with EDX to characterize the
key elements concentration. Performing EDX on the cross section provides better information than that
done on the surface because the surface oxide and salt contamination are reduced. The locations where
EDX was performed are shown in Figure 8 while the results are presented in Figure 9. The variation
in the concentrations of nickel and iron were unremarkable. Additionally, molybdenum enrichment
and surface chromium depletion were evident. The primary corrosion mechanism of stainless steel
is chromium dissolution. At a depth of roughly 6 microns, nominal composition was observed.
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The chromium dissolution to the salt occurred in two reaction paths. First, the reaction of chromium
with oxidants from any remaining O2 or H2O resulted in the formation of chromium oxide on the
surface which dissolved into the molten salt. Second, the precipitation of chromium carbide at the
grain boundaries dissolved into the molten salt. This molybdenum enrichment is in contrast to the
near surface chromium reduction. At elevated temperature, high diffusion mobility of the chromium
results in its depletion. The vacancies resulted from the chromium depletion drive the molybdenum to
the surface [48]. Additionally, at elevated temperatures the migration of molybdenum to the grain
boundaries resulted in the formation of carbides.

The last area that was examined was the weld zone. In an effort to avoid introducing contaminants
into the sample, electron beam welding was used during fabrication. However, the composition,
microstructure, and properties of the material were changed by the welding process. Figure 10 shows
a cross-section of the weld zone from the 100 h stainless steel 316L sample. A few micron thick layer
can be seen at the top of the image. This layer was formed due to metal overflow from the fusion pool.
A coating from metal vapor deposition can also be seen in Figure 10. The vertical lines seen resulted
from the rough ion beam milling process during the preparation of the sample. Between the upper
layer and the base material, an interface layer was formed indicating that the fusion was incomplete.
Additionally, micro-voids are present both along and adjacent to the boundary.
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Figure 10. Cross-section SEM image of SS 316L sample in the weld zone after 100 h heating.

Three locations on the cross-section were chosen for EDX analysis. These areas were labeled as 1 for
the largest void at the center, 2 for the base material, and 3 for the top layer, respectively. The results of the
EDX analysis are listed in Table 6. At site 1, the presence of the salt is evident by a large fraction of sodium
and chlorine present within the void area. It is possible that the salt could have fallen into the void from the
surface during the ion beam milling process. It is also possible that the void area was connected via a grain
boundary or micro-crack to the surface in contact with the salt due to the melding process. Manganese
depletion was also evident at all three sample sites. This further suggests that at high vapor pressure,
the element evaporated during the welding process and later redeposited on the surface during cooling.

Table 6. EDX chemical analysis and resulting weight percentage of SS 316L sample in the weld zone,
100 h testing.

Sample Site O% Cl% Na% Fe% Cr% Ni% Mo% Mn%

1 1.7 20.5 10.5 50 15.2 9.6 1.6 0.5
2 1.1 - - 70.1 17.1 8.7 1.5 1.0
3 1.4 0.3 1.57 71 11.24 9.1 3 0.7

Immediately after the stainless steel 316L sample was cut open, the color of the eutectic salt was
visually inspected and its appearance was a pure white color. This also suggests that minimum corrosion
had occurred. The color of a halide salt is sensitive to the level of chromium dissolution. It has previously
been reported that salt discoloration from white to yellow can occur even after a 100-h reaction of the
halide salt in a pre-baked stainless steel capsule [46]. To confirm the high sensitivity of the change in salt
color, a simple re-melting test of the used NaF–NaCl eutectic salt mixture was conducted during which
the top cap of the sample was removed leaving the interior of the stainless steel 316L sample and the salt
exposed to the ambient environment. When the container was not sealed, the color of the eutectic salt
changed from pure white to a light yellow after only one cycle of solidification and re-melting.

4.2. SS 316L, 2500 H

Figure 11 shows that surface morphology of a sample after 2500 h of heating. The results indicate
that a uniform metal dissolution process occurred at some point after the initial 100 h. While there
were no signs that profound intergranular corrosion occurred, more pits presented at the junctions of
grain boundary while shallow pits were observed within the grains themselves. Preferential dissolution
occurred along certain crystal orientations as some grain facets were exposed. The noted characterizations
suggest that a change in the corrosion mechanism occurred between 100 and 2500 h’ exposure with the
molten salt. The corrosion became uniform on a macro-scale after an initial intergranular boundary attack.
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introduced grain refinement and distortion as well as machining marks being visible in both images 
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Figure 11. (a) Top-down and (b) 20◦ tilted SEM images of SS 316L sample surface, 2500 h testing (5000×).

The conclusions that no intergranular penetration occurred can be substantiated by examining
the increased resolution image of the cross-sectional area shown in Figure 12a. Instead of the top down
surface EDX analysis that was done on the 100 h sample, a more accurate cross-section survey was
performed. The results are presented in Figure 12b. The concentrations of the key elements were
compared to those seen in the 100 h samples. The variation in the concentration of the key elements
with the sample’s depth is less since the elements had sufficient time to migrate to their respective
equilibrium concentrations within the material.
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Figure 12. (a) Cross section SEM image (10,000×) and (b) EDX chemical analysis of SS 316L sample
after 2500 h heating.

As with the 100 h sample, the weld zone cross section was also analyzed via SEM. Unlike in the
100 h heated sample, the distinct fusion pool layer and micro-voids in the weld zone were not present
in the 2500 h sample. The exact cause for this is unknown. A plausible explanation is that corrosion
occurred at the interface boundary between the fusion pool and the base metal layers. This would
allow the thin fusion pool layer to delaminate from the material surface.

4.3. Inconel 625, 100 H

As with the stainless steel 316L samples, an untested Inconel 625 sample was examined as a baseline
for comparison. Similar to the results of the stainless steel 316L sample, the cold work introduced grain
refinement and distortion as well as machining marks being visible in both images of Figure 13. However,
unlike with the stainless steel 316L, the EDX analysis results showed that no surface elements deviated
from the nominal composition of the bulk alloy. Although the same equipment and process parameters
were used for the electron beam welding of both the Inconel 625 and stainless steel 316L containers,
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manganese and copper enriched thin film were not found in the Inconel sample. Inconel 625 has elements
of a low vapor pressure and high melting temperature. The manganese and copper content of Inconel are
0.03% and 0.02% respectively. These levels are at least an order of magnitude lower than that of stainless
steel 316L, thus during the welding process, there were insufficient elements with high vapor pressure to
evaporate and then redeposit during cooling. The chemical composition of the Inconel 625 surface after
the welding process is shown in Table 7.

Comparing to the stainless steel 316L sample, the images of the Inconel 625 sample surface were
significantly different after 100 h of heating. The surface of the Inconel 625 sample was covered evenly
by both salt residues and oxide. Ultrasonic agitation was employed to clean the sample in a de-ionized
water bath to aid in the evaluation of the samples. The sample surface after cleaning is shown in
Figure 14. A 0.5 µm thick oxide layer uniformly covered the surface, Figure 15. The formation of the
oxide layer starts as a grain with the size of a few hundred nm and then agglomerates and forms
a dense layer. However, gaps are present among the grains which permit the molten salt intrusion.
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Table 7. Chemical composition at Inconel 625 surface after machining and EB welding, untested.

Sample Material O% Fe% Cr% Ni% Mo% Nb% Al%

Inconel 625 0.47 1.6 20.7 65.4 8.4 3.2 0.3

The oxide complex that forms on the surface of the Inconel 625 sample is stable and resistant to
dissolution, unlike the oxide that forms in the stainless steel 316 L samples which is easily dissolved in
the molten salt. An EDX analysis of the surface was conducted on a single location and the results
are listed in Table 8. Note that the values in Table 8 are listed in atomic percentage. The exact oxide
could not be determined based on the EDX analysis alone, however, the oxide is rich in nickel and
chromium. The extremely low Na and Mo contents indicate minimal interaction with both the salt and
the alloy substrate.

Table 8. The atomic percentage of Inconel 625 sample surface after 100 h testing.

Element Cr O Ni Mo Fe Na

Atomic% 49 31 21.5 1.5 0.6 0.25

A view of the microstructure of the Inconel 615 sample’s cross-section can be seen in Figure 16.
The grains along the top surface are much smaller than those seen deeper in the sample. Additionally,
recrystallization formed annealing twins were found in the large grains. After 100 h of heating,
it appears that the majority of the grains have undergone recrystallization. The recrystallization of
grains reduces grain boundary migration mobility. Low grain boundary mobility decreases both
growth and recrystallization in the annealing process. Furthermore, when carbides are formed on
grain boundaries they have a pinning or retarding effect on the mobility of the grain boundary and
therefore slows down the recrystallization and the growth [49].
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Figure 16. Cross-sectional SEM image of Inconel 625 sample after 100 h heating (10,000×).

A total of four sites were selected for the EDX analysis on the cross-section. The first site,
site 1, was chosen in the oxide layer. Sites 2 and 3 were picked at grain boundaries and precipitates.
Site 4 was selected within the sample base material. The results of EDX analysis are tabulated in Table 9.
The surface analysis results from site 1 further substantiate the presence of a chromium enriched oxide.
Aluminum oxide precipitates are present based on the results from sites 2 and 3. As expected the
results from site 4 are comparable to the untested baseline composition. Note that sodium from the
eutectic salt was not observed in any of the four selected sites.
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Table 9. The weight percentage of Inconel 625 sample cross section after 100 h heating.

Sample Site Cr% Ni% O% Mo% Fe% Al% Mn% Na% Cl%

1 53.2 31.7 12.9 2.8 1 - - - -
2 18 67.9 3.9 4.4 1.7 4.4 0.1 - -
3 18.6 68 3.7 4.6 1.7 3.1 0.16 - 0.2
4 18.2 74.6 0.35 5.1 1.7 - 0.1 - -

4.4. Inconel 625, 2500 H

As with the 100 h sample, the Inconel sample was analyzed after 2500 h exposure to the molten
salt. The Inconel 625 was also cleaned to remove any salt residue before conducting the SEM analysis.
A surface morphology that was highly similar to that observed in the 100 h sample was seen in the
2500 h sample, Figure 17. The oxide layer with porous polycrystalline was still seen, but the grain
size of the layer and the thickness remained unchanged. These results indicate that the formed oxide
complex is resistant to container material dissolution into the eutectic mixture of NaCl–NaF used in the
experiments. The porous oxide layer after 2500 h is a result of extremely slow solid-state inter-granular
diffusion of the oxide under the test conditions. The temperatures present in the experiment were far
below the melting point of the normal oxide.
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Figure 17. Top-down SEM image of Inconel 625 sample surface after 2500 h heating (10,000×).

The results of a cross sections SEM analysis further validate the findings obtained from the surface
analysis, Figure 18. The measured thickness of the oxide layer and the size of the grains show little
change with the testing time. It was also observed that there was no apparent corrosion between
the alloy surface and the oxide layer. Furthermore, there was minimal intergranular boundary stack
activity present. A previous study reported that inter-granular grain boundary corrosion was the
primary corrosion mechanism of nickel alloys in alkali halide molten salt systems [50]. Contrary to
the previous report, no significant inter-granular penetration was observed in any of the samples
examined. A few micron or sub-micron sized voids were seen. These are likely the result of corrosion
resulting from material defects in the manufacturing process. Given the minimal change of the oxide
morphology, the lack of oxide growth and the clear interface present between the oxide and the Inconel
625 alloy surface strongly supports the conclusion that, after the initial stage, the corrosion rate in the
Inconel system has been greatly reduced.



Energies 2018, 11, 572 15 of 18

Energies 2018, 11, x 14 of 18 

 

4.4. Inconel 625, 2500 H 

As with the 100 h sample, the Inconel sample was analyzed after 2500 h exposure to the molten 
salt. The Inconel 625 was also cleaned to remove any salt residue before conducting the SEM analysis. 
A surface morphology that was highly similar to that observed in the 100 h sample was seen in the 
2500 h sample, Figure 17. The oxide layer with porous polycrystalline was still seen, but the grain 
size of the layer and the thickness remained unchanged. These results indicate that the formed oxide 
complex is resistant to container material dissolution into the eutectic mixture of NaCl–NaF used in 
the experiments. The porous oxide layer after 2500 h is a result of extremely slow solid-state 
inter-granular diffusion of the oxide under the test conditions. The temperatures present in the 
experiment were far below the melting point of the normal oxide. 

 
Figure 17. Top-down SEM image of Inconel 625 sample surface after 2500 h heating (10,000×). 

The results of a cross sections SEM analysis further validate the findings obtained from the 
surface analysis, Figure 18. The measured thickness of the oxide layer and the size of the grains show 
little change with the testing time. It was also observed that there was no apparent corrosion 
between the alloy surface and the oxide layer. Furthermore, there was minimal intergranular 
boundary stack activity present. A previous study reported that inter-granular grain boundary 
corrosion was the primary corrosion mechanism of nickel alloys in alkali halide molten salt systems 
[50]. Contrary to the previous report, no significant inter-granular penetration was observed in any 
of the samples examined. A few micron or sub-micron sized voids were seen. These are likely the 
result of corrosion resulting from material defects in the manufacturing process. Given the minimal 
change of the oxide morphology, the lack of oxide growth and the clear interface present between 
the oxide and the Inconel 625 alloy surface strongly supports the conclusion that, after the initial 
stage, the corrosion rate in the Inconel system has been greatly reduced. 

 
Figure 18. Cross-section SEM image of Inconel 625 sample after 2500 h heating (10,000×). Figure 18. Cross-section SEM image of Inconel 625 sample after 2500 h heating (10,000×).

Figure 18 shows where the four sites for EDX analysis were chosen. As shown on the upper left
corner of Figure 18, site 1 was inside the void. The other sites were located successively deeper into
the depth of the cross-section towards the base alloy material. The results of the EDX analysis are
listed in Table 10. The results are mostly comparable to the composition of the base alloy elements.
The composition was fairly uniform across the sample with the exception of the indication of an oxide
precipitate at site 2. The results from site 1 show that molten salt was able to penetrate into the void
space through a grain boundary.

Table 10. The weight percentage of Inconel 625 sample cross section after 2500 h heating.

Sample Site Ni% Cr% Fe% Mo% Nb% O% Na% Cl%

1 64.6 19.1 1.4 2.4 0.4 0.43 7 3.7
2 72.7 18.4 1.5 5.6 1.2 30.57 - -
3 71.5 20.7 1.3 5.2 1.2 3.7 - 0.2
4 71 19.1 1.4 5.1 1.2 0.35 - -

5. Conclusions

The compatibility of stainless steel 316L and Inconel 625 to NaCl–NaF eutectic mixture was studied
to determine the suitability for use in a latent heat TES system. A small amount of corrosion was
present in both container materials after 100 h of high-temperature heating. However, neither sample
suffered significant damage after 2500 h of high-temperature heating. The undesirable inter-granular
grain boundary attack found in SS316L samples is in the order of 1–2 µm in depth. On the surface
of the Inconel 625 sample, an oxide complex formed. This oxide complex is resistant to container
material dissolution into the molten salt. After 2500 h of high-temperature exposure, the surface
morphology of both stainless steel 316L and Inconel 625 remained largely unchanged, but the corrosion
process switched from an initially localized pattern to a more uniform pattern. After 2500 h of
high-temperature heating, the measured corrosion depth of Inconel 625 remained roughly 1–2 µm,
indicating the deceleration of corrosion rate. Both Inconel 625 and stainless steel 316L demonstrated
good compatibility with the chosen eutectic mixture of NaF–NaCl in a system that has been sealed
and the excess water and oxygen inside the container has been removed. The low corrosion activity
in Inconel 625 samples shows an advantage over the stainless steel 316L for long term operation.
Therefore, the results can also provide good insight on the selection of the material for use in a TES
system that utilizes a NaF–NaCl eutectic as PCM.
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