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Abstract: The efficient use of energy in electrical systems has become a relevant topic due to its
environmental impact. Parameter identification in induction motors and capacitor allocation in
distribution networks are two representative problems that have strong implications in the massive
use of energy. From an optimization perspective, both problems are considered extremely complex
due to their non-linearity, discontinuity, and high multi-modality. These characteristics make difficult
to solve them by using standard optimization techniques. On the other hand, metaheuristic methods
have been widely used as alternative optimization algorithms to solve complex engineering problems.
The Crow Search Algorithm (CSA) is a recent metaheuristic method based on the intelligent group
behavior of crows. Although CSA presents interesting characteristics, its search strategy presents
great difficulties when it faces high multi-modal formulations. In this paper, an improved version of
the CSA method is presented to solve complex optimization problems of energy. In the new algorithm,
two features of the original CSA are modified: (I) the awareness probability (AP) and (II) the random
perturbation. With such adaptations, the new approach preserves solution diversity and improves the
convergence to difficult high multi-modal optima. In order to evaluate its performance, the proposed
algorithm has been tested in a set of four optimization problems which involve induction motors and
distribution networks. The results demonstrate the high performance of the proposed method when
it is compared with other popular approaches.

Keywords: evolutionary computation; Crow Search Algorithm (CSA); induction motors; distribution
networks

1. Introduction

The efficient use of energy has attracted the attention in a wide variety of engineering areas due
to its environmental consequences. Induction motors and distribution networks are two representative
problems that have strong implications in the massive use of energy.

Induction motors are highly used in industries as electromechanical actuators due to advantages
such as ruggedness, cheap maintenance, low cost and simple operation. However, the statistics shows
that approximately 2/3 of industrial energy is consumed by the induction motors [1,2]. This high
rate of consumption has caused the need to improve their efficiency which is highly dependent on
the configuration of their internal parameters. The identification of parameters for induction motors
represents a challenging process due to their non-linearity. For this reason, the parameter identification
of induction motors is currently considered an open research area within the engineering. As a
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consequence, several algorithms for parameter identification in induction motors have been proposed
in the literature [3,4].

On the other hand, distribution networks represent an active research area in electrical
systems. The distribution system along with generators and transmission are the three fundamentals
components of a power system. Distribution networks are responsible of the loss in the 13% [5,6]
of the generated energy. This loss of energy in distribution networks is mainly caused by lack of
reactive power in the buses. Capacitor bank allocation in distribution networks have proved to reduce
the loss of energy produced by the lack of reactive power. The problem of banks allocation can be
formulated as a combinatorial optimization problem where the number of capacitors, their sizes
and location have to be optimally selected for satisfying the system restrictions. Many techniques
have been proposed to solve this combinatorial optimization problem, which can be classified in
four main methods; analytical [5,7,8], numerical [9,10], heuristic [11–13], and based on artificial
intelligence [14,15]. A detailed study about the methods are described in [15–17].

From an optimization perspective, the problems of parameter identification in induction motors
and capacitor allocation in distribution networks are considered extremely complex due to their
non-linearity, discontinuity, and high multi-modality. These characteristics make difficult to solve
them by using standard optimization techniques.

Metaheuristics techniques inspired by the nature have been widely used in recent years to
solve many complex engineering problems with interesting results. These methods do not need
continuity, convexity, differentiability or certain initial conditions, which represents an advantage
over traditional techniques. Particularity parameter identification of induction motors and the
capacitor allocation represent two important problems that can be translated as optimization tasks.
They have been already faced by using metaheuristic techniques. Some examples include the
gravitational search algorithm [18,19], bacterial foraging [20,21], crow search algorithm [14], particle
swarm optimization [22–25], genetic algorithm [26,27], differential evolution [28–30], tabu search [31]
and firefly [32].

The Crow Search Algorithm (CSA) [33] is a metaheuristic method where individuals emulates
the intelligent behavior in a group of crows. Its published results demonstrate its capacity to solve
several complex engineering optimization problems. Some examples include its application to image
processing [34] and water resources [35]. In spite of its interesting results, its search strategy presents
great difficulties when it faces high multi-modal formulations.

In this paper, an enhanced version of the CSA method is proposed to solve the high multi-modal
problems of parameter identification in induction motors and capacitor allocation in distribution
networks. In the new algorithm, called Improved Crow Search Algorithm (ICSA), two features of
the original CSA are modified: (I) the awareness probability (AP) and (II) the random perturbation.
With the purpose to enhance the exploration–exploitation ratio the fixed awareness probability (AP)
value is replaced (I) by a dynamic awareness probability (DAP), which is adjusted according to the
fitness value of each candidate solution. The Lévy flight movement is also incorporated to enhance
the search capacities of the original random perturbation (II) of CSA. With such adaptations, the new
approach preserves solution diversity and improves the convergence to difficult high multi-modal
optima. To evaluate the potential of the proposed method a series of experiments are conducted.
In one set of problems, the algorithm is applied to estimate the parameters of two models of induction
motors. The other set, the proposed approach is tested in the 10-bus, 33-bus and 64-bus of distribution
networks. The results obtained in the experiments are analyzed statistically and compared with
related approaches.

The organization of the paper is as follows: Section 2 describes the original CSA, Section 3 the
proposed ICSA is presented, Section 4 the motor parameter estimation problem is exposed, Section 5
the capacitor allocation problem is described and Section 6 present the experimental results. Finally,
the conclusions are stated in Section 7.
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2. Crow Search Algorithm (CSA)

In this section, a general description of the standard CSA is presented. Crow search algorithm is a
recent metaheuristic algorithm developed by Askarzadeh [33], which is inspired on the intelligence
behavior of crows. In nature, crows evidence intelligence behaviors like self-awareness, using tools,
recognizing faces, warn the flock of potentially unfriendly ones, sophisticated communication ways
and recalling the food’s hidden place after a while. All these conducts linked to the fact that the
brain-body ratio of the crows is slightly lower than the human brain have made it recognized as one of
the most intelligent birds in nature [36,37].

The CSA evolutionary process emulates the behavior conducted by crows of hiding and recovering
the extra food. As an algorithm based on population, the size of the flock is conformed by N individuals
(crows) which are of n-dimensional with n as the problem dimension. The position Xi,k of the crow i in
a certain iteration k is described in Equation (1) and represents a possible solution for the problem:

Xi,k =
[

x1
i,k, x2

i,k, . . . , xn
i,k

]
; i = 1, 2, . . . , N; k = 1, 2, . . . , max Iter (1)

where max Iter is the maximum of iterations in the process. Each crow (individual) is assumed to
have the capability of remember the best visited location Mi,k to hide food until the current iteration
Equation (2):

Mi,k =
[
m1

i,k, m2
i,k, . . . , mn

i,k

]
(2)

The position of each is modified according to two behaviors: Pursuit and evasion.
Pursuit: A crow j follows crow i with the purpose to discover its hidden place. The crow i does

not notice the presence of the other crow, as consequence the purpose of crow j is achieve.
Evasion: The crow i knows about the presence of crow j and in order to protect its food, crow i

intentionally take a random trajectory. This behavior is simulated in CSA through the implementation
of a random movement.

The type of behavior considered by each crow i is determinate by an awareness probability (AP).
Therefore, a random value ri uniformly distributed between 0 and 1 is sampled. If ri is greater or equal
than AP, behavior 1 is applied, otherwise situation two is chosen. This operation can be summarized
in the following model:

Xi,k+1 =

{
Xi,k + ri · f li,k · (Mj,k − Xi,k) ri ≥ AP

random otherwise
(3)

The flight length fli,k parameter indicates the magnitude of movement from crow Xi,k towards the
best position Mj,k of crow j, the ri is a random number with uniform distribution in the range [0, 1].

Once the crows are modified, their position is evaluated and the memory vector is updated
as follows:

Mi,k+1 =

{
F(Xi,k+1) F(Xi,k+1) < F(Mi,k)

Mi,k otherwise
(4)

where the F(·) represents the objective function to be minimized.

3. The Proposed Improved Crow Search Algorithm (ICSA)

The CSA has demonstrated its potential to find the optimum solution for certain search spaces
configurations [14,33,38]. However, its convergence is not guaranteed due to the ineffective exploration
of its search strategy. Under this condition, its search strategy presents great difficulties when
it faces high multi-modal formulations. In the original CSA method, two different elements are
mainly responsible of the search process: The awareness probability (AP) and the random movement
(evasion). The value of AP is the responsible of provide the balance between diversification and
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intensification. On the other hand, the random movement directly affects the exploration process
through the re-initialization of candidate solutions. In the proposed ICSA method, both elements, the
awareness probability (AP) and the random movement, are reformulated.

3.1. Dynamic Awareness Probability (DAP)

The parameter AP is chosen at the beginning of the original CSA method and remains fixed
during the optimization process. This fact is not favorable to the diversification–intensification ratio.
In order to improve this relation, the awareness probability (AP) is substituted by a dynamic awareness
probability (DAP), which is a probability value adjusted by the fitness quality of each candidate
solution. The use of probability parameters based on fitness values has been successfully adopted
in the evolutionary literature [39]. Therefore, the dynamic awareness probability (DAP) is computed
as follows:

DAPi,k = 0.9 ·
F(Xi,k)

wV
+ 0.1 (5)

where wV represents the worst fitness value seen so-far. Assuming a minimization problem, this value
is calculated as follows wV = max(F(Xj,k)). Under this probabilistic approach, promising solutions will
have a high probability to be exploited. On the other hand, solutions of bad quality will have a high
probability to be re-initialized with a random position.

3.2. Random Movement—Lévy Flight

The original CSA emulates two different behaviors of crows: pursuit and evasion. The behavior
of evasion is simulated by the implementation of a random movement which is computed through a
random value uniformly distributed.

In nature, the use of strategies to find food is essential to survive. A search method that is not able
to explore good sources of food may be fatal for the animal. Lévy flights, introduced by Paul Lévy in
1937, is a type of random walk which has been observed in many species as a foraging pattern [40–42].
In Lévy flights, the step size is controlled by a heavy-tailed probability distribution usually known as
Lévy distribution. The Lévy Flights are more efficient exploring the search space than the uniform
random distribution [43].

In the proposed ICSA, with the objective to have a better diversification on the search space, Lévy
flights are used instead of uniform random movements to simulate the evasion behavior. Therefore,
a new random position Xi,k+1 is generated adding to the current position Xi,j the computed Lévy
flight L.

To obtain a symmetric Lévy stable distribution for L the Mantegna algorithm [44] is used. Under
the Mantegna method, the first stage is to calculate the step size Zi as follows:

Zi =
a

|b|1/β
(6)

where a and b are n-dimensional vectors and β = 3/2. The elements of each vector a and b are sampled
from the normal distribution characterized by the following parameters:

a ∼ N
(
0, σ2

a
)

b ∼ N
(
0, σ2

b
)

σa =
{

Γ(1+β) sin(πβ/2)
Γ[(1+β)/2]β2(β−1)/2

}1/β
, σb=1

(7)

where Γ(·) denotes a Gamma distribution. After obtaining the value of Zi, the factor L is calculated by
the following model:

L = 0.01− Zi �
(

Xi,k − Xbest
)

(8)

where the product � implies the element-wise multiplications, Xbest represents the best solution seen
so far in terms of the fitness quality. Finally, the new position Xi,k+1 is given by:
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Xi,k+1 = Xi,k + L (9)

The proposed ICSA algorithm is given in the form of a flowchart in Figure 1.
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4. Motor Parameter Estimation Formulation

The physical characteristics of an inductor motor make it complicated to obtain the internal
parameter values directly. A way to deal with this disadvantage is estimate them through identification
methods. There are two different circuit models that allow a suitable configuration for estimate the
motor parameters. The two models are the approximate circuit model and the exact circuit model [4].
The basic difference is the number of parameters included in the model.

The parameter estimation is faced as an n-dimensional optimization problem, where n is the
number of internal parameters of the induction motor. The goal is to minimize the error between the
estimated parameters and the values provided by the manufacturer, adjusting the parameter values of
the equivalent circuit. Under such conditions, the optimization process becomes a challenging task
due to the multiple local minima produced with this approach.
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4.1. Approximate Circuit Model

The approximate circuit model characterizes an induction motor without considering the
magnetizing and rotor reactance parameters. Thus, the accuracy is less than the exact circuit model.

Figure 2 presents the approximate circuit model. In the Figure, it is represented all the parameters
used to characterize the motor such the stator resistance (Rs), rotor resistance (Rr), stator leakage
reactance (Xs) and motor slip (ms) which are estimated using the data provided by the manufacture
of starting torque (Tstr), maximum torque (Tmax) and full load torque (Tfl). Based on this model, the
estimation task can be expressed as the following optimization problem:

minCostAM(θ) whereθ = (Rs, Rr, Xs, ms)
Subject to 0 < Rs, Rr, ms < 1, 0 ≤ Xs ≤ 10,

(10)

CostAM(θ) =
3

∑
i=1

(Fi(θ))
2 (11)

F1(θ) =

KtRr

ms
[
(Rs+

Rr
ms )

2
+Xs

] − Tf l

Tf l
(12)

F2(θ) =

KtRr
(Rs+Rr)

2+Xs
− Tstr

Tstr
(13)

F3(θ) =

Kt

2
[

Rs+
√

R2
s+X2

s

] − Tmax

Tmax
(14)

Kt =
3V2

ph

ωs
(15)
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4.2. Exact Circuit Model

Different from the approximate circuit model, the exact circuit model characterizes the induction
motor by using all the motor parameters. Figure 3 illustrates the exact circuit model. This circuit
configuration includes the parameters stator resistance (Rs), rotor resistance (Rr), stator leakage
inductance (Xs) and motor slip (ms) also add two more calculations, the rotor leakage reactance (Xr)
and the magnetizing leakage reactance (Xm) to obtain, the maximum torque (Tmax), full load torque
(Tfl), starting torque (Tstr) and full load power factor (pf ). Based on this exact circuit model, the
estimation task can be formulated as the following optimization problem:

minCostEM(θ) whereθ = (Rs, Rr, Xs, ms, Xr, Xm)

Subject to 0 < Rs, Rr, Xs, ms, Xr < 1, 0 < Xm < 10
p f l−(I2

1 Rs+I2
2 Rr+Prot)

p f l
= n f l

(16)
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where pfl and Prot are the rated power and rotational losses, while nfl is the efficiency given by the
manufacturer. The values of pfl and Prot preserve compatibility with related works [3,18]:

CostAM(θ) =
4

∑
i=1

(Fi(θ))
2 (17)

F1(θ) =

KtRr

ms
[
(Rth + Rr

ms )
2
+ X2

] − Tf l

Tf l
(18)

F2(θ) =

KtRr
(Rth + Rr)

2 + X2 − Tstr

Tstr
(19)

F3(θ) =

Kt

2
[

Rth +
√

R2
th + X2

] − Tmax

Tmax ×m f
(20)

F4(θ) =

cos
(

tan−1
(

X
Rth + Rr

ms

))
− p f

p f
(21)

Vth =
VphXm

Xs + Xm
(22)

Rth =
R1Xm

Xs + Xm
(23)

Xth =
XsXm

Xs + Xm
(24)

Kt =
3V2

ph

ωs
(25)

X = Xr + Xth (26)
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5. Capacitor Allocation Problem Formulation

5.1. Load Flow Analysis

In this section the capacitor allocation problem is described. Therefore, in order to know the
characteristics of voltage profile and power losses in a distribution network a load flow analysis is
conducted. Several techniques have been considered to accomplish the analysis [45,46]. In this paper,
for its simplicity, the method proposed in [47] has been adopted to find the voltages in all buses.
Assuming the single line diagram of a three balanced distribution system, as shown in Figure 4, the
values of voltage and power losses are calculated as follows:

|Vi+1| = −
[

V2
i

2
− Ri · Pi+1 − Xi ·Qi+1

]
+

[(
−

V2
i

2
+ Ri · Pi+1 + Xi ·Qi+1

)
−
(

R2
i + X2

i

)
·
(

P2
i + Q2

i

)]1/2

(27)
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PLi =
Ri · [P2

i+1 + Q2
i+1]∣∣∣V2

i+1

∣∣∣2 (28)

QLi =
Xi · [P2

i+1 + Q2
i+1]∣∣∣V2

i+1

∣∣∣2 (29)

PLOSS =
N

∑
i=1

PLi (30)

where |Vi+1| is the voltage magnitude in the i-th + 1 node, Ri and Xi are the resistance and the reactance
in the branch i. Pi+1 and Qi+1 are the real and reactive power load flowing through node i-th + 1, PLi
and QLi are the real and reactive power losses at node i, while PLOSS is the total real loss in the network.
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5.2. Mathematical Approach

The optimal allocation of capacitors in distribution network buses is represented by the solution
that minimize the annual cost generated by power losses of the whole system (Equation (31)), as well
as the cost of capacitor installation (Equation (32)):

Min AC = kp · PLOSS (31)

Min IC =
N

∑
i=i

kc
i ·Qc

i , (32)

where AC is the annual cost generated by the real power losses, kp is the price of losses in kW per
year, PLOSS is the total of real power losses in the system, IC represents the installation cost of each
capacitor, N corresponds to the number of buses chosen for a capacitor installation, kc

i is the cost per
kVar, and Qc

i is the size of capacitor in bus i. The maintenance capacitor cost is not included in the
objective function.

Therefore, the general objective function can be expressed as follows:

Min F = AC + IC (33)

The minimization of the objective function F is subject to certain voltage constraints given by:

Vmin ≤ |Vi| ≤ Vmax (34)

where Vmin = 0.90 p.u. and Vmax = 1.0 p.u. are the lower and upper limits of voltages, respectively.
|Vi| represents the voltage magnitude in bus i.

Under such conditions, in the optimization process, an optimal selection of size, type, number
and location of capacitors must be found. This problem is considered a complex optimization task for
this reason the proposed ICSA is used to solve it.
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5.3. Sensitivity Analysis and Loss Sensitivity Factor

Sensitivity analysis is a technique applied mainly to reduce the search space. The idea is to
provide knowledge about the parameters in order to lessen the optimization process. In capacitor
allocation problem, the sensitivity analysis is used to obtain the parameters with less variability [48].
This information allows to know the nodes that can be considered as potential candidates to allocate
a capacitor. Under such conditions, the search space can be reduced. In addition, the nodes
identified with less variability correspond to those which will have greater loss reduction with the
capacitor installation.

Assuming a simple distribution line from Figure 4, as is shown in Figure 5, the equations of active
power loss and reactive power loss (Equations (28)–(29)) can be rewritten as follows:

PLineloss(i + 1) =

(
P2

e f f (i + 1) + Q2
e f f (i + 1)

)
· R(i)

V2(i + 1)
(35)

QLineloss(i + 1) =

(
P2

e f f (i + 1) + Q2
e f f (i + 1)

)
· X(i)

V2(i + 1)
(36)

where the term Peff(i + 1) correspond to the total effective active power presented further the node i + 1,
and Qeff(i + 1) is equivalent to the effective value of reactive power supplied further the node i + 1.
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Therefore, the loss sensitivity factors now can be obtained from Equations (35) and (36) as follows:

∂PLineloss
∂Qe f f

=
2 ·Qe f f (i + 1) · R(i)

V2(i + 1)
(37)

∂QLineloss
∂Qe f f

=
2 ·Qe f f (i + 1) · X(i)

V2(i + 1)
(38)

Now, the processes to detect the possible candidate nodes is summarized in the next steps:

Step 1. Using Equation (25) to compute the Loss Sensitivity Factors for all nodes.
Step 2. Sort in descending order the Loss Sensitivity Factors and its corresponding node index.
Step 3. Calculate the normalized voltage magnitudes for all nodes using:

norm(i) =
V(i)
0.95

(39)

Step 4. Set a node as possible candidate those nodes whose norm value (calculated in the previous
step) is less than 1.01.

6. Experiments

In order to evaluate the proposed method, a set of experiments are conducted considering two
energy problems. The first experiment is the internal parameter estimation of two induction motor
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models. The second experiment is implemented over three distribution networks where the objective
is to obtain the optimal capacitor allocation for reducing the power losses and improving the voltage
profile. The experiments have been executed on a Pentium dual-core computer with a 2.53 GHz CPU
and 8-GB RAM.

6.1. Motor Parameter Estimation Test

The performance of the proposed ICSA is tested over two induction motors with the purpose
to estimate their optimal parameters. In the experimental process, the approximate (CostAM) and
exact (CostEM) circuit model are used. The manufacturer characteristics of the motors are presented
in Table 1.

Table 1. Manufacturer’s motor data.

Characteristics Motor 1 Motor 2

Power, HP 5 40
Voltage, V 400 400
Current, A 8 45

Frequency, Hz 50 50
No. Poles 4 4

Full load split 0.07 0.09
Starting torque (Tstr) 15 260
Max. Torque (Tmax) 42 370

Stator current 22 180
Full load torque (Tfl) 25 190

In the test, the results of the proposed ICSA method is compared to those presented by the popular
algorithms DE, ABC and GSA. The parameters setting of the algorithms has been used in order to
maintain compatibility with other works reported in the literature [18,19,28,49] and are shown in
Table 2.

Table 2. Algorithms Parameters.

DE ABC GSA ICSA

CR = 0.5
F = 0.2

ϕni = 0.5
SN = 120

Go = 100
Alpha = 20 FL = 2.0

The tuning parameter FL in the ICSA algorithm is selected as result of a sensitivity analysis which
through experimentally way evidence the best parameter response. Table 3 shows the sensitivity
analysis of the two energy problems treated in this work.

In the comparison, the algorithms are tested with a population size of 25 individuals, with
a maximum number of generations established in 3000. This termination criterion as well as the
parameter setting of algorithms has been used to maintain concordance with the literature [18,28,49].
Additionally, the results are analyzed and validated statistically through the Wilcoxon test.

The results for the approximate model (CostAM) produced by motor 1 and motor 2 are presented
in Tables 4 and 5, respectively. In the case of exact model (CostEM) the values of standard deviation
and mean for the algorithms are shown in Table 6 for motor 1 and the results for motor 2 in Table 7.
The results presented are based on an analysis of 35 independent executions for each algorithm.
The results demonstrate that the proposed ICSA method is better than its competitors in terms of
accuracy (Mean) and robustness (Std.).
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Table 3. Sensitivity Analysis of FL parameter.

Parameter Analysis Motor 2
Exact Model

Motor 2
Approximate Model 10-Bus 33-Bus 69-Bus

FL = 1.0

Min 7.1142 × 10−3 1.4884 × 10−13 696.61 139.92 145.87
Max 1.1447 × 10−2 2.6554 × 10−5 699.56 146.06 164.12

Mean 7.2753 × 10−3 1.6165 × 10−5 697.22 140.52 147.89
Std. 7.4248 × 10−4 5.6961 × 10−5 0.6749 1.4291 3.2862

FL = 1.5

Min 7.1142 × 10−3 0.0000 696.61 139.42 146.08
Max 7.2485× 10−3 2.6172 × 10−3 701.03 144.55 161.03

Mean 7.1237 × 10−3 7.47886× 10−5 697.65 140.70 147.54
Std. 2.5728 × 10−5 4.4239 × 10−4 0.8045 1.9417 2.8354

FL = 2.0

Min 7.1142 × 10−3 0.0000 696.61 139.21 145.77
Max 7.1142 × 10−3 1.1675 × 10−25 698.07 140.31 156.36

Mean 7.1142 × 10−3 3.4339 × 10−27 696.76 139.49 146.20
Std. 2.2919 × 10−11 1.9726 × 10−26 0.3808 1.9374 2.1202

FL = 2.5

Min 7.1142 × 10−3 4.3700 × 10−27 696.82 140.40 145.91
Max 7.1170 × 10−3 2.3971 × 10−16 698.76 148.80 158.72

Mean 7.1142 × 10−3 1.7077 × 10−17 697.89 141.21 147.49
Std. 5.3411 × 10−7 5.0152 × 10−17 0.5282 2.069 2.5549

FL = 3.0

Min 7.1142 × 10−3 6.8124 × 10−21 696.78 140.45 145.96
Max 7.1121 × 10−3 2.9549 × 10−13 703.36 158.66 164.12

Mean 7.1142 × 10−3 1.3936 × 10−14 697.25 141.40 147.32
Std. 1.5398 × 10−7 5.1283 × 10−14 1.6921 3.309 3.2862

Table 4. Results of approximate circuit model (CostAM), for motor 1.

Analysis DE ABC GSA ICSA

Mean 1.5408 × 10−4 0.0030 5.4439 × 10−21 1.9404 × 10−30

Std. 7.3369 × 10−4 0.0024 4.1473 × 10−21 1.0674 × 10−29

Min 1.9687 × 10−15 2.5701 × 10−5 3.4768 × 10−22 1.4024 × 10−32

Max 0.0043 0.0126 1.6715 × 10−20 6.3192 × 10−29

Table 5. Results of approximate circuit model (CostAM), for motor 2.

Analysis DE ABC GSA ICSA

Mean 4.5700 × 10−4 0.0078 5.3373 × 10−19 3.4339 × 10−27

Std. 0.0013 0.0055 3.8914 × 10−19 1.9726 × 10−26

Min 1.1369 × 10−13 3.6127 × 10−4 3.7189 × 10−20 0.0000
Max 0.0067 0.0251 1.4020 × 10−18 1.1675 × 10−25

Table 6. Results of exact circuit model CostEM for motor 1.

Analysis DE ABC GSA ICSA

Mean 0.0192 0.0231 0.0032 0.0019
Std. 0.0035 0.0103 0.0000 4.0313 × 10−16

Min 0.0172 0.0172 0.0032 0.0019
Max 0.0288 0.0477 0.0032 0.0019

Table 7. Results of exact circuit model CostEM for motor 2.

Analysis DE ABC GSA ICSA

Mean 0.0190 0.0791 0.0094 0.0071
Std. 0.0057 0.0572 0.0043 2.2919 × 10−11

Min 0.0091 0.0180 0.0071 0.0071
Max 0.0305 0.2720 0.0209 0.0071
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The comparison of the final fitness values of different approaches is not enough to validate a
new proposal. Other additional test also represents the convergence graphs. They show the evolution
of the solutions through the optimization process. Therefore, they indicate which approaches reach
faster the optimal solutions. Figure 6 shows the convergence comparison between the algorithms
in logarithmic scale for a better appreciation, being the proposed method which present a faster to
achieve the global optimal.
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6.2. Capacitor Allocation Test

With the purpose to prove the performance of the proposed method a set of three distribution
networks, the 10-bus [50], 33-bus [51], and 69-bus [52] is used in this experiment.

In the experiments, the algorithms DE, ABC, GSA has been used for comparison. Their setting
parameters are shown in Table 2. For all algorithms the number of search agents and the maximum
number of iterations is 25 and 100.

6.2.1. 10-Bus System

The first distribution network comprises a 10-bus system with nine lines. This bus, shown in
Figure 7, is considered as a substation bus. Table A1 in the Appendix A shows the system specifications
of resistance and reactance of each line, as well as the real and reactive loads for each bus. The system
presents a total active and reactive power load of 12,368 kW and 4186 kVAr, while the voltage supplied
by the substation is 23 kV.
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The network in uncompensated mode i.e., before allocating any capacitor, has a total power loss
of 783.77 kW, the minimum voltage is 0.8404 p.u. located at 10th bus and the maximum is 0.9930 p.u. at
2nd bus. The cost per kW lost for this experiment and the remainders is $168 with a loss of 783.77 kW,
while the annual cost is $131,674. At beginning of the methodology, the sensitivity analysis is used to
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identify the candidate nodes with a high probability to install a capacitor. In case of the 10-bus, the
buses 6, 5, 9, 10, 8 and 7 are considered as candidates. Based on a set of 27 standard capacitor sizes and
their corresponding annual price per KVAr, Table 8 shows the capacitor installation in each candidate
node obtained by ICSA. After the optimization process the corresponding capacitor sizes are 1200,
3900, 150, 600, 450 kVAr installed in the optimal buses 6, 5, 9, 10, 8. The total power loss is 696.76 kW
with an annual cost of $117,055.68. The comparison results obtained by the algorithms are shown in
Table 9. Figure 8 illustrates the convergence evolution of the all algorithms.

Table 8. Possible capacitor sizes and cost ($/kVAr).

j 1 2 3 4 5 6 7 8 9

Q 150 350 450 600 750 900 1050 1200 1350
$/kVAr 0.500 0.350 0.253 0.220 0.276 0.183 0.228 0.170 0.207

j 10 11 12 13 14 15 16 17 18
Q 1500 1650 1800 1950 2100 2250 2400 2550 2700

$/kVAr 0.201 0.193 0.187 0.211 0.176 0.197 0.170 0.189 0.187
j 19 20 21 22 23 24 25 26 27

Q 2850 3000 3150 3300 3450 3600 3750 3900 4050
$/kVAr 0.183 0.180 0.195 0.174 0.188 0.170 0.183 0.182 0.179

Table 9. Experimental results of 10-bus system.

Items Algorithms Base Case
Compensated

DE ABC GSA ICSA

Total Power Losses (PLOSS), kW 783.77 700.24 697.18 699.67 696.76
Total Power losses cost, $ 131,673.36 117,640.32 117,126.24 117,544.56 117,055.68

Optimal buses - 6, 5, 9, 10 6, 5, 10, 8 6, 5, 9, 10, 7 6, 5, 9, 10, 8

Optimal capacitor size - 900, 4050, 600,
600

1200, 4050, 600,
600

1650, 3150, 600,
450, 150

1200, 3900, 150,
600, 450

Total kVAr - 6150 6450 6000 6300
Capacitor cost, $ - 1153.65 1192.95 1253.55 1189.8
Total annual cost 131,673.36 118,793.97 118,329.19 118,798.11 118,245.48

Net saving, $ - 12,879.38 13,344.17 12,875.24 13,427.88
% saving 9.78 10.10 9.77 10.19

Minimum voltage, p.u. 0.8375 (bus 10) 0.9005 (bus 10) 0.9001 (bus 10) 0.9002 (bus 10) 0.9000 (bus 10)
Maximum voltage, p.u. 0.9929 (bus 2) 0.9995 (bus 3) 1.0001 (bus 3) 0.9992 (bus 3) 0.9997 (bus 3)
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CSA vs. ICSA

In order to compare directly the original CSA version with the proposed ICSA, the same
experiments conducted in [14] have been considered. In the first experiment, the optimization process
involves only the candidate buses of 5, 6 and 10 for capacitor allocation. The second test considers
all the buses as possible candidates (except the substation bus) for capacitor installation. For the first
experiment, all the possible capacitor combinations are (27 + 1)3 = 21952. Under such conditions, it is
possible to conduct a brute-force search for obtaining the global best. For this test, both algorithms
(CSA and ICSA) have been able to achieve the global minimum.

In the second experiment, all buses are candidates for capacitor allocation. Under this approach,
there are (27 + 1)9 = 1.0578 × 1013 different combinations. In this scenario, a brute-force strategy is
computationally expensive. The results of these experiments are shown in Table 10.

Table 10. Experiments results of ICSA over CSA in 10-bus system.

Items Algorithms Base Case
Experiment 1 Experiment 2

CSA ICSA CSA ICSA

Total Power Losses (PLOSS), kW 783.77 698.14 698.14 676.02 675.78
Total Power losses cost, $ 131,673.36 117,287.52 117,287.52 113,571.36 113,531.04

Optimal buses - 5, 6, 10 5, 6, 10 3, 4, 5, 6, 7, 10 3, 4, 5, 6, 8, 10

Optimal capacitor size - 4050, 1650, 750 4050, 1650, 750 4050, 2100, 1950,
900, 450, 600

4050, 2400, 1650,
1200, 450, 450

Total kVAr - 6150 6450 10,050 10,200
Capacitor cost, $ - 6450 6450 10,050 10,200
Total annual cost - 118,537.92 118,537.92 115,487.91 115,414.14

Net saving, $ 131,673.36 13,135.43 13,135.43 16,185.44 16,259.21
% saving - 9.9 9.9 12.29 12.35

Minimum voltage, p.u. 0.8375 (bus 10) 0.9000 (bus 10) 0.9000 (bus 10) 0.9003 (bus 10) 0.9000 (bus 10)
Maximum voltage, p.u. 0.9929 (bus 2) 1.0001 (bus 3) 1.0001 (bus 3) 1.0070 (bus 3) 1.0070 (bus 3)

6.2.2. 33-Bus System

In this experiment, a system with 33 buses and 32 lines is considered. In the system, the first bus
is assumed as substation bus with a voltage of 12.66 kV. The network configuration is illustrated in
Figure 9.Energies 2018, 11, x 15 of 23 
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Figure 9. 33-Bus distribution test system.

The information about line resistance and reactance, as well as the corresponding load profile is
shown in the Appendix A in Table A2. The 33-bus distribution network before the capacitor installation
presents a total power loss of 210.97 kW with an annual cost of $35,442.96 and a total active power of
3715 kW.
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Once the optimization process is conducted, the buses 6, 30, 13 are selected as the optimal location
with the corresponding sizes of 450, 900, 350 kVAr. The candidate buses are determined by the
sensitivity analysis. The total power loss after the capacitor installation is decreased from 210.91 to
138.74 kW, saving 32.59% of the original cost. The results of the test in detail and the comparison
between the algorithms are shown in Table 11. Figure 10 illustrates the convergence evolution of the
all algorithms.

Table 11. Experimental results of 33-bus system.

Items Algorithms Base Case
Compensated

DE ABC GSA ICSA

Total Power Losses (PLOSS), kW 210.97 152.92 141.13 140.27 139.49
Total Power losses cost, $ 35,442.96 25,690.56 23,740.08 23,565.60 23,434.32

Optimal buses - 6, 29, 30, 14 6, 29, 8, 13, 27, 31, 14 30, 26, 15 30, 7, 12, 15

Optimal capacitor size - 350, 750, 350,
750

150, 150, 150, 150,
600, 450, 150 900, 450, 350 900, 600, 150,

150
Total kVAr - 2200 1800 1700 1800

Capacitor cost, $ - 659 620.85 401.05 446.70
Total annual cost 35,442.96 26,349.56 25,540.00 23,966.65 23,881.02

Net saving, $ - 9093.39 9902.95 11,476.31 11,561.94
% saving - 25.65 27.94 32.37 32.62

Minimum voltage, p.u. 0.9037 (bus 18) 0.9518 (bus 18) 0.9339 (bus 18) 0.9348 (bus 18) 0.9339 (bus 18)
Maximum voltage, p.u. 0.9970 (bus 2) 0.9977 (bus 2) 0.9976 (bus 2) 0.9975 (bus 2) 0.9976 (bus 2)Energies 2018, 11, x 16 of 23 
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CSA vs. ICSA

This section presents a direct comparison between original crow search algorithm (CSA) and the
proposed method (ICSA). The 33-bus network is analyzed by CSA as is presented in [14] where the
buses 11, 24, 30 and 33 are taken as candidates and the capacitor sizes and their kVar values are shown
in Table 12.

Table 12. Possible capacitor sizes and cost ($/kVAr).

j 1 2 3 4 5 6

Q 150 300 450 600 750 900
$/kVAr 0.500 0.350 0.253 0.220 0.276 0.183
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The results obtained from the both algorithms are compared in Table 13. The table shows that the
ICSA is capable to obtain accurate results than the original version CSA.

Table 13. Experiment result of ICSA over CSA in 33-bus system.

Items Algorithms Base Case
Compensated

CSA ICSA

Total Power Losses (PLOSS), kW 210.97 139.30 138.14
Total Power losses cost, $ 35,442.96 23,402.40 23,207.52

Optimal buses - 11, 24, 30, 33 11, 24, 30, 33
Optimal capacitor size - 600, 450, 600, 300 450, 450, 900, 150

Total kVAr - 1950 1950
Capacitor cost, $ - 482.85 467.40
Total annual cost 35,442.96 23,885.25 23,674.92

Net saving, $ - 11,557.71 11,768.04
% saving - 32.60 33.20

Minimum voltage, p.u. 0.9037 (bus 18) 0.9336 (bus 18) 0.9302 (bus 18)
Maximum voltage, p.u. 0.9970 (bus 2) 0.9976 (bus 2) 0.9976 (bus 2)

6.2.3. 69-Bus System

For the third capacitor allocation experiment a network of 68 buses and 69 lines is analyzed.
Before to install any capacitor, the network presents a total active power loss of 225 kW, a total active
and reactive power load of 3801.89 kW and 2693.60 kVAr. The annual cost for the corresponding
225 kW power loss is $37,800.00. The system presents a minimum voltage of 0.9091 p.u. at the 64th bus
and a maximum 0.9999 p.u. at 2nd bus. As in the 10 and 33 bus experiments, the possible capacitor
sizes and the price per kVAr is shown in the Table 8. The network diagram is illustrated in Figure 11
and the line and load data is presented in Table A3 in the Appendix A.
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Using the ICSA method, optimal buses selected are the 57, 61 and 18 with the capacitor values of
150, 1200, 350 kVAr respectively. With this reactance adjustment the total power loss is reduced from
225 to 146.20 kW, saving 33.96% from the original cost. The voltage profile presents a minimum of
0.9313 p.u. at bus 65th and a maximum of 0.9999 2nd. Table 14 shows a detailed comparison between
the results obtained by the proposed method and the results of the DE, ABC and GSA algorithms.

Table 14. Experiment result of 69-bus system.

Items Algorithms Base Case
Compensated

DE ABC GSA ICSA

Total Power Losses (PLOSS), kW 225 210.02 149.36 147.1017 146.20
Total Power losses cost, $ 37,800.00 35,283.36 25,092.48 24,712.80 24,561.60

Optimal buses - 57, 58, 64, 21, 63, 20, 62, 26 58, 59, 62, 24 61, 27, 22 57, 61, 18

Optimal capacitor size - 750, 600, 900, 350, 150, 150,
350, 150

150, 150, 900,
150 1200, 150, 150 150, 1200, 350

Total kVAr - 3400 1350 1500 1700
Capacitor cost, $ - 973.70 389.70 354.00 401.50
Total annual cost 37,800.00 36,257.06 25,482.18 25,066.8 24,961.10

Net saving, $ - 1542.94 12,317.82 12,733.20 12,836.90
% saving - 4.08 32.58 33.69 33.96

Minimum voltage, p.u. 0.9091 (bus 65) 0.9504 (bus 61) 0.9287 (bus 65) 0.9298 (bus 65) 0.9313 (bus 65)
Maximum voltage, p.u. 0.9999 (bus 2) 0.9999 (bus 2) 0.9999 (bus 2) 0.9999 (bus 2) 0.9999 (bus 2)

6.2.4. Statistical Analysis

In order to validate the results a statistical analysis between the different methods is performed
and the results are illustrated in Table 15.

Table 15. Statistical Analysis.

Wilcoxon DE-ICSA ABC-ICSA GSA-ICSA

10-Bus 2.5576× 10−34 2.4788× 10−34 2.5566× 10−34

33-Bus 6.1019 × 10−34 3.4570× 10−32 7.6490 × 10−24

69-Bus 1.0853 × 10−29 8.6857× 10−28 3.6802 × 10−20

7. Conclusions

In this paper, an improved version of the CSA method is presented to solve complex high
multi-modal optimization problems of energy: Identification of induction motors and capacitor
allocation in distribution networks. In the new algorithm, two features of the original CSA are
modified: (I) the awareness probability (AP) and (II) the random perturbation. With the purpose to
enhance the exploration–exploitation ratio the fixed awareness probability (AP) value is replaced (I)
by a dynamic awareness probability (DAP), which is adjusted according to the fitness value of each
candidate solution. The Lévy flight movement is also incorporated to enhance the search capacities
of the original random perturbation (II) of CSA. With such adaptations, the new approach preserves
solution diversity and improves the convergence to difficult high multi-modal optima.

In order to evaluate its performance, the proposed algorithm has been compared with other
popular search algorithms such as the DE, ABC and GSA. The results demonstrate the high
performance of the proposed method in terms of accuracy and robustness.
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Appendix A. Systems Data

Table A1. 10-bus test system data.

Line No. From Bus i To Bus i + 1 R (Ω) X (Ω) PL (kW) QL (kVAR)

1 1 2 1.35309 1.3235 1840 460
2 2 3 1.17024 1.1446 980 340
3 3 4 0.84111 0.8227 1790 446
4 4 5 1.52348 1.0276 1598 1840
5 2 9 2.01317 1.3579 1610 600
6 9 10 1.68671 1.1377 780 110
7 2 6 2.55727 1.7249 1150 60
8 6 7 1.0882 0.7340 980 130
9 6 8 1.25143 0.8441 1640 200

Table A2. 33-bus test system data.

Line No. From Bus i To Bus i + 1 R (Ω) X (Ω) PL (kW) QL (kVAR)

1 1 2 0.0922 0.0477 100 60
2 2 3 0.4930 0.2511 90 40
3 3 4 0.3660 0.1864 120 80
4 4 5 0.3811 0.1941 60 30
5 5 6 0.8190 0.7070 60 20
6 6 7 0.1872 0.6188 200 100
7 7 8 1.7114 1.2351 200 100
8 8 9 1.0300 0.7400 60 20
9 9 10 1.0400 0.7400 60 20

10 10 11 0.1966 0.0650 45 30
11 11 12 0.3744 0.1238 60 35
12 12 13 1.4680 1.1550 60 35
13 13 14 0.5416 0.7129 120 80
14 14 15 0.5910 0.5260 60 10
15 15 16 0.7463 0.5450 60 20
16 16 17 1.2890 1.7210 60 20
17 17 18 0.7320 0.5740 90 40
18 2 19 0.1640 0.1565 90 40
19 19 20 1.5042 1.3554 90 40
20 20 21 0.4095 0.4784 90 40
21 21 22 0.7089 0.9373 90 40
22 3 23 0.4512 0.3083 90 50
23 23 24 0.8980 0.7091 420 200
24 24 25 0.8960 0.7011 420 200
25 6 26 0.2030 0.1034 60 25
26 26 27 0.2842 0.1447 60 25
27 27 28 1.0590 0.9337 60 20
28 28 29 0.8042 0.7006 120 70
29 29 30 0.5075 0.2585 200 600
30 30 31 0.9744 0.9630 150 70
31 31 32 0.3105 0.3619 210 100
32 32 33 0.3410 0.5302 60 40
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Table A3. 69-bus test system data.

Line No. From Bus i To Bus i + 1 R (Ω) X (Ω) PL (kW) QL (kVAR)

1 1 2 0.00050 0.0012 0.00 0.00
2 2 3 0.00050 0.0012 0.00 0.00
3 3 4 0.00150 0.0036 0.00 0.00
4 4 5 0.02510 0.0294 0.00 0.00
5 5 6 0.36600 0.1864 2.60 2.20
6 6 7 0.38100 0.1941 40.40 30.00
7 7 8 0.09220 0.0470 75.00 54.00
8 8 9 0.04930 0.0251 30.00 22.00
9 9 10 0.81900 0.2707 28.00 19.00

10 10 11 0.18720 0.0619 145.00 104.00
11 11 12 0.71140 0.2351 145.00 104.00
12 12 13 1.03000 0.3400 8.00 5.00
13 13 14 1.04400 0.3400 8.00 5.00
14 14 15 1.05800 0.3496 0.00 0.00
15 15 16 0.19660 0.0650 45.00 30.00
16 16 17 0.37440 0.1238 60.00 35.00
17 17 18 0.00470 0.0016 60.00 35.00
18 18 19 0.32760 0.1083 0.00 0.00
19 19 20 0.21060 0.0690 1.00 0.60
20 20 21 0.34160 0.1129 114.00 81.00
21 21 22 0.01400 0.0046 5.00 3.50
22 22 23 0.15910 0.0526 0.00 0.00
23 23 24 0.34630 0.1145 28.00 20.00
24 24 25 0.74880 0.2475 0.00 0.00
25 25 26 0.30890 0.1021 14.00 10.00
26 26 27 0.17320 0.0572 14.00 10.00
27 3 28 0.00440 0.0108 26.00 18.60
28 28 29 0.06400 0.1565 26.00 18.60
29 29 30 0.39780 0.1315 0.00 0.00
30 30 31 0.07020 0.0232 0.00 0.00
31 31 32 0.35100 0.1160 0.00 0.00
32 32 33 0.83900 0.2816 14.00 10.00
33 33 34 1.70800 0.5646 19.50 14.00
34 34 35 1.47400 0.4873 6.00 4.00
35 3 36 0.00440 0.0108 26.00 18.55
36 36 37 0.06400 0.1565 26.00 18.55
37 37 38 0.10530 0.1230 0.00 0.00
38 38 39 0.03040 0.0355 24.00 17.00
39 39 40 0.00180 0.0021 24.00 17.00
40 40 41 0.72830 0.8509 1.20 1.00
41 41 42 0.31000 0.3623 0.00 0.00
42 42 43 0.04100 0.0478 6.00 4.30
43 43 44 0.00920 0.0116 0.00 0.00
44 44 45 0.10890 0.1373 39.22 26.30
45 45 46 0.00090 0.0012 39.22 26.30
46 4 47 0.00340 0.0084 0.00 0.00
47 47 48 0.08510 0.2083 79.00 56.40
48 48 49 0.28980 0.7091 384.70 274.50
49 49 50 0.08220 0.2011 384.70 274.50
50 8 51 0.09280 0.0473 40.50 28.30
51 51 52 0.33190 0.1140 3.60 2.70
52 9 53 0.17400 0.0886 4.35 3.50
53 53 54 0.20300 0.1034 26.40 19.00
54 54 55 0.28420 0.1447 24.00 17.20
55 55 56 0.28130 0.1433 0.00 0.00
56 56 57 1.59000 0.5337 0.00 0.00
57 57 58 0.78370 0.2630 0.00 0.00
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Table A3. Cont.

Line No. From Bus i To Bus i + 1 R (Ω) X (Ω) PL (kW) QL (kVAR)

58 58 59 0.30420 0.1006 100.00 72.00
59 59 60 0.38610 0.1172 0.00 0.00
60 60 61 0.50750 0.2585 1244.00 888.00
61 61 62 0.09740 0.0496 32.00 23.00
62 62 63 0.14500 0.0738 0.00 0.00
63 63 64 0.71050 0.3619 227.00 162.00
64 64 65 1.04100 0.5302 59.00 42.00
65 11 66 0.20120 0.0611 18.00 13.00
66 66 67 0.00470 0.0014 18.00 13.00
67 12 68 0.73940 0.2444 28.00 20.00
68 68 69 0.00470 0.0016 28.00 20.00
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