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Abstract: The maglev linear motor has three degrees of motion freedom, which are respectively
realized by the thrust force in the x-axis, the levitation force in the z-axis and the torque around
the y-axis. Both the thrust force and levitation force can be seen as the sum of the forces on the
three windings. The resultant thrust force and resultant levitation force are independently controlled
by d-axis current and q-axis current respectively. Thus, the commonly used dq transformation
control strategy is suitable for realizing the control of the resultant force, either thrust force and
levitation force. However, the forces on the three windings also generate additional torque because
they do not pass the mover mass center. To realize the maglev system high-precision control,
a maglev linear motor with a new structure is proposed in this paper to decrease this torque.
First, the electromagnetic model of the motor can be deduced through the Lorenz force formula.
Second, the analytic method and finite element method are used to explore the reason of this
additional torque and what factors affect its change trend. Furthermore, a maglev linear motor with
a new structure is proposed, with two sets of 90 degrees shifted winding designed on the mover.
Under such a structure, the mover position dependent periodic part of the additional torque can
be offset. Finally, the theoretical analysis is validated by the simulation result that the additionally
generated rotating torque can be offset with little fluctuation in the proposed new-structure maglev
linear motor. Moreover, the control system is built in MATLAB/Simulink, which shows that it has
small thrust ripple and high-precision performance.

Keywords: maglev; linear motor; additional torque; offset

1. Introduction

Linear motors are now an increasingly popular alternative solution for linear positioning
applications [1–4]. In general, the linear motor-based positioning systems feature higher performance
in terms of accuracy, thrust and acceleration compared with rotating motor based systems [5].
Three common support methods are available for the linear movement, namely mechanical
method [6–8], air floatation method [9–11] and magnetic levitation method [12–15]. The mechanical
method has the advantage of low cost and has been widely used in simple linear movement
applications. However, the friction force is inevitable, which limits the control accuracy. The air
flotation method has no physical contact and thus has no friction force as the mechanical method.
The disadvantage of this method is that the high-pressure air causes high-frequency vibration.
Moreover, this method is subject to disturbance vulnerability and low stiffness. Some ultra-precision
equipment needs to work in the vacuum state, which further limits the application of the air flotation
method. The maglev permanent magnet synchronous linear motor has the advantages of no mechanical
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friction and high stiffness and being suitable for working in a vacuum state. Thus, it has been researched
by many scholars for wide applications in high-speed, large-acceleration and high-precision linear
positioning movement [16–18].

The maglev linear motor has three degrees-of-freedom (DOF). They are realized by the thrust
force in the x-axis, the maglev force in the z-axis and the torque around the y-axis respectively.
The commonly adopted traditional linear motor control method is based on dq decoupling, which can
realize the decoupling control of the thrust and levitation force through the respective iq and id.
With the dq transformation, ABC three-phase currents can be obtained from the needed iq and id.
The three phase currents under the magnetic field can generate respective position dependent force
on the three winding. Both the thrust force and levitation force can be seen as the sum of the forces
on the three windings. The resultant thrust force and resultant levitation force are independently
controlled by iq current and id current respectively. Thus, the commonly used dq transformation control
strategy is suitable for realizing the control of the resultant force, either thrust force and levitation
force. However, the forces on the three windings also generate additional torque. For the levitation
force, they act on the three different points and thus generate that torque. For the thrust force in the
direction of x-axis, that torque still exists because it does not go in line with the center the mover mass,
it can also generate torque which is not dependent on the mover position.

The traditional linear motor adopting the linear guide and sliding module has only single
DOF, thus the imposed torque has little influence on the system due to the mechanical constraint.
However, the imposed torque will change the gap of the maglev linear motor at the two ends due to
the lack of mechanical constraint. The gap change can make it extremely difficult to realize the proper
control of the electromagnetic force. Therefore, how to decrease the imposed torque is the key factor to
realize the precise control of the maglev linear motor. The three forces on the three-phase windings are
the function of the position in the magnetic field.

To decrease the disturbance torque paper [19] has proposed to use two permanent magnet
arrays which are placed opposite to each other. When two movers are mounted back-to-back and
moved in between the permanent magnet arrays, the torques produced by the movers cancel each
other out. This arrangement, however, cannot be used to preload aerostatic bearings or in single
side magnetic levitation. A commutation and switching algorithm for multi DOF moving magnet
actuators with permanent magnets and integrated active magnetic bearing has been proposed in [20].
Wrench current decoupling method has been applied in the multi DOF control of the linear motor.
However, this method requires a full-bridge drive unit to drive one winding, which increases the
hardware cost and complexity. Paper [21] has proposed three DOF control strategy for an iron core
linear permanent magnet motor, which is based on the dq decomposition. To realize the three DOF
control, however, the conventional dq control strategy cannot realize the desired performance and thus
more complex decoupling control algorithm needs to be designed.

To decrease the disturbance torque caused by the conventional dq control strategy, this paper
proposed a new structure of maglev linear motor. The mover has two sets of three-phase windings
which are arranged with a phase difference of 90 electrical degrees. When the sets of windings
have an initial phase difference of 90 electrical degrees, the disturbance torques in the two sets
of windings are in the opposite direction, which can cancel each other out. Traditional dq control
strategy can be used to realize the three DOF control without complex decoupling and compensation.
Therefore, the traditional drive consisting of three half-bridges can be used to the proposed
new-structure maglev linear motor. The proposed new-structure maglev linear motor features
advantages such as additional torque offset, simple control strategy and simple hardware requirement.

The structure of the paper is as follows. In Section 2, the three DOF electromagnetic model of
ironless maglev permanent magnet synchronous linear motor is introduced. It includes the coordinate
system definition of maglev system, the analytic formula of Halbach magnetic field and the analytic
formula of the electromagnetic force and torque. In Section 3, the disturbance torque around the
center of the mover mass caused in the conventional dq decoupling strategy is explored. In Section 4,
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the new-structure linear motor is proposed to offset the disturbance torque; moreover, the motor
structure is optimally designed. In Section 5, the simulation has been done to validate the disturbance
torque offset and the effectiveness of the dq decoupling strategy in the control system. Section 6
presents a simple conclusion of this paper.

2. Maglev Permanent Magnet Linear Motor Electromagnetic Model

2.1. Coordinate Definition

Figure 1 show the model of a maglev linear motor which consists of the stator, air gap and the
mover. The stator is made of ABC three-phase windings and backplane. The three-phase windings are
arranged in the direction of x. The three-phase winding arrangement width is 4τ (τ is the pole pitch).
The stator is made of magnetic conductive plate and permanent magnets. The permanent magnets are
arranged in the form of Halbach.
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Figure 1. Coordinate system of maglev linear motor.

Two coordinate systems are defined in Figure 1. The first one is the stator coordinate system
denoted by the superscript s, which is shown as:

sv =
[

sx sy sz
]T

(1)

The other one is the mover coordinate system denoted by the superscript m. It can be expressed as:

mv =
[

mx my mz
]T

(2)

The vector p is the position vector that is defined as pointing from the stator coordinate system to
the mover coordinate system. It can be expressed as:

p =
[

px py pz

]T
(3)

The two coordinate systems can be converted into each other with the coordinate transformation
through the following equations [22]:

sv = sRm
mv + p (4)

mv = mRs(
sv − p) (5)

The orientation transformation matrix is defined as:

sRm = Rot(sx, ϕ)Rot(sy, θ)Rot(sz, φ) (6)

mRs =
sRm

−1 = sRm
T (7)

Rot(sx, ϕ) =

 1 0 0
0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 (8)
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Rot(sy, θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (9)

Rot(sz, φ) =

 cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 (10)

where φ, θ and ϕ are the rotation angles about the sx-, sy-, and sz-axes, respectively.

2.2. Magnetic Field Analysis

The literature review shows that the magnetic field of the Halbach permanent magnet array is
predicted by either the harmonic model [23] or the transfer relationship [24], which can be eventually
solved as boundary-value problems using the Maxwell equation and the scalar potential. The magnetic
field analysis of the linear motor can be done under several hypotheses, such as the neglection of the
end effects and the magnetic field saturation, etc. [22,25]. In Figure 1, the magnetic flux density B can
be decomposed in the x and z directions as follows [26]:

Bx = −2
√

2µ0M0

π

(
1− exp

(
−π

τ
hm

))
exp

(
−π

τ

(
sz +

hm

2

))
sin
(π

τ
sx
)

(11)

Bz =
2
√

2µ0M0

π

(
1− exp

(
−π

τ
hm

))
exp

(
−π

τ

(
sz +

hm

2

))
cos
(π

τ
sx
)

(12)

where µ0 and M0 denote the permeability of the free space and the peak magnetization magnitude of
permanent magnets, respectively. hm represents height of a single permanent magnet.

To make the above equations more concise, we assume that

K1 =
2
√

2µ0M0

π

(
1− exp

(
−π

τ
hm

))
exp

(
−πhm

2τ

)
(13)

Based on the above assumption, Equations (11) and (12) can be rewritten as:

Bx = −K1 exp
(
−π

τ
sz
)

sin
(π

τ
sx
)

(14)

Bz = K1 exp
(
−π

τ
sz
)

cos
(π

τ
sx
)

(15)

The above equations can be transformed into those in the mover coordinate system which are
shown as:

Bx = −K1 exp
(
−π

τ
(mz + pz)

)
sin
(π

τ
(mx + px)

)
(16)

Bz = K1 exp
(
−π

τ
(mz + pz)

)
cos
(π

τ
(mx + px)

)
(17)

2.3. Electromagnetic Force and Torque Analysis

There are three common analytical ways to solve magnetic force in his research report,
namely virtual work method, Maxwell stress method, and the Lorentz force equation method [27].
Among them, Lorentz force equation method is the most straightforward and simple one, which is
shown as [28,29]:

F =
y

V

J× BdV (18)

T =
y

V

r× (J× B)dV (19)
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where B is the magnetic flux density of the magnet array, J is the volume current density in the coil,
V is the volume of the coil, r is the vector from the point about which the torque is calculated.

The volume current density is dependent on the current, which is shown as:

J =
Ni

wchc
(20)

where N is the turns of the winding, wc and hc are the winding width and height respectively as shown
in Figure 2.
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In the mover local coordinate system, the electromagnetic force and torque on the straight segment
of the coil can be derived as:

mF =
y

J× mB(mv, p)dmxdmy (21)

mT =
y

r× (J× mB(mv, p))dmxdmy (22)

According to the model in Figure 2, The model simplification method is paper [23] is used to
simplify the winding into 2 filaments with current i replacing current density J, thus the electromagnetic
force and torque in the j-th winding (when lcw = τ) can be expressed as:

mF j = N


my j+

lc
2∫

my j− lc
2


0

ij

0

× mB




mx j +
τ
2

my j
mz j

, p

dmy +

my j+
lc
2∫

my j− lc
2


0

−ij

0

× mB




mx j − τ
2

my j
mz j

, p

dmy

 (23)

mT j = N


my j+

lc
2∫

my j−
lc
2


m x j

my

rz

×



0

ij

0

× mB




m x j +

τ
2

my j

mz j

, p



dmy +

my j+
lc
2∫

my j−
lc
2


m x j

my

rz

×



0

−ij

0

× mB




m x j − τ

2

my j

mz j

, p



dmy

 (24)

According to the calculation results, the electromagnetic force and torque can be derived as:

mFxj = −2lcNK1Kzij sin
(π

τ

(mx j + px
))

(25)

mFzj = 2lcNK1Kzij cos
(π

τ

(mx j + px
))

(26)

mTyj = −2lcNK1Kzij

(
cos
(π

τ

(mx j + px
))

xj + sin
(π

τ

(mx j + px
))

rz

)
(27)
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where, rz is the equivalent force arm in the mz-direction from the coil to the mover mass center. Kz can
be expressed as:

Kz =

hc∫
0

exp
(
−π

τ
sz
)

dsz =

hc∫
0

exp
(
−π

τ
(mz + pz)

)
dmz (28)

3. Additional Torque Analysis and Offset

3.1. dq Coordinate Transformation

The control of the three-phase AC motor can be seen as that of DC motor through the coordinate
transformation. The three-phase currents can be transformed into force current iq and magnetic field
excitation current id. Thus, the thrust force and the levitation force of linear motor can be independently
controlled by the current iq and id respectively.

The current transformation from the dq coordinate to the ABC coordinate system is shown as: iA
iB
iC

 =

√
2
3

 cos
(
π
τ x
)

− sin
(
π
τ x
)

cos
(
π
τ

(
x− 2

3
))
− sin

(
π
τ

(
x− 2

3
))

cos
(
π
τ

(
x + 2

3
))
− sin

(
π
τ

(
x + 2

3
))
[ id

iq

]
(29)

Through Equation (29), it can be known that the needed three-phase currents can be calculated
from the desired id and iq.

3.2. Torque Analysis

Once the coil is fixed on the mover, the relative position between the windings becomes a known
constant, and the force and torque on the mass center of the mover can be calculated by substituting
the coordinates of each coil into Equations (25)–(27) separately and then add them up.

The electromagnetic force generated by three-phase winding is expressed as:

mFx = −2lcNK1Kz

(
sin
(π

τ
(mx A + px)

)
iA + sin

(π
τ
(mxB + px)

)
iB + sin

(π
τ
(mxC + px)

)
iC
)

(30)

Substituting the current in Equation (29) and the position of the coil in the mover coordinate
system into Equation (30), we can get

mFx = 2lcNK1Kziq

√
2
3

(
sin
(
π

τ
(px) +

4
3
π

)2
+ sin

(
π

τ
(px) +

2
3
π

)2
+ sin

(π
τ
(px)

)2
)

(31)

Through mathematical analysis it can be known that

sin
(
π

τ
(px) +

4
3
π

)2
+ sin

(
π

τ
(px) +

2
3
π

)2
+ sin

(π
τ
(px)

)2
≡ 3

2
(32)

Thus, Equation (31) can be rewritten as:

mFx =
√

6lcNK1Kziq (33)

In a similar way, we can get
mFz =

√
6lcK1Kzid (34)

The torque of the three-phase winding on the center of mass is

mTy = −2lcNK1Kz
((

cos
(
π
τ (

mx A + px)
)cx A + sin

(
π
τ (

mx A + px)
)
rz
)
iA

+
(
cos
(
π
τ (

mxB + px)
)cxB + sin

(
π
τ (

mxB + px)
)
rz
)
iB

+
(
cos
(
π
τ (

mxC + px)
)cxC + sin

(
π
τ (

mxC + px)
)
rz
)
iC
) (35)
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Substituting the current in Equation (29) into Equation (35), we can get

mTy = −lcNK1Kzid
8
√

6
9 τ

(
cos
(
π
τ (px)− 2

3π
)2 − cos

(
π
τ (px) +

2
3π
)2
)

+lcNK1Kziq
4
√

6
9 τ

(
sin
(
2
(
π
τ (px)− 2

3π
))
− sin

(
2
(
π
τ (px) +

2
3π
)))

+ Fxrz
(36)

It can be seen from Equations (33) and (34) that the required Fx and Fz forces can be obtained
from the given currents iq and id. From Equation (36) it can be seen that both the d-axis current and the
q-axis current can produce a torque which varies with the position, and the thrust force Fx generated
by the q-axis current can generate a constant torque related to the arm rz.

3.3. Finite Element Analysis of AdditionalTorque

The finite element simulation software is used to model and simulate the motor structure in
Figure 1 with the main parameters shown in Table 1. In the simulation, two groups of excitation,
id = 3.7 A, iq = 0 A and id = 0 A, iq = 3.7 A, are applied respectively. The simulation results are shown
in Figure 3. When id = 3.7 A, iq = 0 A, the torque Td (blue curve in Figure 3) to the centroid of the
mover changes from −0.33 N·m to 0.33 N·m, and the period is τ. When id = 0 A, iq = 3.7 A, the torque
Tq (red curve in Figure 3) to the center of the mover varies from −0.22 N·m to 0.42 N·m, and the period
is also τ, but a constant offset is generated. This offset results from the thrust Fx in Equation (36).

Table 1. Motor major parameters.

Parameter Value Unit

Pole pitch τ 15 mm
Winding size (lc × wc × hc) 100 × 5 × 10 mm

Major permanent magnet size (lm1 × wm1 × hm) 100 × 10 × 8 mm
Auxiliary permanent magnet size (lm2 × wm2 × hm) 100 × 5 × 8 mm

Air gap δ 1 mmEnergies 2018, 11, x FOR PEER REVIEW  8 of 15 
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4. Optimal and Design of Motor Structure

4.1. Structure Design

In order to keep the thrust force and levitation force constant at a magnetic field-free position, the
force generated by each of the coils varies at different relative magnetic field positions, thus giving rise
to a torque relative to the centroid of the mover. According to the torque fluctuations with respect to
positions caused by current id and iq, the use of two motor units is proposed to generate the opposite
torque ripple to cancel each other out to achieve optimal additional torque. Electromagnetic force is
generated by the current and the magnetic field together, and the current and magnetic field varies
nearly sinusoidal (cosine) and their period is both twice the pole pitch τ. From Equation (36), it can be
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known that the period of torque is a pole pitch τ. Figure 3 also shows that the undulating period of the
additional torque is a pole pitch τ. Therefore, it is necessary to maintain the relative phase difference
1/2τ of the two motor units to achieve the offset of the additional torque ripple.

Figure 4 shows the designed three DOF maglev linear motor, which is mainly composed of the
mover and stator. The mover adopts ironless structure and consists of two sets of ABC three-phase
winding and the backplane. The stator is composed of with a uniformly arranged Halbach permanent
magnet and a yoke plate made from magnetic material. The arrangement of the two sets of windings
is as follows. The mover is divided into two parts by its mass center in the thrust x direction, and each
part is equipped with a set of three-phase windings to form a complete three-phase motor unit,
with the corresponding phase difference between the initial phase of the winding being 4.5τ, as shown
in Figure 5.
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It can be seen from Figure 7 that the main permanent magnet width wm1 and the auxiliary 
permanent magnet width wm2 have influence on the force coefficient k. The force coefficient is small 
in the initial stage during the change of wm1. The force coefficient keeps increasing with the increase 
of wm1 until a certain critical point. After this critical point, the force coefficient begins to decrease 
when wm1 continues to increase. In Figure 7, the maximum value of force coefficient k appears when 
wm1 is in the range of 8–9 mm, so the simulation is further carried out in the interval of 8–9 mm with 
steps of 0.1 mm. The optimal force coefficient is achieved when the width of the permanent magnet 
is wm1 = 8.7 mm and wm2 = 6.3 mm. The relationship between the force coefficient k and the height of 
the permanent magnet hm with the above optimized width of the permanent magnet is shown in 
Figure 8. 
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4.2. Optimization of Halbach Permanent Magnet Array

The size of the main permanent magnet and the auxiliary permanent magnet can affect the
distribution of the magnetic induction intensity in the air gap, thus the structure optimization of the
permanent magnet is necessary for the desired performance. When the pole pitch is fixed, the variable
structure dimensions wm1, wm2, hm of permanent magnet array, which affect the distribution of the
magnetic induction intensity in the air gap, are shown in Figure 6.
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The wm1, wm2 and hm in Figure 6 are set as variables to optimize the force coefficient k of the
linear motor. The width of the main permanent magnet wm1 is in the range of 1–14 mm, the width of
the auxiliary permanent magnet wm2 is in the range of 14–1 mm, and the thickness of the permanent
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magnet hm is in the range of 1–25 mm. Besides, the relation of wm1 + wm2 = τ should be satisfied.
The finite element simulation software is used and the force coefficient k of different sizes of structures
with in different variable values is calculated. The simulation results are shown in Figure 7.
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It can be seen from Figure 7 that the main permanent magnet width wm1 and the auxiliary
permanent magnet width wm2 have influence on the force coefficient k. The force coefficient is small
in the initial stage during the change of wm1. The force coefficient keeps increasing with the increase
of wm1 until a certain critical point. After this critical point, the force coefficient begins to decrease
when wm1 continues to increase. In Figure 7, the maximum value of force coefficient k appears when
wm1 is in the range of 8–9 mm, so the simulation is further carried out in the interval of 8–9 mm with
steps of 0.1 mm. The optimal force coefficient is achieved when the width of the permanent magnet is
wm1 = 8.7 mm and wm2 = 6.3 mm. The relationship between the force coefficient k and the height of the
permanent magnet hm with the above optimized width of the permanent magnet is shown in Figure 8.Energies 2018, 11, x FOR PEER REVIEW  10 of 15 
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It can be seen from Figure 8 that the influence permanent magnet thickness on the force coefficient
k and can be roughly divided into three ranges. In the range of 1–10 mm for the permanent magnet
thickness, the change of force coefficient k increases almost linearly with the increase of the permanent
magnet thickness. In the range of 1–25 mm, the force coefficient increases slowly with the increase of the
thickness of the permanent magnet. When the thickness is larger than 20 mm, and the force coefficient
is nearly constant with the increase of the thickness of the permanent magnet. The selection of the
thickness of the permanent magnet should depend on the type of motor and specific requirements.
As the motor is moving-coil type maglev permanent magnet synchronous linear motor, the stator mass
does not affect the ratio of the thrust to the moving parts, the thickness of the permanent magnet is
selected as 20 mm.
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4.3. Optimization of Coil Thickness

After the optimization of the permanent magnet size, the thickness of the coil in the z-direction is
selected from 1–20 mm, and the simulation result is shown in Figure 9.
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Figure 9 shows the relationship between a motor unit thrust coefficient and the thickness of the
coil. It is seen from Figure 9 that in the initial stage, the force coefficient k increases significantly
with the increase of the coil thickness. When the coil thickness is beyond 12 mm, the increase of the
coil thickness has little influence on the coil thrust output, which is caused by the attenuation of the
magnetic field, thus the coil thickness hc is selected to be 12 mm.

5. Simulation Result and Analysis

The proposed motor structure has been explored using finite element simulation software.
In the simulation, the open-loop current is given to the motor based on the relative position
between the magnetic field and the motor mover to validate the offset of the additional torques.
Moreover, MATLAB/Simulink has been used to build the motor control system to explore its control
accuracy in the three DOF and its robustness.

5.1. Finite Element Simulation

The proposed maglev linear motor is simulated in the finite element software based on the motor
parameters given in Table 2.

Table 2. Motor major parameters.

Parameter Value Unit

Pole pitch τ 15 mm
Air gap δ 1 mm

Winding size (lc × wc × hc) 100 × 5 × 12 mm
Major permanent magnet size (lm1 × wm1 × hm) 100 × 8.7 × 20 mm

Auxiliary permanent magnet size (lm2 × wm2 × hm) 100 × 6.3 × 20 mm
Mover size (l × w × h) 150 × 120 × 20 mm

Mover mass 2.1 kg
Number of turns N 100 -

The amplitude of three phases current is 2 A. The motor mover can move in the range of 0–6τ

(0–90 mm). The simulation result is shown in Figures 10 and 11.
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Figure 10 shows the electromagnetic torques of the two winding units. The blue line represents
the electromagnetic torque of winding unit I while the red line represents that for winding unit II.
It can be seen from Figure 10 that the electromagnetic torque is dependent on the mover position
in x-axis, moreover they are in opposite directions. Figure 11 shows the simulation results of the
proposed new-structure maglev linear motor with d-axis and q-axis currents fed. It can be seen from
Figure 11a that the thrust force and levitation force generated by linear motor are the sum of two
winding units. Fx and Fz are kept constant when q-axis and d-axis currents are kept constant. Figure 11b
shows that the mover position dependent periodic part of the additional torque has been offset with
a constant part left and it fluctuates around 0.455 N·m. The torque of 0.455 N·m reflects the last part
in Equation (36). This constant part is because the thrust force Fx does not go in line with the center
of the mass. Its height can be affected by the mover load shape and its mass. Nevertheless, it can be
further offset by adjusting the levitation forces in the two sets of winding units, which is explored in
next section.

5.2. Position Closed Loop Verification

The control system is shown in Figure 12. xr, zr and θr are the given references in the three DOF.
They are compared with the practical values, after which the proportional-integral-derivative (PID)
controller is used to regulate the needed force. Currents id1, id2, iq1 and iq2 are then calculated from the
regulated signals through the force distribution unit. The dq currents can be then further transformed
into three-phase currents through the coordinate transformation. Finally, the real three-phase currents
can be given to the maglev linear motor through the current source inverter. The controller parameters
are shown in Table 3.
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Table 3. Proportional-integral-derivative (PID) controller parameters.

Parameter Controller I Controller II Controller III

Kp 98 98 223
Ki 0.1 0.1 0.07
Kd 1.5 1.5 3.6

The forces and torque in the three DOF are shown as:
Fx = Fx1 + Fx2

Fz = Fz1 + Fz2

Ty = L(Fz2 − Fz1)

(37)

where, L is the equivalent force arm between the winding unit and the mover center of mass.
The control system for the proposed maglev linear motor is built in MATLAB/Simulink.

The simulation time is set to be 0.2 s. At 0 s, the given reference in z-direction is 1 mm and at
0.05 s the given reference in x-direction step rises to 0.1 m. The rotation angle θ is kept to be 0.
The simulation result is shown in Figure 13.
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It has been seen from Figure 13a that the control system for the proposed maglev linear motor 
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with the two sets of winding units, moreover the constant part, not dependent on the mover 
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6. Conclusions 

This paper has proposed a new-structure maglev linear motor that has thee DOF. The main 
innovation of this motor is to offset the mover position dependent periodic part of the additional 
torque caused in the typical dq decoupling control method through designing two winding units 
with the relative phase difference that can make the torques caused by d-axis current and q-axis 
current have the opposite direction and thus can offset each other. The conventional dq decoupling 
control strategy and three-phase motor driver can be used for the control system adopting this 
new-structure maglev linear motor. The finite element simulation has been done to prove that the 
proposed motor can offset the mover position dependent periodic part of additional. Moreover, the 
control system is designed to control it with the conventional dq decoupling control strategy. It has 
been found that the constant part, not dependent on the mover position, can be further offset by 
adjusting the levitation forces in the two sets of winding units through position close-loop control. 
The thrust and torque ripples are very small, which guarantees high positioning precision.  
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It has been seen from Figure 13a that the control system for the proposed maglev linear motor
based on dq decoupling strategy has good positioning accuracy in the three DOF. When the linear motor
moves in the direction of x-axis, the rotation angle θ fluctuates between −2.89 µrad and 2.63 µrad
with a very small torque change. 300 N is the largest thrust that can be generated by the motor.
The simulation result shows that the mover position dependent periodic part can be offset with the
two sets of winding units, moreover the constant part, not dependent on the mover position, can be
further offset by adjusting the levitation forces in the two sets of winding units through position
close-loop control.

6. Conclusions

This paper has proposed a new-structure maglev linear motor that has thee DOF. The main
innovation of this motor is to offset the mover position dependent periodic part of the additional
torque caused in the typical dq decoupling control method through designing two winding units with
the relative phase difference that can make the torques caused by d-axis current and q-axis current
have the opposite direction and thus can offset each other. The conventional dq decoupling control
strategy and three-phase motor driver can be used for the control system adopting this new-structure
maglev linear motor. The finite element simulation has been done to prove that the proposed motor
can offset the mover position dependent periodic part of additional. Moreover, the control system is
designed to control it with the conventional dq decoupling control strategy. It has been found that the
constant part, not dependent on the mover position, can be further offset by adjusting the levitation
forces in the two sets of winding units through position close-loop control. The thrust and torque
ripples are very small, which guarantees high positioning precision.
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