
energies

Article

A Graph-Based Power Flow Method for Balanced
Distribution Systems

Tao Shen 1,2,†, Yanjun Li 1,*,† ID and Ji Xiang 3,† ID

1 School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou 310030,
China; 21532088@zju.edu.cn

2 College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
3 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; jxiang@zju.edu.cn
* Correspondence: liyanjun@zucc.edu.cn
† These authors contributed equally to this work.

Received: 14 December 2017; Accepted: 21 February 2018; Published: 27 February 2018

Abstract: A power flow method based on graph theory is presented for three-phase balanced
distribution systems. The graph theory is used to describe the power network and facilitate the
derivation of the relationship between bus Currents and the bus Voltage Bias from the feeder bus
(the CVB equation). A distinctive feature of the CVB equation is its unified form for both radial
and meshed networks. The method requires neither a tricky numbering and layering of nodes nor
breaking meshes and loop-analysis, which are both necessary in previous works for meshed networks.
The convergence of the proposed method is proven using the Banach fixed-point theorem.

Keywords: distribution system; power flow; graph theory; radial network; meshed network;
backward/forward sweep

1. Introduction

Power flow calculation is the most fundamental numerical problem for power system analysis.
A fast and general power flow method will be required by distribution systems as the development of
smart grid and must be as efficient as possible in the future [1]. Methods on transmission networks
are well developed such as Gauss–Seidel, Newton–Raphson [2] and Fast-Decoupled method [3].
Distribution networks have some special characteristics such as radial/weakly meshed structure,
high R/X ratios of impedances, large number of branches and nodes, etc. These features may cause
problems when the algorithms for power flow of transmission networks are applied to distribution
systems [4]. Power flow calculations may be executed every five minutes on traditional networks,
but as for microgrids, it may not meets the requirements. Microgrids have the natures of uncertainty
and volatility, so they need real-time monitoring to guarantee their reliability, and require a faster
power flow method. Power flow method is also a very important tool for improving the reliability
and efficiency of fault analysis [5], and it can also provide evidence for protection for power
distribution systems.

Backward/forward sweep (BFS) method ,which is intended to solve unbalanced radial
distribution networks, has a very good performance, where all nodes are labeled into different layers
according to distances from the feeder node. The branch currents are calculated in the backward
sweep, while the bus voltage is then calculated in the forward sweep [6]. However, the BFS method
cannot be applied directly to networks even with weakly meshed structure because the distances
from the feeder node are not unique in the presence of loops. Shirmohammadi et al. have proposed
a compensation-based power flow method for solving weakly meshed networks by using the multi-port
compensation technique and basic formulations of Kirchhoff’s laws [7]. Teng has proposed a direct
method for both radial and meshed networks by developing the bus-injection to branch-current
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(BIBC) matrix and the branch-current to bus-voltage (BCBV) matrix. However, when solving meshed
networks, the method has to apply some preliminary operations, including Kron’s Reduction and
modifying the two matrices by loop-analysis [8]. Wu and Zhang developed a power flow method for
dealing with meshed network based on compensation and loop-analysis [9]. These methods all need
extra processing for meshed networks.

This paper proposes a graph-based power flow method for distribution systems, which has
a unified formulation for both radial and meshed networks. Compared with previous works,
the method uses graph theory to directly build the CVB equation, a map to the bus currents from the
bus voltage bias from the feeder node. It requires neither a tricky numbering and layering of nodes nor
breaking meshes and loop-analysis, which are both necessary in previous works for meshed networks.
Although graph theory has been used for power systems in many aspects [10–12], there are a few in
power flow calculation. The most relevant is the work published more recently [13], where graph
theory is used for building the Z-bus matrix, and the results obtained are only for radial distribution
systems. The other contribution of this paper is that the convergence of the graph-based method is
addressed by using the Banach fixed-point theorem, associated with the convergence rate of a clear
physical meaning.

Notations: The following notations are used in this paper:

• CVB: The equation between the bus currents and the bus voltage bias from the feeder bus.
• BFS: The backward/forward sweep method.
• BIBC, BCBV: The bus-injection to branch-current matrix and the branch-current to bus-voltage

matrix in [8].
• R,C denote the rational, complex number sets.
• ∗ denotes the conjugate operator of complex number.
• I, U: The inject current and voltage vectors of all nodes including the feeder node.
• Is, Us: The inject current and voltage vectors of all nodes except the feeder node.
• UL, IL: The voltage drop, impedance, current vectors of all branches.
• Zl , Ss: Matrices of all impedance of branches/complex power of nodes except feeder node.
• H, Hs: The incidence matrix with/without the row of feeder node.
• Ud: The voltage difference vector between the feeder node and other nodes.
• Φ, Zd: The mapping between Ud and Is.
• 1n: A n−order vector with all elements being 1.

2. Problem Formulation

2.1. Topological Description of the Network

A distribution network has a typical tree structure, the root of which is the feeder node
with a known voltage. Sometimes there are some extra branches between nodes so as to form
a meshed structure.

We use undirected graph G = {N , E} to depict the topology structure of a given distribution
network where N = {1, · · · , n} and E = {L1, · · · , Lm} are node set and branch set, respectively.
If there is a branch between two nodes in a graph, the two nodes are connected. Although incidence
matrix has been used in previous studies [14,15], it has to be numbered from front to back in sequence.
By using of graph theory, we can give an arbitrary numbering to nodes and branches. Figure 1 shows
two simple typical distribution network containing 4 nodes, where the feeder node is node 3, not the
first node. Without loss of generality, the positive direction of branch current is defined to be always
flowing out of the node with the lower number. In this setting, the incidence matrix H = (hij) of the
graph G is defined as
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hij =





+1, the branch current Lj starts at node i

−1, the branch current Lj ends at node i

0, otherwise

.

The incidence matrices of networks in Figure 1, for instance, are given as

L1 L2 L3

H =

1
2
3
4




1 1 1
0 −1 0
−1 0 0
0 0 −1




,

L1 L2 L3 L4 L5


1 1 1 0 0
0 −1 0 1 1
−1 0 0 −1 0
0 0 −1 0 −1


.

Specially, m = n− 1 for radial networks. It is rational to assume that the considered network is
connected, which implies that the rank of H is n− 1.
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Figure 1. A typical radial network and meshed network: (a) radial structure (n = 4, m = 3); and
(b) meshed structure (n = 4, m = 5).

2.2. Basic Formulations of Kirchhoff’s Laws

The power flow is related to the steady-state behavior of the power systems, where all the voltages
and currents are sinusoidal signals with the same frequency. For a three-phase balanced distribution
system, each signal can be represented by a complex value. Without loss of generality, all the electrical
variables are complex numbers in this paper if not specifically stated.

In this sense, the current, voltage and complex power of node k are denoted by complex
numbers ik, uk and sk, respectively. The positive direction of ik injects to node k, as illustrated in
Figure 1. The concatenated current and voltage vectors are denoted by I = [i1, i2, · · · , in]T ∈ Cn and
U = [u1, u2, · · · , un]T ∈ Cn. Let f be the number of feeder node. The feeding power of distribution
networks can be given by s f = u f i∗f , where ∗ denotes the conjugate operator.

Let iLk, uLk and zLk be the current, voltage and impedance of branch k, respectively. The positive
directions of iLk and uLk follow that of hij, i.e., from the node with lower number to the node with larger

number. Similarly IL =
[
iL1 , iL2 , · · · , iLm

]T ∈ Cm and UL =
[
uL1 , uL2 , · · · , uLm

]T ∈ Cm. The diagonal
impedance matrix is defined by ZL = diag

(
zL1 , zL2 , · · · , zLm

)
∈ Cm×m.

Clearly one has

I =
[

s∗1
u∗1

,
s∗2
u∗2

, . . .,
s∗n
u∗n

]T

, (1)

and
UL = ZL IL. (2)

The Kirchhoff’s Current and Voltage Laws can be conveniently described by use of incidence
matrix, respectively,
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I = HIL, UL = HTU, (3)

and they are valid for both radial and meshed networks. Combining with Equation (2), it follows that

I = HZ−1
L HTU. (4)

2.3. Reformulation of Power Flow Equations

Equations (1) and (4) form the power flow equations. However, matrix (HZ−1
L HT) is singular,

which hampers constructing an identity map from them (an identity map is a function that always
returns the same value that was used as its argument.).

For a distribution network, the feeder node is a slack node, whose voltage is fixed as the base
value V0 ∈ R. This paper addresses the case that all the other buses except for the feeder bus are
modeled as P, Q bus. Such a constant power case is increasingly common in the modern distribution
systems because more and more power electronics devices are used.

Given the feeder node voltage V0 and the complex power sk for other nodes k ∈ N\ f ,
where notation N\ f denotes the subset of N deleting the element f , the goal of power flow is
to calculate the currents and voltages of nodes in the set N\ f , which we use Is, Us ∈ Cn−1 to denote
respectively, that is,

Is = [i1, · · · , i f−1, i f+1, · · · , in]
T , Us = [u1, · · · , u f−1, u f+1, · · · , un]

T . (5)

Correspondingly, let Hs ∈ R(n−1)×m be the matrix removing the f -th row of H, with which

Is = Hs IL. (6)

As for the examples in Figure 1, node 3 is the feeder node, then

L1 L2 L3

Hs =

1
2
4




1 1 1
0 −1 0
0 0 −1




,

L1 L2 L3 L4 L5


1 1 1 0 0
0 −1 0 1 1
0 0 −1 0 −1


.

(7)

Denote by Ud ∈ Cn−1 the voltage differences between the feeder node and other nodes, namely,

Ud = Us −V01n−1. (8)

Throughout of this paper, notation 1n denotes a n−order vector with all elements being 1. Due to
HT1n = 0, the following can be obtained,

UL = HTU = HTU −V0HT1n = HT
s Ud. (9)

3. Main Results

3.1. Review BFS Method

Traditional BFS method generally takes advantage of the radial topology. It starts with numbering
and layering from the feeder node to terminal nodes. The backward sweep, starting from the terminal
layer and ending at the first layer, is to calculate the branch currents IL by a current summation with
a possible voltage update. The forward sweep operating in an opposite direction is to calculate the
voltage drop of nodes Ud with the branch currents obtained in the backward process.

Note that Hs is nonsingular in a connected radial network, we can directly obtain branch current
IL from Is by Equation (6), instead of by current summations in the backward sweep. In our study,
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the backward and forward processes can be described, based on graph theory, simply without
layering as:

(s1) U(k)
s → I(k)s =

[
s∗1
u∗1

, . . . ,
s∗f−1

u∗f−1
,

s∗f+1

u∗f+1
, . . .

s∗n
u∗n

]T

,

(s2) I(k)L = H−1
s I(k)s ,

(s3) U(k)
L = ZL I(k)L ,

(s4) U(k)
d = H−T

s U(k)
L ,

(s5) U(k+1)
s = V01n−1 + U(k)

d ,

(s6) repeat (s1) to (s5) until ‖U(k+1)
s −U(k)

s ‖ < ε,

where superscript (k) denotes the values at the k-th iteration and ε is the convergence tolerance.

3.2. Unified Method for both Radial and Meshed Networks

The above graph-based process is no longer applicable for meshed network because Hs is not
a square matrix for meshed structure. The traditional methods cannot apply either in that the presence
of circulating current prohibits layering nodes.

Generally, radial and meshed networks are dealt with separately when we consider the power
flow for distribution systems. For dealing with meshed networks, breaking meshes or loop-analysis
were needed in previous studies. Below, a uniform method for both radial and meshed networks
is presented.

Combining Equations (6), (2), and (9) yields,

Is = HsZ−1
L HT

s Ud = ΦUd. (10)

Here, Φ = HsZ−1
L HT

s is nothing but the Laplacian matrix weighted by branch admittances of
G removing the row and column corresponding to the feeder node. For a connected network, Φ is
always nonsingular no matter if Hs is a square matrix. Define

Zd := Φ−1. (11)

Equation (10) builds a bijective mapping between Is and Ud, by which the function of the steps
(s2)–(s4) in BFS method can be compactly rewritten as

U(k)
d = Zd I(k)s , (12)

which is nothing but the CVB equation. Equations (10) and (12) look significant by themselves since
they mean that the injected currents of nodes could be directly related not to node powers but to the
node voltage bias from the feeder node.

Now, our uniform graph-based method now can be delivered as follows:

(g1) U(k)
s → I(k)s =

[
s∗1
u∗1

, . . . ,
s∗f−1

u∗f−1
,

s∗f+1

u∗f+1
, . . .

s∗n
u∗n

]T

,

(g2) U(k)
d = Zd I(k)s ,

(g3) U(k+1)
s = V01n−1 + U(k)

d ,

(g4) Repeat (g1) to (g3) until ‖U(k+1)
s −U(k)

s ‖ < ε.

The initial value U(0)
s is generally set as V01n−1. Note that the inversion of Φ, i.e., Zd does not

need to calculate during the iteration. The flowchart of graph-based method is shown in Figure 2.
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Figure 2. The flowchart of graph-based method.

3.3. Convergence of Method

Since the above algorithm is explicit about the involved electrical variables, its convergence can
be analyzed by using Banach fixed-point theorem.

Let Ss = diag
(

s1, · · · s f−1, s f+1 · · · , sn

)
, the diagonal matrix of injected power for node set N\ f .

Denote by [xi]N\ f a vector consisting of all xi indexed by N except for the f th one. Let Vs be the
solution of power flow, i.e., the steady state of the algorithm, and v be the element of Vs with the
minimal magnitude, i.e., v = mini∈N\ f |vsi| where vsi is the ith element of Vs.

Theorem 1. Algorithm (g1)–(g4) is stable for all initial value U(0)
s satisfying

‖U(0)
s −Vs‖ < R, (13)

where
R = v− 1

v
‖ZdS∗s ‖. (14)
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Proof. The proposed algorithm is a mapping from Us to itself which essentially is a kind of fixed-point
iteration and can be rewritten as

U(k+1)
s = g

(
U(k)

s

)
= V01n−1 − Zd

[
s∗i

u(k)∗
i

]T

N\ f

. (15)

Based onBanach fixed-point theorem, the fixed-point Vs satisfying Vs = g(Vs) exists and is unique
if g(Us) is a contraction mapping on Us. It can be seen that

‖U(k+1)
s −Vs‖ = ‖g

(
U(k)

s

)
− g(Vs)‖ =

∥∥∥∥∥∥
ZdS∗s

[
1

v∗si
− 1

u(k)∗
i

]T

N\ f

∥∥∥∥∥∥

≤ ‖ZdS∗s ‖

∥∥∥∥∥∥

[
u(k)∗

i − v∗si

u(k)∗
i v∗si

]T

N\ f

∥∥∥∥∥∥
≤ L(k)‖U(k)

s −Vs‖,

(16)

where L(k) =
‖ZdS∗s ‖
|vsu(k)| with |vsu(k)| = mini∈N\ f |vsiu

(k)
i |.

Due to ‖U(k)
s − Vs‖ < R, one has |u(k)

i − vsi| < R and |u(k)
i | > |vsi| − R for all i ∈ N\ f .

Subsequently |vsu(k)| > (|vsi| − R)|vsi| for one i ∈ N\ f . Furthermore, (|vsi| − R)|vsi| ≥ v(v− R) for
all i ∈ N\ f . Therefore, due to Equation (13),

L(k) <
‖ZdS∗s ‖

v(v− R)
≤ 1, (17)

which implies that ‖U(k+1)
s −Vs‖ < R. It together with the initial condition ‖U(0)

s −Vs‖ < R shows
that f (Us) is a contraction mapping on Us.

Remark 1. The condition in Equation (14) implies that v > R > 0 and v2 > ‖ZdS∗s ‖.

Remark 2. A smaller ‖ZdS∗s ‖ will lead to a larger R. This implies roughly that a strong network (a small ratio
between transmitted power and the branch admittance, si/(zLi)

−1) allows a large permissible region for direct
approaches of power flow. Meanwhile a small ‖ZdS∗s ‖ means a small Lipschitz constant L(k) and subsequently
a fast convergence.

3.4. Comparison to the Direct Approach

It can be seen that our Algorithm (g1)–(g3) is similar to that in [8]. This is not surprising, in
that both are based on Equation (12), the mapping from Is to Ud. The difference is how to obtain
Equation (12). The distinctive feature of our graph-based method is to present a much simpler way
than the direct approach in [8].

Recall the CVB equation obtained by the direct approach [8] as: for radial networks,

Ud = (BCBV)(BIBC)Is,

and for meshed networks, [
Ud
0

]
= (BCBV)(BIBC)

[
Is

Bnew

]
,

followed by a Kron’s Reduction. The following comparison is stated.
In the radial network, the direct approach needs: (1) sequentially numbering nodes and edges

from layer to layer beginning at the feeder node; (2) performing a six-step algorithmto build the
matrices (BCBV) and (BIBC) ; and (3) obtaining Zd by multipling (BCBV) by (BIBC). Our method
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needs: (1) an arbitrary numbering nodes and edges; (2) directly writing matrices H, Hs, and ZL;
and (3) calculating Zd = H−T

s ZL H−1
s .

In the meshed network, the direct approach needs an extra drawing the corresponding radial
version of the meshed network, adding two steps for every extra branch that makes the network
meshed to build matrices (BCBV) and (BIBC), and a Kron’s reduction.

Thus, the complexity of the direct approach would increase largely as the degree of mesh increases,
while our method has the same procedure for the meshed network as that for the radial network.
In fact, our method can apply to any meshed network rather than to the weakly-meshed network.
Moreover, our method has a clearer physical meaning because no network reduction has to be made.
The above contents are summarized in Table 1 for a clear insight.

Table 1. Comparison with Direct Approach.

Radial Networks

Direct Approach Proposed Method

Numbering Sequential Arbitrary
Matrices BIBC, BCBV Hs, ZL

Operation Zd = INV(BIBC× BCBV) Zd = H−T
s ZL H−1

s

Meshed Networks

Direct Approach Proposed Method

Meshes Need Recognition No Need
Numbering Sequential for radial structure and place meshes to the end Arbitrary

Matrices Modified BIBC, BCBV Hs, ZL
Operation Modifying BIBC, BCBV and Applying Kron’s Reduction Zd = (HsZ−1

L HT
s )
−1

4. Test Results

The proposed method is tested and compared on both radial and meshed networks on MATLAB.
Table 2 shows the distribution systems of 14-, 33-, 69-, 84-, 119-, 135-, and 874-node radial networks
and their meshed editions, which are from papers [16–20].

Table 2. Network Configuration.

No. of Nodes No. of Branch (Radial) No. of Branch (Meshed)

14 13 16
33 32 37
69 68 73
84 83 96

119 118 132
135 134 156
874 873 900

Four methods are tested. Method I is the Gauss–Seidel Method, Method II is the Newton–Raphson
method, Method III is the direct approach proposed in [8] and Method IV is our Graph-based method.
The convergence tolerance is set at 0.001 p.u.

Tables 3 and 4 show the performance of these four methods for radial and meshed networks,
where “Time” and “ITs” denote the iteration time and iteration numbers, respectively, and “L” denotes
the approximate Lipschitz constant, which describes the convergence rate of Method IV. According to
the tables, Method I, the Gauss–Seidel method, costs much more time and iteration steps than the
three other methods, since it has a very low convergence rate so that even if it does not need much
time at each iteration, it still costs much time. Method II, the Newton–Raphson method, needs fewer
iteration steps than other methods since it follows the direction of gradient descent at every step.
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However, the Newton–Raphson method still costs more time than Method III and IV, because it
requires calculating the Jacobian matrix and its inversion matrix at each iteration, which costs majority
of time. Therefore, the time consumption of Newton–Raphson is more related to the number of nodes
compared with Method III and IV.

Table 3. Radial Network Test.

No. of Nodes
Method I Method II Method III Method IV

Time ITs Time ITs Time ITs Time ITs L

14 7.7× 10−3 25 5.2× 10−4 2 1.2× 10−5 2 1.1× 10−5 2 0.012
33 0.31 433 1.2× 10−3 3 2.5× 10−5 4 2.5× 10−5 4 0.091
69 0.75 476 2.4× 10−3 3 3.7× 10−5 4 3.6× 10−5 4 0.17
84 0.7 353 3.8× 10−3 3 4.4× 10−5 4 4.4× 10−5 4 0.097

119 1.4 493 5.7× 10−3 3 7.6× 10−5 4 7.5× 10−5 4 0.14
135 1.7 519 6.0× 10−3 3 6.5× 10−5 3 6.6× 10−5 3 0.091
874 0.78 27 0.67 3 4.0× 10−3 4 4.0× 10−3 4 0.056

Table 4. Meshed Network Test.

No. of Nodes
Method I Method II Method III Method IV

Time ITs Time ITs Time ITs Time ITs L

14 8.6× 10−3 30 5.3× 10−4 2 1.2× 10−5 2 1.1× 10−5 2 7.5× 10−3

33 0.16 220 1.2× 10−3 3 1.9× 10−5 3 1.9× 10−5 3 0.05
69 0.28 178 3.0× 10−3 3 2.7× 10−5 3 2.7× 10−5 3 0.066
84 0.65 336 3.0× 10−3 3 3.4× 10−5 3 3.3× 10−5 3 0.059

119 0.78 283 4.8× 10−3 3 5.7× 10−5 3 5.6× 10−5 3 0.061
135 1.6 504 6.1× 10−3 3 6.5× 10−5 3 6.6× 10−5 3 0.028
874 0.5 17 0.45 2 2.0× 10−3 2 2.1× 10−3 2 7.9× 10−3

As for Method III and Method IV, the results show the direct approach is approximately equivalent
to the proposed method, which is consistent with the theoretical analysis. However, the advantage of
our method is the process to get the CVB equation. As mentioned above, the direct approach requires
loop-analysis and Kron’s Reduction for meshes networks, while our method does not need any extra
processing. Table 5 provides a comparison of time spent on getting the CVB equation, and the result
shows that the proposed method takes less time than the direct approach to get the CVB equation.
Moreover, for the example of the 14-node network, we only increase the number of mesh, and the
results show that the time consumptions of proposed method are almost the same when the number
of meshes increased, unlike the increasing time consumptions of direct approach, mainly due to the
Kron’s Reduction. Note that, in the case that the node numbering, the radial structure drawing and the
meshed branch identifying have been made in advance, it can be seen that the graph-based method is
much better if the time spent on these pretreatments are contained.

Limitations

The proposed method has shown obvious advantage compared to previous works.
However, it has some limitations. First, as for the impact of distributed generators, DGs can be
considered as PQ nodes with constant active/reactive powers as well as PV nodes with constant
active power and voltage magnitude. If DGs are considered as PQ nodes, our method can deal with
it. Alternatively, if DGs are considered as PV nodes, our method is not applicable. Besides, as for
the applicability to unbalanced networks, we have a preliminary outline to extend our method for
unbalanced networks, but the work still needs deliberate discussion and proof. Finally, the impact of
FACTS devices is not discussed in this paper since FACTS devices cannot be simply modeled as PQ
nodes and our method aims at distribution networks with PQ nodes.
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Table 5. Time to get the CVB equation.

No. of Node No. of Branch Method IV Time Method III Time

14 16 5.5× 10−5 1.2× 10−4

33 37 1.3× 10−4 2.6× 10−4

69 73 3.9× 10−4 6.4× 10−4

84 96 5.2× 10−4 9.2× 10−4

119 132 8.2× 10−4 1.4× 10−3

135 156 1.1× 10−3 1.8× 10−3

874 900 9.5× 10−2 1.1× 10−1

No. of Node No. of Branch Method IV Time Method III Time

14 3 5.5× 10−5 1.2× 10−4

14 4 5.5× 10−5 1.5× 10−4

14 5 5.5× 10−5 1.7× 10−4

14 6 5.5× 10−5 2.5× 10−4

14 7 5.6× 10−5 2.6× 10−4

14 8 5.6× 10−5 2.6× 10−4

14 9 5.6× 10−5 2.7× 10−4

5. Conclusions

This paper has proposed a graph-based power flow method for three-phase balanced distribution
systems with PQ nodes. For the nature of distribution systems such as radial/weakly meshed structure,
and large number of branches and nodes, traditional power flow method may fail or cannot meet
the requirement. With regards to this, we have made some progress. The proposed method provides
a uniform formulation for both radial and meshed networks. The uniform formulation is much simpler
than before, requiring neither a tricky numbering and layering of nodes nor breaking meshes and
loop-analysis, which are both necessary in previous works for meshed networks. The convergence of
the proposed method has been shown by using the Banach fixed-point theorem. The comparison test
results show the efficiency of our competitive method.
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