
energies

Article

An Improved Interval Fuzzy Modeling Method:
Applications to the Estimation of
Photovoltaic/Wind/Battery Power in Renewable
Energy Systems

Nguyen Gia Minh Thao 1,* ID and Kenko Uchida 2

1 Research Center for Smart Vehicles and Electromagnetic Energy System Laboratory,
Toyota Technological Institute, Nagoya 468-8511, Japan

2 Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555, Japan;
kuchida@waseda.jp

* Correspondence: ngmthao@toyota-ti.ac.jp; Tel.: +81-80-4142-4987

Received: 11 February 2018; Accepted: 17 February 2018; Published: 25 February 2018

Abstract: This paper proposes an improved interval fuzzy modeling (imIFML) technique based on
modified linear programming and actual boundary points of data. The imIFML technique comprises
four design stages. The first stage is based on conventional interval fuzzy modeling (coIFML)
with first-order model and linear programming. The second stage defines reference lower and
upper bounds of data using MATLAB. The third stage initially adjusts scaling parameters in the
modified linear programming. The last stage automatically fine-tunes parameters in the modified
linear programming to realize the best possible model. Lower and upper bounds approximated
by the imIFML technique are closely fitted to the reference lower and upper bounds, respectively.
The proposed imIFML is thus significantly less conservative in cases of large variation in data, while
robustness is inherited from the coIFML. Design flowcharts, equations, and sample MATLAB code
are presented for reference in future experiments. Performance and efficacy of the introduced imIFML
are evaluated to estimate solar photovoltaic, wind and battery power in a demonstrative renewable
energy system under large data changes. The effectiveness of the proposed imIFML technique is also
compared with the coIFML technique.

Keywords: interval fuzzy modeling; linear programming; lower bound; upper bound; boundary
points; min-max optimization; automatic-tuning scheme; photovoltaic/wind/battery power system.

1. Introduction

In recent years, there has been rapid and significant development of renewable energy systems,
including photovoltaic (PV) solar and wind power. Efficient control methods for managing renewable
energy resources have also been designed and implemented. The high uncertainty of weather
conditions makes forecasts of power profiles from renewable energy resources important for energy
management, especially in large solar PV and wind power plants [1,2]. The time horizon of
estimating and forecasting methods can be divided into very short-term, short-term, medium-term
and long-term predictions [1]. The very short-term forecast is for a period of a few seconds to
a few minutes. The short-term forecast is for a period of several minutes to three days. The
medium-term forecast is for a period of several days to one week. The long-term forecast is for
a period of one month to several years. The medium-term and long-term energy forecasts are
usually computed on a large centralized server of energy producers or utility companies with big
data. Depending on renewable power profiles and desired purposes in grid operations, the very

Energies 2018, 11, 482; doi:10.3390/en11030482 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-5098-5237
http://dx.doi.org/10.3390/en11030482
http://www.mdpi.com/journal/energies

Energies 2018, 11, 482 2 of 26

short-term and short-term forecasts can be calculated on either decentralized systems such as modern
personal computers or industrial programmable logic controllers (PLCs), or a centralized server of
utility company. The resolution of estimating and forecasting energy models is classified according
to the kinds of methods, measurement sensors and meteorological information in use. It often
includes the temporal resolution [2], spatio-temporal resolution with the required forecast horizon and
update frequency [2–4], measured dataset resolution [4–6], and satellite image resolution with image
processing techniques [7]. The very short-term and short-term predictions of renewable power are
closely related to high temporal resolution.

In renewable energy management systems (EMSs) and smart grid operations, the very short-term
and short-term predictions of renewable power are especially helpful for lots of crucial activities and
applications, such as operations of solar PV and wind power systems, real-time dispatching and
coordinating of generation units, control of energy storage systems, making decisions of grid operation
and stability, and electricity market [1,6]. In cases of the small or medium renewable power profile,
the short-term prediction can be utilized for local management of private resources and ancillary
services, such as frequency regulation and voltage stability at local electric grids. Whereas, in cases
of the large renewable power profile, the short-term prediction can be used for supporting global
management of distributed generation in smart grids and power limitations through demand/response
capabilities. Hence, many studies have concentrated on designing and carrying out efficient modeling
techniques for short-term prediction of renewable power [4–8]. In this paper, we mainly focus
on the short-term day-ahead estimation for solar PV, wind and battery power using measured
two-dimensional data with the horizontal axis of time.

According to Wan et al. [1], prediction methods for renewable energy can be divided into three
main types as follows: the first type is based on actually measured data of renewable energy generation
systems. The second type is developed from historical measured data of explanatory variables, such
as related weather parameters, consisting of solar radiation, wind speed and direction, cloudiness,
air temperature, humidity, and so forth. The third type is hybrid forecast methods with appropriate
combination of machine learning algorithms and numerical weather prediction (NWP) techniques
for specific applications. More details can be found in section II of reference [1] and section 2 of
reference [6].

Optimization has been a useful tool and widely applied in modeling and control techniques for
renewable energy systems [9–11]. As presented in [10], a delay estimator of perturbation produced by
unknown delay was designed to implement in the pitch control for wind turbine power conversion
systems. The compensation from the proposed estimator is used to eliminate influence from the
perturbation of unknown delay to the output power of wind turbine. As a result, the measured output
power of wind turbine highly corresponds to the ideal output value of the optimal model without
effect from unknown delay. This is to enhance performance and efficacy of the introduced pitch
control technique substantially. This method also considered variable wind speed for estimating the
output power of wind turbine power conversion system, and it has good performance. Regarding
application aspect of the research, this method has not yet been extended to be a universal method
for estimating other two-dimensional renewable power profile (such as solar PV power) or battery
bank power in renewable energy systems. Furthermore, in [11], a hybrid estimator was used for
the proportional-integral-derivative controller of a wind turbine power conversion system with
appropriate identification of stability ranges for key system parameters. This estimation method has
suitably incorporated the particle swarm optimization technique and the algorithm based on radial
basis function neural network. The designed estimator has good performance under a fixed wind
speed of 15 m/s. Nonetheless, this research has not yet considered the case of variable wind speed,
which leads to large fluctuation in wind power profile.

Besides, modeling methods based on artificial neural networks or genetic algorithms for predicting
the renewable energy were proposed in [12–15]. Specifically, an efficient modeling method using an
artificial neural network and statistical feature parameters of solar radiation and ambient temperature

Energies 2018, 11, 482 3 of 26

were introduced in [12]. The input vector is appropriately rebuilt using several statistical feature
parameters for radiation and ambient temperature to reduce model complexity. Furthermore, ref. [13]
developed two adaptive neuro-fuzzy models with several scenarios. The first scenario was designed
by modifying the forecasting time horizon, and the second scenario adjusts shapes of the fuzzy
membership functions. A generalized model for solar power prediction based on the backgrounds of
support vector regression, historical solar energy output, and meteorological data was presented in [14].
Also developed was a model fine-tuned with a genetic algorithm and data mining algorithms for
historical situations of predicted values for weather parameters [15]. Data for training this model were
obtained using numerical methods for weather forecasts and previous electric energy values in the solar
PV power plant. These methods have good effectiveness, but their computation is relatively complex
and training processes can be long. In addition, these methods are often used for medium-term and
long-term predictions instead of short-term prediction. To appropriately implement these methods in
actual EMSs, high-performance computers should be used.

The traditional Takagi-Sugeno (T-S) fuzzy model [16–20] and belief rule-based models for
identification [21] are popular modeling techniques for nonlinear systems. In [16], the T-S model
was applied for process control. In [17], the modeling and control techniques based on T-S fuzzy
models were introduced and explained in detail. In this study, the predictive controller based on
T-S fuzzy model was also proposed. In [18], an application of input-output T-S fuzzy model for
identification of multi-input and multi-output (MIMO) systems was presented and evaluated. In [19],
modeling techniques based on fuzzy models, including T-S fuzzy models, were investigated. In [20],
a robust fault estimation and fault-tolerant control approach was proposed for T-S fuzzy systems
by integrating the augmented system method, unknown input fuzzy observer design, linear matrix
inequality optimization, and signal compensation techniques. This approach was applied for wind
turbine. However, the result of T-S fuzzy modeling is a trajectory, which is unsuitable for large variation
in renewable power profile that highly depends on weather conditions. This is a common drawback
of modeling methods based on T-S fuzzy model. Moreover, a hybrid two-stage modeling technique
based on fuzzy logic, optimization, and model selection was proposed to predict day-ahead electricity
prices as shown in [22]. In that technique, the first design stage is appropriate combination of the
particle swarm optimization and core mapping with a self-organizing map and fuzzy logic, and the
next design stage is appropriate selection of fuzzy rules. However, estimation of power profiles from
PV and wind energy systems has not yet been considered in this research.

According to the reviews in [1,6,9], fuzzy logic can provide a robust and advantageous modeling
method and can be suitably applied to short-term and medium-term forecasting models, since it can
effectively handle uncertainty in measured data. A conventional interval fuzzy modeling (coIFML)
technique based on l∞-norm, min–max optimization methods, and linear programming was introduced
in [23]. This model defines lower and upper bounds that cover all data points, and was widely applied
to fault detection in various systems, including a process with interval-type parameters [24], uncertain
nonlinear systems [25–27], an active suspension system [28], the pH titration curve [29], and power
control of a Francis water turbine [30]. In addition, the coIFML technique was utilized to forecast PV
and wind power and load profiles in microgrids [31], and it was implemented as a main component
of prediction in robust EMSs [32,33]. One main advantage is a computed confidence band, which
lies between the approximated lower and upper bounds of the coIFML, and can cover all measured
values even under relatively large data variation. Furthermore, computation is not complex. Its
robust band thus makes this method suitable for estimating renewable power profiles. Nonetheless,
the coIFML confidence band is highly conservative and not well fitted to the data, especially cases
in large variations and strong nonlinearities. A fitted estimator is important and necessary for an
EMS to predict the total power capacity exactly and generate appropriate control commands for the
power system. Moreover, performance and effectiveness of both the coIFML technique and T-S fuzzy
model [16–20] heavily depend on fuzzy membership functions, which are often chosen manually and
difficult to optimize.

Energies 2018, 11, 482 4 of 26

The above observations and motivations suggest the need for an efficient estimation method
based on interval fuzzy model that can overcome the following engineering challenges. First, the newly
proposed method can fit data with large variation and strong nonlinearities to improve performance
noticeably, as well as it can inherit good robustness and applicability of the coIFML in estimating
solar PV and wind power profiles with short-term prediction. In addition, performance and efficacy
of the suggested fuzzy-based method should not heavily depend on manual determination of fuzzy
membership functions as the coIFML and T-S fuzzy model techniques. Furthermore, to facilitate
application in actual renewable EMSs, computation in the proposed modeling method should not be too
complex. Last, this estimation method would possibly help enhance development and implementation
of robust EMS (REMS) in renewable power systems.

This paper introduces an improved interval fuzzy modeling (imIFML) technique that is based
on first-order models, modified linear programming, and actual boundary data points. The main
contributions of this paper are as follows:

(a) The four design stages of the proposed imIFML technique are described in detail. The third
and fourth stages, which suitably adjust the approximated lower and upper bounds of the
imIFML technique to fit the reference bounds closely, are newly developed. The modified linear
programming scheme in the imIFML technique is unique and has good efficacy.

(b) The performance of the proposed imIFML is significantly less conservative than the coIFML,
especially in cases of large variation in data. Robustness and applicability are inherited from the
coIFML. In addition, computation in the imIFML technique is not exceedingly complex.

(c) The proposed imIFML technique is suitable for estimating solar PV, wind and battery power in a
demonstrative renewable energy system over 24 h under large variation and strong nonlinearities
in the measured data, which was used for a REMS. The specific test cases considered in this study
are for users in private EMSs. Because the proposed imIFML technique is based on a modified
linear programming scheme, computation in this modeling technique is not very complicated.
Therefore, the proposed imIFML can be performed well with a pretty modern personal computer.
In our study, all the three test cases are easily conducted with a desktop computer, and the
processing time is within a few minutes.

(d) Sample MATLAB Optimization Toolbox code for developing fuzzy models is provided for
reference in future experiments and related applications.

To fulfill the above goals, a unique modified linear programming scheme is developed for the
imIFML method. In the scheme, two scaling matrices Asc

lb and Asc
ub are newly added for suitably

adjusting two coefficient matrices alb and aub of the modified linear programming, respectively. This
helps to regulate arbitrary values λlb and λub around the actual boundary points Ilb and Iub of data to
be equal to the minimum values of nearly zero, respectively. As will be presented in the Section 3.4,
the two scaling matrices Asc

lb and Asc
ub are automatically fine-tuned to achieve the best possible fuzzy

model. Moreover, due to the changeable coefficient matrices alb and aub in the modified linear
programming, effectiveness and adaptability of the imIFML technique are not heavily dependent on
manual determination of particular values for fuzzy clusters (membership functions). In this study,
although the membership functions are determined by using a simple averaging method, performance
and adaptability of the proposed imIFML are still very good.

The remainder of this study is organized as follows: Section 2 describes the core background of
the coIFML. Section 3 presents the four design stages of the proposed imIFML technique. Section 4
presents simulation results for three test cases in Optimization Toolbox, including cases that consider
the effects of large variation in the measured data. This section also compares the efficacy of the
proposed imIFML technique and the coIFML. Section 5 presents additional helpful discussions for
future experiments using the proposed imIFML technique. Finally, Section 6 concludes this paper and
describes future work.

Energies 2018, 11, 482 5 of 26

2. Backgrounds of Interval Fuzzy Model

This section briefly presents core background on the interval fuzzy model, which is known as a
robust system identification technique. Further details of the model can be found in [23,26].

It is given that D ⊂ R is a data set and ξ = {ν(w): D→ R} is a class of nonlinear functions. It is
assumed that there may exist a lower bound ν and an upper bound ν that can fulfill the following
conditions for the arbitrary values λlb ≥ 0, λub ≥ 0 and for each input variable:

v(w) ≤ min
v ∈ ξ

v(w), ∃v ∈ ξ : v(w) > v(w) + λlb, (1)

v(w) ≥ max
v ∈ ξ

v(w), ∃v ∈ ξ : v(w) < v(w) + λub, (2)

This study is only restricted to the finite set of the measured input data W = [w1, w2, . . . , wN] and
the finite set of the measured output data Y = [y1, y2, . . . , yN] where N is the size of the input and
output data sets. The conditions in Equations (1) and (2) can be rewritten as Equations (3) and (4):

yi = v(wi), v ∈ ξ, wi ∈ D ⊂ R, yi ∈ R, i = 1, . . . , N, (3)

v(wi) ≤ v(wi) ≤ v(wi)∀wi ∈ D, i = 1, . . . , N, (4)

The exact lower and upper boundary functions ν and ν will be approximated by fuzzy functions.
According to [23,26], there may exist two fuzzy systems, denoted as f and f , that respectively
approximate the lower and upper bounds to cover an arbitrary nonlinear acreage. The key goal
of fuzzy approximation is to force the two non-negative values λlb and λub in Equations (1) and (2) to
be small as possible:

− λlb ≤ f (wi)− v(wi) ≤ 0; λlb ≥ 0, (5)

0 ≤ f (wi)− v(wi) ≤ λub; λub ≥ 0, (6)

In this study, the first-order model is chosen to be used for the coIFML based on Takegi-Sugeno
type as defined in the affine form by Equation (7). Values of the scalar coefficients φ

j1
, φ

j0
, φj1 and φj0

need to be appropriately determined to achieve an excellent fuzzy model as possible:

if xad is Gj then f (wi) = φ
j1

.xad + φ
j0

, j = 1, . . . , k,

and f (wi) = φj1.xad + φj0, j = 1, . . . , k,
(7)

where the antecedent variable xad = inputf ∈ R represents the input variable in fuzzy proposition,
and the approximated variables f , f ∈ R are the two outputs of the interval fuzzy model [26]. The
confidence-band identification of the fuzzy model is the interval between the bounds f and f .

The antecedent variable xad is associated with k fuzzy sets denoted as Gj. Each the fuzzy set Gj
(j = 1, . . . , k) is linked to a real-valued function expressed as µGj(xad) : R→ [0, 1] , which generates a
particular membership level of the antecedent variable xad with correlation to the computed fuzzy set
Gj. It is noted that k is the number of fuzzy rules, and must be not larger than the data size, k ≤ N. The

consequent vector in the affine form is denoted as xT
cq =

[
input f , 1

]
= [xad, 1] ∈ R2. The first-order

fuzzy model expressed in Equation (7) can be rewritten in the general form as follows:

f (wi) = ηT(xad).Φ.xcq

f (wi) = ηT(xad).Φ.xcq
, (8)

where ΦT = [φ
1
, φ

2
, . . . , φ

k
] and ΦT

=
[
φ1, φ2, . . . , φk

]
are the lower and upper coefficient

matrices for the full set of the fuzzy rules, respectively; ηT(xad) = [η1(xad), η2(xad), . . . , ηk(xad)] is

Energies 2018, 11, 482 6 of 26

a vector of standardized membership functions with components which signify the grade values of
accomplishment to the corresponding fuzzy rules, where ηj(xad) can be computed as follows:

ηj(xad) =
µGj(xad)

∑k
j=1 µGj(xad)

, j = 1, . . . , k, (9)

As represented in [23–26], the min-max optimization technique and l∞-norm can be utilized for
developing the interval fuzzy model as expressed in Equation (10). This equation is often realized into
the linear programming approach to determine the coefficient matrices Φ and Φ for the approximated
lower bound f (Φ) and upper bound f (Φ) of the coIFML, respectively. The detailed realization and
implementation of the linear programming for the coIFML will be shown in Section 3.1.

min
Φ

max
wi ∈ W

∣∣∣yi − f (wi)
∣∣∣ subject to yi − f (wi) ≥ 0

min
Φ

max
wi ∈ W

∣∣∣ f (wi)− yi

∣∣∣ subject to f (wi)− yi ≥ 0
, i = 1, . . . , N, (10)

3. Design Stages of Proposed Improved Interval Fuzzy Modeling

The proposed imIFML technique—which uses the first-order model in Equation (7), modified
linear programming, and actual boundary data points to overcome the drawbacks of the coIFML
scheme—consists of four design stages. The first stage (Section 3.1) is describing the detailed
implementation process of the coIFML using a first-order model and linear programming in MATLAB
Optimization Toolbox (version 7.1, The MathWorks, Inc., Natick, MA, USA) for reference and
evaluation. In the second stage (Section 3.2), we use MATLAB to define the lower and upper
reference bounds for designing the proposed imIFML technique according to comparison between the
approximated bounds of the coIFML and the actual data boundaries. In the third stage (Section 3.3),
the major drawbacks of the coIFML are described according to the performance and analysis shown in
the first two stages. After that, key points of the modified linear programming used in the introduced
imIFML technique are presented. This design stage is also the initial adjustment for the scaling matrices
of the modified linear programming in the proposed imIFML technique. In the final stage (Section 3.4),
the scaling matrices of the modified linear programming in the imIFML technique are automatically
fine-tuned to obtain the best fuzzy model possible.

Panels (a) and (b) of Figure 1 depict the first and second design stages, respectively. This paper
denotes two-dimensional finite data as (x, y) and the data size as N. Note that x is the time (horizontal
axis) and that y (vertical axis) is converted to per-unit (pu) values for convenience when developing
and tuning the fuzzy models.

3.1. Design Stage 1: The coIFML with First-Order Model and Linear Programming

As depicted in panel (a) of Figure 1, this design stage is to describe implementation steps of
coIFML using MATLAB Optimization Toolbox linear programming. This provides a useful background
for reference when applying the coIFML in related applications.

Clustering methods such as Gustafon–Kessel, K-means, or C-means can be used to determine
particular fuzzy cluster values [34,35]. To evaluate performance and efficacy of the proposed imIFML
technique with the modified linear programming, we apply simple clustering based on the averaging
method to determine the particular values of fuzzy clusters as expressed in Equations (11) and (12):

dis = [max(xi)−min(xi)]/(k− 1), i = 1, . . . , N, (11)

Energies 2018, 11, 482 7 of 26

where k is the number of fuzzy clusters (membership functions) for the model, and 2 ≤ k ≤ N; dis is
the distance value between the two consecutive fuzzy clusters:

CLj = min
i=1:N

(xi) + [(j− 1).dis], j = 1, . . . , k, (12)

Energies 2018, 11, x FOR PEER REVIEW 7 of 26

() ()
1:

min 1 .j ii N
CL x j dis

=
= + −   , ݆ = 1, …, k, (12)

(a)

(b)

Figure 1. (a) The first design stage of the imIFML; (b) The second design stage of the imIFML.

In this study, the two-dimensional data (x, y) used to develop the fuzzy model is assumed
within a period of 24 h, where min(x) = 0 h, max(x) = 24 h, and the applications are realized for the
PV/wind/battery power system within one day. The number of the fuzzy clusters is chosen as ݇ =
24. From Equations (11) and (12), the particular values of the fuzzy clusters are shown in Figure 2.

Figure 2. The particular fuzzy clusters (membership functions) used in this research, where k = 24.

Figure 1. (a) The first design stage of the imIFML; (b) The second design stage of the imIFML.

In this study, the two-dimensional data (x, y) used to develop the fuzzy model is assumed
within a period of 24 h, where min(x) = 0 h, max(x) = 24 h, and the applications are realized for the
PV/wind/battery power system within one day. The number of the fuzzy clusters is chosen as k = 24.
From Equations (11) and (12), the particular values of the fuzzy clusters are shown in Figure 2.

Energies 2018, 11, x FOR PEER REVIEW 7 of 26

() ()
1:

min 1 .j ii N
CL x j dis

=
= + −   , ݆ = 1, …, k, (12)

(a)

(b)

Figure 1. (a) The first design stage of the imIFML; (b) The second design stage of the imIFML.

In this study, the two-dimensional data (x, y) used to develop the fuzzy model is assumed
within a period of 24 h, where min(x) = 0 h, max(x) = 24 h, and the applications are realized for the
PV/wind/battery power system within one day. The number of the fuzzy clusters is chosen as ݇ =
24. From Equations (11) and (12), the particular values of the fuzzy clusters are shown in Figure 2.

Figure 2. The particular fuzzy clusters (membership functions) used in this research, where k = 24.
Figure 2. The particular fuzzy clusters (membership functions) used in this research, where k = 24.

Energies 2018, 11, 482 8 of 26

To implement the linear programming of the coIFML in MATLAB, the mathematical functions for
the three kinds of triangle membership functions in Figure 2 should be realized as depicted in Figure 3
and Equations (13)–(15). The mathematical equations for representing the membership functions in
panels (a), (b), and (c) of Figure 3 are expressed in Equations (13), (14), and (15), respectively.

Energies 2018, 11, x FOR PEER REVIEW 8 of 26

To implement the linear programming of the coIFML in MATLAB, the mathematical functions
for the three kinds of triangle membership functions in Figure 2 should be realized as depicted in
Figure 3 and Equations (13)–(15). The mathematical equations for representing the membership
functions in panels (a), (b), and (c) of Figure 3 are expressed in Equations (13), (14), and (15),
respectively.

(a) (b) (c)

Figure 3. (a) R-function fuzzy membership function, where ݁	= min(x); (b) Normal triangle fuzzy
membership function; (c) L-function fuzzy membership function, where ݁	= max(x).

() 1:
, if min()

0 , if

i
i N

G

h
x e h

h e
h

δ δ
μ δ

δ
=

− = ≤ <= −
 ≥

, (13)

()

0 , if

 , if

 , if

0 , if

G

d

d
d e

e d
h

e h
h e

h

δ
δ δ

μ δ
δ δ

δ

≤
 − < ≤
 −=  − < <
 −
 ≥

, (14)

()
1:

0 , if

, if max()G
i

i N

d

d
d e x

e d

δ
μ δ δ δ

=

≤
= − < ≤ = −

, (15)

With the antecedent vector x ad x= , from Equations (9) and (13)–(15), the vector of
standardized membership functions is as:

() () () () ()1x , ..., , ...,ad j kx x x xη η η η η = =   , ݆ = 1, …, k, (16)

It is noted that N is the size of the data for developing the fuzzy model, and k is the number of
fuzzy clusters (membership functions), where its value is chosen as k = 24 in this study.

• Detailed implementation of linear programming for the lower bound of the coIFML

With the first-order model shown in Equation (7), the value array of the coefficient matrix
TΦ

for the lower bound ݂ of the coIFML is expressed in Equation (17):

1 11 10 1 0 1 0,..., ,..., , ,..., , ,..., ,T
j k j j k kφ φ φ φ φ φ φ φ φ        Φ = =         , ݆ = 1, …, k, (17)

where the fuzzy antecedent vector is x ad x= , and the consequent vector x cq is represented in the

affine form as []x , 1 T

cq x= , the lower bound ݂ at the first equation in Equation (8) is realized as

follows:

Figure 3. (a) R-function fuzzy membership function, where e = min(x); (b) Normal triangle fuzzy
membership function; (c) L-function fuzzy membership function, where e = max(x).

µG(δ) =


h−δ
h−e , if min

i=1:N
(xi) = e ≤ δ < h

0 , if δ ≥ h
, (13)

µG(δ) =


0 , if δ ≤ d
δ−d
e−d , if d < δ ≤ e
h−δ
h−e , if e < δ < h

0 , if δ ≥ h

, (14)

µG(δ) =

{
0 , if δ ≤ d
δ−d
e−d , if d < δ ≤ e = max

i=1:N
(xi)

, (15)

With the antecedent vector xad = x, from Equations (9) and (13)–(15), the vector of standardized
membership functions is as:

η(xad) = η(x) =
[
η1(x), . . . , ηj(x), . . . , ηk(x)

]
, j = 1, . . . , k, (16)

It is noted that N is the size of the data for developing the fuzzy model, and k is the number of
fuzzy clusters (membership functions), where its value is chosen as k = 24 in this study.

• Detailed implementation of linear programming for the lower bound of the coIFML
With the first-order model shown in Equation (7), the value array of the coefficient matrix ΦT for

the lower bound f of the coIFML is expressed in Equation (17):

ΦT =
[
φ

1
, . . . , φ

j
, . . . , φ

k

]
=
[[

φ
11

, φ
10

]
, . . . ,

[
φ

j1
, φ

j0

]
, . . . ,

[
φ

k1
, φ

k0

]]
, j = 1, . . . , k, (17)

Energies 2018, 11, 482 9 of 26

where the fuzzy antecedent vector is xad = x, and the consequent vector xcq is represented in the affine
form as xcq = [x, 1]T , the lower bound f at the first equation in Equation (8) is realized as follows:

f (x, Φ) = ηT(xad).Φ.xcq =
k
∑

j=1
ηj(x).φT

j
.[x, 1]T

=
[
η1(x), . . . , ηj(x), . . . , ηk(x)

]T .
[(

φ
11

x + φ
10

)
, . . . ,

(
φ

j1
x + φ

j0

)
, . . . ,

(
φ

k1
x + φ

k0

)]
=
[
(η1(x).x).φ

11
+ η1(x).φ

10

]
+ . . . +

[(
ηj(x).x

)
.φ

j1
+ ηj(x).φ

j0

]
+ . . .

+
[
(ηk(x).x).φ

k1
+ ηk(x).φ

k0

]
, (18)

For convenience in programming, where y is the data set in vertical axis, Equation (5) now can be
rewritten as: 

λlb → min

subject to

{
− f (x, Φ)− λlb ≤ −y
f (x, Φ)− 0.λlb ≤ y

, (19)

From Equations (18) and (19), the relevant matrices Alb, alb and clb used to approximate the lower
bound by linear programming in MATLAB/Optimization are presented in Equation (20):

Alb = [A1,lb; A2,lb], alb = [−y; y], clb =

0, . . . , 0︸ ︷︷ ︸
2k

, 1

T

, (20)

where

A1,lb = [−η1(x).x, −η1(x), . . . , −ηj(x).x, −ηj(x), ..,−ηk(x).x, −ηk(x); −

1, . . . , 1︸ ︷︷ ︸
N

T

],

and:

A2,lb = [η1(x).x, η1(x), . . . , ηj(x).x, ηj(x), .., ηk(x).x, ηk(x); −

0, . . . , 0︸ ︷︷ ︸
N

T

].

• Detailed implementation of linear programming for the upper bound of the coIFML
With the first-order model shown in Equation (7), the value array of the coefficient matrix ΦT for

the upper bound f is shown in Equation (21):

ΦT
=
[
φ1, . . . , φj, . . . , φk

]
=
[[

φ11, φ10
]
, . . . ,

[
φj1, φj0

]
, . . . ,

[
φk1, φk0

]]
, j = 1, . . . , k, (21)

where the fuzzy antecedent vector is xad = x, and the consequent vector xcq is represented in the
affine form as xcq = [x, 1]T , the approximated upper bound f at the second equation in Equation (8) is
realized as follows:

f
(
x, Φ

)
= ηT(xad).Φ.xcq =

k
∑

j=1
ηj(x).φT

j .[x, 1]T

=
[
η1(x), . . . , ηj(x), . . . , ηk(x)

]T .
[(

φ11x + φ10
)
, . . . ,

(
φj1x + φj0

)
, . . . ,

(
φk1x + φk0

)]
=
[
(η1(x).x).φ11 + η1(x).φ10

]
+ . . . +

[(
ηj(x).x

)
.φj1 + ηj(x).φj0

]
+ . . .

+
[
(ηk(x).x).φk1 + ηk(x).φk0

]
, (22)

Energies 2018, 11, 482 10 of 26

For convenience in programming, where y is the data set in vertical axis, Equation (6) now can be
rewritten as: 

λub → min

subject to

{
f
(
x, Φ

)
− λub ≤ y

− f
(

x, Φ
)
+ 0.λub ≤ −y

, (23)

From Equations (22) and (23), the relevant matrices Aub, aub and cub used to approximate the
upper bound by the linear programming in MATLAB/Optimization are shown in Equation (24):

Aub = [A1,ub; A2,ub], aub = [y; −y], cub =

0, . . . , 0︸ ︷︷ ︸
2k

, 1

T

, (24)

where

A1,ub = [η1(x).x, η1(x), . . . , ηj(x).x, ηj(x), .., ηk(x).x, ηk(x); −

1, . . . , 1︸ ︷︷ ︸
N

T

],

and:

A2,ub = [−η1(x).x, −η1(x), . . . , −ηj(x).x, −ηj(x), . . . , −ηk(x).x, −ηk(x);

0, . . . , 0︸ ︷︷ ︸
N

T

].

In this study, the linear programming can be executed using the command linprog in the
Optimization toolbox of MATLAB [36]. The sample code in MATLAB to implement the coIFML (also
the first stage of the imIFML) with parameters in Equations (20) and (24) is presented in Appendix A.

3.2. Design Stage 2: Determine the Actual Boudnaries of Data, and Reference Lower and Upper Bounds

In this stage, actual boundary points of the two-dimensional data (x, y) used for modeling are
determined as described in Figure 1 panel (b). After that, two reference bounds for adjusting the
approximated lower and upper bounds of the proposed imIFML technique are determined.

An efficient concave boundary algorithm for datasets can be found in [37]. We use the MATLAB
boundary command [38] to determine the boundary points of two-dimensional data. The syntax of this
command is boundary(x, y, θ), where x is the horizontal axis data, y is the vertical axis data, and θ is the
shrink coefficient with a scalar value in the range of [0, 1]. If θ is set to 0 this gives a convex hull, and
if θ is set to 1 this gives a tight boundary that covers the data points. The default value of the shrink
coefficient θ is 0.5.

For example, the return value of the boundary command with θ = 0.73 for battery power data is an
index vector of boundary points, as depicted in Figure 4. The index vectors of actual lower and upper
boundary points are denoted as Ilb = [Ilb(1), . . . ,Ilb(r), . . . ,Ilb(nlb)] and Iub = [Iub(nub), . . . ,Iub(τ),
. . . ,Iub(1)], respectively, where Ilb(1) = Iub(1) = 1 and Ilb(nlb) = Iub(nub) = N. In this example, nlb =
37, nub = 38, and N = 280. The value vectors of the actual lower and upper boundary points on the
vertical axis are given as LBact = y(Ilb) and UBact = y(Iub), respectively. Figure 5 shows the actual
boundary data points, which are marked with red circles.

Energies 2018, 11, 482 11 of 26

Energies 2018, 11, x FOR PEER REVIEW 10 of 26

()
()

min

,
subject to

, 0.

ub

ub

ub

f x y

f x y

λ

λ

λ

→
  Φ − ≤

 − Φ + ≤ − 

, (23)

From Equations (22) and (23), the relevant matrices ubA , uba and ubc used to approximate
the upper bound by the linear programming in MATLAB/Optimization are shown in Equation (24):

1, 2 ,; ub ub ubA A A =   , []; uba y y= − , 
2

0,...,0 ,1
T

ub

k

c
 

=  
 

, (24)

where

() () () () () () 1, 1 1[. , ,..., . , , .., . , ; 1,...,1]
T

ub j j k k

N

A x x x x x x x x xη η η η η η
 

= −  
 

,

and:

() () () () () () 2, 1 1[. , ,..., . , , .., . , ; 0,...,0]
T

ub j j k k

N

A x x x x x x x x xη η η η η η
 

= − − − − − −  
 

.

In this study, the linear programming can be executed using the command linprog in the
Optimization toolbox of MATLAB [36]. The sample code in MATLAB to implement the coIFML
(also the first stage of the imIFML) with parameters in Equations (20) and (24) is presented in
Appendix A.

3.2. Design Stage 2: Determine the Actual Boudnaries of Data, and Reference Lower and Upper Bounds

In this stage, actual boundary points of the two-dimensional data (x, y) used for modeling are
determined as described in Figure 1 panel (b). After that, two reference bounds for adjusting the
approximated lower and upper bounds of the proposed imIFML technique are determined.

An efficient concave boundary algorithm for datasets can be found in [37]. We use the
MATLAB boundary command [38] to determine the boundary points of two-dimensional data. The
syntax of this command is boundary(x, y, θ), where x is the horizontal axis data, y is the vertical axis
data, and θ is the shrink coefficient with a scalar value in the range of [0, 1]. If θ is set to 0 this gives
a convex hull, and if θ is set to 1 this gives a tight boundary that covers the data points. The default
value of the shrink coefficient θ is 0.5.

For example, the return value of the boundary command with θ = 0.73 for battery power data is
an index vector of boundary points, as depicted in Figure 4. The index vectors of actual lower and
upper boundary points are denoted as lbI = [()1lbI ,…, ()lbI r ,…, ()lb lbI n] and u bI =

[()ub ubI n ,…, ()ubI τ ,…, ()1ubI], respectively, where () ()1 1lb u bI I= = 1 and () ()lb lb ub ubI n I n= = N.

In this example, lbn = 37, ubn = 38, and N = 280. The value vectors of the actual lower and upper

boundary points on the vertical axis are given as ()act lbLB y I= and ()act ubUB y I= , respectively.

Figure 5 shows the actual boundary data points, which are marked with red circles.

Figure 4. The index vector of actual boundary data points using the MATLAB boundary command.

As depicted in Figure 4, the sizes of LBact and UBact are smaller than the size of the data, meaning
that nlb < N and nub < N. To suitably design the proposed imIFML technique, the number of points
in the actual lower and upper boundary vectors should use N as the data size. The procedures for
conducting this task are described in the third execution block (from the top) in Figure 1 panel (b).
Specifically, the linear function for two consecutive points in the actual lower- or upper-boundary
vector is easily determined. After that, linear functions for all consecutive points in the lower- and
upper-boundary vectors are established, responses to which are respectively illustrated by the red
and black dashed lines in Figure 5. Finally, virtual data points on the vertical axis, which reflect the
horizontal-axis dataset x to the defined linear functions, will additionally be filled in the actual lower-
and upper-boundary vectors LBact and UBact. As a result, the sizes of the newly filled actual boundary
vectors LB f illed

act and UB f illed
act now are N, the same size as dataset y.

Energies 2018, 11, x FOR PEER REVIEW 11 of 26

Figure 4. The index vector of actual boundary data points using the MATLAB boundary command.

As depicted in Figure 4, the sizes of actLB and actUB are smaller than the size of the data,
meaning that lbn < N and ubn < N. To suitably design the proposed imIFML technique, the
number of points in the actual lower and upper boundary vectors should use N as the data size. The
procedures for conducting this task are described in the third execution block (from the top) in
Figure 1 panel (b). Specifically, the linear function for two consecutive points in the actual lower- or
upper-boundary vector is easily determined. After that, linear functions for all consecutive points in
the lower- and upper-boundary vectors are established, responses to which are respectively
illustrated by the red and black dashed lines in Figure 5. Finally, virtual data points on the vertical
axis, which reflect the horizontal-axis dataset x to the defined linear functions, will additionally be
filled in the actual lower- and upper-boundary vectors actLB and actUB . As a result, the sizes of the
newly filled actual boundary vectors

filled
actLB and

filled
actU B now are N, the same size as dataset y.

Figure 5. Sample performance of the coIFML, and filled actual boundaries filled
actLB and filled

actUB

using the syntax boundary(x, y, 0.73) in MATLAB for battery power data.

With the filled actual boundary vectors filled
actLB and filled

actUB , the reference bounds refLB

and refUB for adjusting the approximated lower and upper bounds of the proposed imIFML

technique are defined as:

() () ()

() () ()

max ,

min ,

filled
ref coIFML act

filled
ref coIFML act

LB i f i LB i

UB i f i UB i

 =  

 =  

, i = 1, …, N. (25)

The two ratio matrices l bR and u bR between the approximated lower and upper bounds of
coIFML and their reference bounds in Equation (25) are determined as:

()
()()max ()

ref coIFML

lb

ref coIFML

abs LB f
R

abs LB i f i

−
=

 − 
, i = 1, …, N. (26)

()
()max () ()

coIFML ref

ub

coIFML ref

abs f UB
R

abs f i UB i

−
=

 − 
, i = 1, …, N. (27)

Figure 5. Sample performance of the coIFML, and filled actual boundaries LB f illed
act and UB f illed

act using
the syntax boundary(x, y, 0.73) in MATLAB for battery power data.

With the filled actual boundary vectors LB f illed
act and UB f illed

act , the reference bounds LBre f and
UBre f for adjusting the approximated lower and upper bounds of the proposed imIFML technique are
defined as:

LBre f (i) = max
[

f
coIFML

(i), LB f illed
act (i)

]
UBre f (i) = min

[
f coIFML(i), UB f illed

act (i)
] , i = 1, . . . , N. (25)

The two ratio matrices Rlb and Rub between the approximated lower and upper bounds of coIFML
and their reference bounds in Equation (25) are determined as:

Rlb =
abs
(

LBre f − f
coIFML

)
max

(
abs
[

LBre f (i)− f
coIFML

(i)
]) , i = 1, . . . , N. (26)

Energies 2018, 11, 482 12 of 26

Rub =
abs
(

f coIFML −UBre f

)
max

(
abs
[

f coIFML(i)−UBre f (i)
]) , i = 1, . . . , N. (27)

3.3. Design Stage 3: Initially Adjust the Scaling Parameters in the Modified Linear Programming

As shown in Equations (20) and (24), all linear programming matrices used in the coIFML have
fixed values. Hence, the linear programming response when approximating the lower and upper
bounds in Equations (19) and (23) can only regulate arbitrary values λlb and λub to the minimum
values at several regions in the data. This means that λlb and λub may exceed the minimum values in
other data regions. Especially in cases of data with large variation, the difference between the defined
minimum values and the arbitrary values in other regions may be very large. For example, as shown
in Figure 5, λlb and λub approach their minimum values of nearly zero around the region of t = 8 h.
Meanwhile, in the regions where t = [0 h, 5 h] and t = [11 h, 24 h], λlb and λub are much larger than
zero because the lower and upper bounds of the coIFML are far from the actual lower and upper
boundaries. To overcome this issue, additional scaling matrices should be used to adjust the coefficient
matrices alb and aub, which regulate λlb and λub in the regions around the actual boundary points to
be equal to the minimum values of nearly zero.

The modified linear programming used for the proposed imIFML technique is given in Equations
(28) and (29), where the symbol � denotes element-wise multiplication. Here, values for matrices
Alb, clb, Aub and cub are fixed to those of the coIFML given in Equations (20) and (24). Meanwhile,
matrices alb and aub can now be suitably adjusted using newly-added scaling matrices Asc

lb and Asc
ub.

Specifically, key points of the scaling matrix Asc
lb are that its element values can be different and

changeable. The particular value of each matrix element is related to the same-order element in the
ratio matrix Rlb in Equation (26), and the relation between them is shown in Equation (33). As a result,
where the coefficient matrix alb is now online changeable, λlb in Equation (19) will be considered an
arbitrary matrix with element values regulated to be almost equal to the minimum value of nearly
zero at the actual-data lower boundary points. This means that the computed lower bound f

imIFML
of

the proposed imIFML technique is appropriately driven to closely fit to the reference lower bound
LBre f given by Equation (25) in most regions, especially at the actual lower boundary points. Similar
conduct and explanation can be applied to the scaling matrix Asc

ub of the coefficient matrix aub for
the upper bound in Equation (29), where the relation between Asc

ub and Rub is expressed in Equation
(35). To guarantee a proper adjusting process, the check errors in Equations (36) and (37) between
the computed bounds of the imIFML technique and the reference bounds must satisfy the conditions
emin

lb ≥ 0 and emin
ub ≥ 0, as will be described in the next subsection:

Alb = [A1,lb; A2,lb], alb = [−y� Asc
lb ; y� Asc

lb], clb =

0, . . . , 0︸ ︷︷ ︸
2k

, 1

T

, (28)

Aub = [A1,ub; A2,ub], aub = [y� Asc
ub; −y� Asc

ub], cub =

0, . . . , 0︸ ︷︷ ︸
2k

, 1

T

, (29)

This design stage is the initial adjustment for the two scaling matrices Asc
lb and Asc

ub in the
modified linear programming scheme given by Equations (28) and (29), respectively. The adjustment
is performed simultaneously. The goal is to force the approximated lower and upper bounds of the
proposed imIFML to move toward the reference bounds. Figure 6 panels (a) and (b) show detailed
process diagrams of this stage for the lower and upper bounds of the proposed imIFML.

With the scale indexes determined using the MATLAB boundary command, the scalar scaling
gains gA,lb and gA,ub are computed by Equations (30) and (31), respectively, where initial values gA,lb0
and gA,ub0 should be chosen in the interval of [0, 1]. In this study, gA,lb0 and gA,ub0 are chosen as

Energies 2018, 11, 482 13 of 26

0.8, which is equivalent to 80% of 1 pu. This means that the reserve value of 20% can be used for
fine-tuning, as will be shown in the next design stage. If the modified linear programming problems
are not resolvable, the initial gain values gA,lb0 and gA,ub0 are reduced to gA,lb0 = gA,lb0 − 0.1 and
gA,ub0 = gA,ub0 − 0.1, as seen in Figure 6 panels (a) and (b), respectively.

Energies 2018, 11, x FOR PEER REVIEW 13 of 26

, 0A lbg and , 0A ubg should be chosen in the interval of [0, 1]. In this study, , 0A lbg and , 0A ubg are

chosen as 0.8, which is equivalent to 80% of 1 pu. This means that the reserve value of 20% can be
used for fine-tuning, as will be shown in the next design stage. If the modified linear programming
problems are not resolvable, the initial gain values , 0A lbg and , 0A ubg are reduced to

, 0 , 0 0.1A lb A lbg g= − and , 0 , 0 0.1A ub A ubg g= − , as seen in Figure 6 panels (a) and (b), respectively.

(a) (b)

Figure 6. (a) The third design stage for the lower bound imIFMLf of the proposed imIFML

technique. (b) The third design stage for the upper bound imIFMLf of the proposed imIFML

technique.

[] []()
(), , 0

1:

max () ()
.

max
ref lb coIFML lb

A lb A lb
i

i N

abs LB I r f I r
g g

abs y
=

 − =
  

 ௟௕, (30)݊	,… ,2 ,1 = ݎ ,

[] []()
(), , 0

1:

max () ()
.

max
coIFML ub ref ub

A ub A ub
i

i N

abs f I UB I
g g

abs y

τ τ

=

 − =
  

, τ = ݊௨௕, …, 2,	1, (31)

here, r and τ are indexes on the actual boundary vectors lbI and ubI in Figure 4, refLB and

refUB are the two reference bounds defined in Equation (25) at the second stage, and coIFMLf and

coIFMLf are the bounds of the coIFML shown in Equations (18) and (22) at the first stage.

Figure 6. (a) The third design stage for the lower bound f
imIFML

of the proposed imIFML technique.

(b) The third design stage for the upper bound f imIFML of the proposed imIFML technique.

gA,lb = gA,lb0.
max

[
abs
(

LBre f [Ilb(r)]− f
coIFML

[Ilb(r)]
)]

max
i=1:N

[abs(yi)]
, r = 1, 2, . . . , nlb, (30)

gA,ub = gA,ub0.
max

[
abs
(

f coIFML[Iub(τ)]−UBre f [Iub(τ)]
)]

max
i=1:N

[abs(yi)]
, τ = nub, . . . , 2, 1, (31)

here, r and τ are indexes on the actual boundary vectors Ilb and Iub in Figure 4, LBre f and UBre f are
the two reference bounds defined in Equation (25) at the second stage, and f

coIFML
and f coIFML are

the bounds of the coIFML shown in Equations (18) and (22) at the first stage.

• For the approximated lower bound f
imIFML

depicted in Figure 6 panel (a):

where gA,lb is in Equation (30) and sgn() is the sign function, the intermediate matrix αlb is computed as:

αlb = gA,lb.sgn(y), (32)

Energies 2018, 11, 482 14 of 26

where the matrix Rlb is defined in Equation (26), and the scaling matrix for the lower bound in Equation
(28) is calculated as:

Asc
lb =

1, . . . , 1︸ ︷︷ ︸
N

T

+ (αlb � Rlb), (33)

• For the approximated upper bound f imIFML illustrated in Figure 6 panel (b):

In this case, the intermediate matrix aub in Figure 6 panel (b) is computed as:

αub = gA,ub.sgn(y), (34)

where gA,ub is shown in Equation (31).
The scaling matrix for the matrix aub of the upper bound in Equation (29) is calculated as:

Asc
ub =

1, . . . , 1︸ ︷︷ ︸
N

T

− (αub � Rub), (35)

where Rub is expressed in Equation (27).
Appendix B presents sample code for implementing the third design stage of the proposed

imIFML in MATLAB Optimization Toolbox [36].

3.4. Design Stage 4: Automatically Fine-Tune the Parameters in the Modified Linear Programming

In this stage, the two scaling matrices Asc
lb and Asc

ub of the modified linear programming in
Equations (28) and (29) are fine-tuned automatically. The tuning process is conducted in loops until a
good model emerges. The objective is online adjustment for the approximated lower bound f

imIFML
and upper bound f imIFML of the proposed imIFML technique to be fitted to the reference bounds LBre f
and UBre f in Equation (25) as closely as possible. Figure 7 panels (a) and (b) show detailed process
diagrams of this design stage for the approximated lower and upper bounds.

From the two constraints in Equation (10), the scalar check errors at the actual boundary data
points depicted in Figures 4 and 5 are defined by Equations (36) and (37) for the tuning process in
Figure 7 as:

emin
lb (mlb) = min

(
LB[Ilb(r)]

re f − f [Ilb(r)]
imIFML

(mlb)
)

, r = 1, 2, . . . , nlb, (36)

emin
ub (mub) = min

(
f
[Iub(τ)]

imIFML
(mub)−UB[Iub(τ)]

re f

)
, τ = nub, . . . , 2, 1. (37)

where r and τ are the indexes of the actual boundary vectors Ilb and Iub in Figure 4, respectively;
mlb ≥1 and mub ≥1 are the iteration indexes of loops in Figure 7 panels (a) and (b), respectively.

• For the approximated lower bound f
imIFML

described in Figure 7 panel (a)

In this design stage, a new intermediate scalar gain βlb(mlb) is defined as below:

βlb(mlb) = [1 + (0.02 .mlb)].βlb0, (38)

where the initial base value βlb0 = βlb(mlb = 0) is chosen as 0.05, as equivalent to be 5% of 1 pu.
The intermediate matrix α∗lb(mlb) shown in Figure 7 panel (a) is updated online as follows:

α∗lb(mlb) =


1, . . . , 1︸ ︷︷ ︸

N

T

+ βlb(mlb).R∗lb(mlb)

� α∗lb(mlb − 1), (39)

Energies 2018, 11, 482 15 of 26

where α∗lb(mlb = 0) = αlb, and αlb is computed in Equation (32). The ratio matrix R∗lb(mlb) is defined as:

R∗lb(mlb) =
abs
[

LBre f − f
imIFML

(mlb)
]

max
[

abs
(

LB[i]
re f − f [i]

imIFML
(mlb)

)] , i = 1, . . . , N, (40)

where R∗lb(mlb = 0) = Rlb, and the matrix Rlb is calculated in Equation (26) at the second design stage.

Energies 2018, 11, x FOR PEER REVIEW 15 of 26

() () 01 0 .02 . .lb lb lb lbm mβ β= +   , (38)

where the initial base value ()0 0lb lb lbmβ β= = is chosen as 0.05, as equivalent to be 5 % of 1 pu.

The intermediate matrix ()*
lb lbmα shown in Figure 7 panel (a) is updated online as follows:

()  () () ()* * *1, ...,1 . 1
T

lb lb lb lb lb lb lb lb

N

m m R m mα β α
  
 = + −    

 , (39)

where
* (0)lb lb lbmα α= = , and lbα is computed in Equation (32). The ratio matrix ()*

lb lbR m is

defined as:

() ()
[] [] ()()

*

max
ref imIFML lb

lb lb i i
ref imIFML lb

abs LB f m
R m

abs LB f m

 − =
 − 

, i = 1, …, N, (40)

where ()* 0lb lb lbR m R= = , and the matrix lbR is calculated in Equation (26) at the second

design stage.

(a) (b)

Figure 7. (a) The fourth design stage for the lower bound imIFMLf of the proposed imIFML; (b) The

fourth design stage for the upper bound imIFMLf of the proposed imIFML.

The scaling matrix ()sc
lb lbA m used for the matrix lba in Equation (28) now is online

fine-tuned as below:

()  ()*1, ...,1
T

sc
lb lb lb lb lb

N

A m m Rα
 

 = +   
 

 , (41)

Figure 7. (a) The fourth design stage for the lower bound f
imIFML

of the proposed imIFML; (b) The

fourth design stage for the upper bound f imIFML of the proposed imIFML.

The scaling matrix Asc
lb(mlb) used for the matrix alb in Equation (28) now is online fine-tuned

as below:

Asc
lb(mlb) =

1, . . . , 1︸ ︷︷ ︸
N

T

+ [α∗lb(mlb)� Rlb], (41)

where α∗lb(mlb) is online updated in Equation (39), and it is noted that Rlb is computed in Equation (26)
at the second stage. For the next iteration step of the tuning process, the iteration index mlb is updated
as follows:

mlb = mlb + 1, (42)

where the initial value of the iteration index mlb is mlb0 = 0. The limit of mlb is set as mlb ≤ mmax
lb to

avoid the unexpected case of an infinite loop. In this study, the limit value mmax
lb is chosen as 500.

As shown in Figure 7 panel (a), if emin
lb < 0 and mlb = 0, this means that the initial value of the gain

gA,lb0 = 0.8 in Equation (30) is not chosen appropriately. Hence, the gain gA,lb0 needs to be reduced as
gA,lb0 = gA,lb0 − 0.1, and the tuning process returns to the third design stage in Figure 6 panel (a).

Energies 2018, 11, 482 16 of 26

• For the approximated upper bound f imIFML presented in Figure 7 panel (b)

In this design stage, a new intermediate scalar gain βub(mub) is defined as:

βub(mub) = [1 + (0.02 .mub)].βub0, (43)

where the initial base value βub0 = βub(mub = 0) is chosen as 0.05, as equivalent to be 5% of 1 pu.
The intermediate matrix α∗ub(mub) in Figure 7 panel (b) is online updated as follows:

α∗ub(mub) =


1, . . . , 1︸ ︷︷ ︸

N

T

+ βub(mub).R∗ub(mub)

� α∗ub(mub − 1), (44)

where α∗ub(mub = 0) = αub, and αub is computed in (34). The ratio matrix R∗ub(mub) is defined as

R∗ub(mub) =
abs
[

f imIFML(mub)−UBre f

]
max

[
abs
(

f
[i]
imIFML(mub)−UB[i]

re f

)] , i = 1, . . . , N, (45)

The scaling matrix Asc
ub(mub) utilized for the matrix aub in Equation (29) is automatically adjusted

as below:

Asc
ub(mub) =

1, . . . , 1︸ ︷︷ ︸
N

T

− [α∗ub(mub)� Rub], (46)

where α∗ub(mub) is online updated in Equation (44), and it is noted that Rub = R∗ub(mub = 0) is
computed in Equation (27) at the second design stage. The iteration index mub for the upper bound is
updated as follows:

mub = mub + 1, (47)

where the initial value of iteration index mub is mub0 = 0. The limit of mub is set as mub ≤ mmax
ub to

avoid the unexpected case of an infinite loop. In this study, the limit value mmax
ub is chosen as 500.

As shown in Figure 7 panel (b), if emin
ub < 0 and mub = 0, this means that the initial value of the gain

gA,ub0 = 0.8 in Equation (31) is not chosen properly. Therefore, the gain gA,ub0 needs to be reduced as
gA,ub0 = gA,ub0 − 0.1, and the tuning process returns to the third design stage in Figure 6 panel (b).

3.5. Additional Limits for Application Cases in Estimating Solar PV and Wind Power

Because the power obtained from the solar PV arrays or wind turbine is often non-negative value,
the following additional limits should be used for the two approximated bounds of the proposed
imIFML in cases of estimating solar PV and wind power as expressed in Equation (48):

f
imIFML

(xi) =

{
f

imIFML
(xi) , if f

imIFML
(xi) ≥ 0

0 , otherwise

f imIFML(xi) =

{
f imIFML(xi) , if f imIFML(xi) ≥ 0

0 , otherwise

, i = 1, . . . , N, (48)

4. Simulation Results

Figure 8 shows a REMS implementing the proposed imIFML technique as a demonstrative
renewable energy system. Power is obtained from PV arrays and wind turbines to supply loads and
deliver to the grid. The battery bank absorbs power when in charge mode and supplies power in
discharge mode. We investigated and evaluated estimation of power from battery bank PBa, PV arrays
PPV , and wind turbine PWi. The base power for converting to pu values in the demonstrative energy

Energies 2018, 11, 482 17 of 26

system was chosen as 100 kW. In this research, all power data for developing the interval fuzzy models
are expressed in pu values.

Energies 2018, 11, x FOR PEER REVIEW 17 of 26

reduced as , 0 , 0 0.1A ub A ubg g= − , and the tuning process returns to the third design stage in Figure

6 panel (b).

3.5. Additional Limits for Application Cases in Estimating Solar PV and Wind Power

Because the power obtained from the solar PV arrays or wind turbine is often non-negative
value, the following additional limits should be used for the two approximated bounds of the
proposed imIFML in cases of estimating solar PV and wind power as expressed in Equation (48):

() () ()

() () ()

, if 0

0 , otherwise

, if 0

0 , otherwise

imIFML i imIFML i
imIFML i

imIFML i imIFML i
imIFML i

f x f x
f x

f x f x
f x

 ≥
= 


 ≥
= 


, i = 1, …, N, (48)

4. Simulation Results

Figure 8 shows a REMS implementing the proposed imIFML technique as a demonstrative
renewable energy system. Power is obtained from PV arrays and wind turbines to supply loads and
deliver to the grid. The battery bank absorbs power when in charge mode and supplies power in
discharge mode. We investigated and evaluated estimation of power from battery bank ஻ܲ௔, PV
arrays ௉ܲ௏, and wind turbine ௐܲ௜. The base power for converting to pu values in the demonstrative
energy system was chosen as 100 kW. In this research, all power data for developing the interval
fuzzy models are expressed in pu values.

Figure 8. The robust energy management system with the proposed imIFML for estimating solar
PV, wind and battery power in a demonstrative renewable energy system.

We present three simulation cases performed using MATLAB R2014b and its Optimization
Toolbox solvers [36,38]. The first test case considers battery power estimation in the proposed
imIFML technique with two battery-bank operational modes (Section 4.1). The second test case
considers output power estimation for PV arrays under large changes in solar radiation (Section
4.2). The last test case considers estimation of wind turbine output power under large variation in
wind speed (Section 4.3). Figure 2 shows particular values for fuzzy clusters in all three test cases.
The initial gains , 0A lbg and , 0A ubg expressed in Equations (30) and (31) are chosen as 0.8, and

limiting values
m ax
lbm and

m ax
ubm for the iteration process in Figure 7 are chosen as 500. Figures 9–11

show results of the first, second, and last described cases, respectively. These figures also show the

Figure 8. The robust energy management system with the proposed imIFML for estimating solar PV,
wind and battery power in a demonstrative renewable energy system.

We present three simulation cases performed using MATLAB R2014b and its Optimization
Toolbox solvers [36,38]. The first test case considers battery power estimation in the proposed imIFML
technique with two battery-bank operational modes (Section 4.1). The second test case considers
output power estimation for PV arrays under large changes in solar radiation (Section 4.2). The last
test case considers estimation of wind turbine output power under large variation in wind speed
(Section 4.3). Figure 2 shows particular values for fuzzy clusters in all three test cases. The initial gains
gA,lb0 and gA,ub0 expressed in Equations (30) and (31) are chosen as 0.8, and limiting values mmax

lb and
mmax

ub for the iteration process in Figure 7 are chosen as 500. Figures 9–11 show results of the first,
second, and last described cases, respectively. These figures also show the approximated lower bound
f

imIFML
(blue line) and upper bound f imIFML (pink line) of the proposed imIFML technique and the

imIFML confidence band (yellow). In addition, the coIFML scheme is implemented for all test cases
for reference with the proposed imIFML technique.

4.1. Test Case 1: Estimating the Power of a Battery Bank

Figure 9 shows assumed operational data for the battery bank power. Namely, PBa ≥ 0 pu
indicates that the battery is in discharge mode, and PBa < 0 pu indicates that the battery is in charge
mode. In this test case, the MATLAB boundary command, described in the second design stage
(Section 3.2), was called as boundary(x, y, 0.73).

In panels (a) and (b) of Figure 7, the iteration values for tuning the lower bound f
imIFML

and

upper bound f imIFML of the proposed imIFML technique were mlb = 8 and mub = 9, respectively. The
check errors in Equations (36) and (37) to stop the loops were emin

lb = 0 and emin
ub = 0, respectively.

Figure 9 shows performance in this test case. Under the coIFML method, the lower and upper
bounds are highly conservative, especially for times t = 0 to 5 h and t = 11 to 24 h, and do not fit the
lower and upper reference bounds. However, using the proposed scheme described in Figures 6 and 7,
the scaling matrices Asc

lb and Asc
ub of the modified linear programming in Equations (28) and (29) are

automatically tuned and are highly consistent with variation in the data of battery power PBa. This
remarkably improves the response of the modified linear programming in the imIFML technique.
As a result, the approximated lower and upper bounds under the proposed imIFML cover all the

Energies 2018, 11, 482 18 of 26

actual boundary data points, marked as red circles. The yellow band between the approximated lower
and upper bounds covers all data points. For example, from time t = 0 to 2 h, the lower and upper
bounds under the imIFML technique are suitably regulated to the reference data bounds, but the two
coIFML bounds are not. The responses from time t = 14 to 16 h are similar. The check conditions for
minimum error values at the boundary points in Equations (36) and (37) are also satisfied. This clearly
demonstrates the salient efficacy of the proposed imIFML technique.

In real renewable power systems with stationary battery banks, the operation of systems often
depends on forecasts of total power capacity, including battery power, and load demand. In this study,
the main purpose of this test case is to evaluate performance and efficacy of the proposed modeling
technique under large variation in battery power data. Estimation of battery power is helpful to
predict maximum total power of the systems for efficiently controlling ancillary services, such as grid
frequency regulation and voltage stability. Furthermore, the power obtained from battery banks is in
both positive and negative values, which is useful to evaluate efficacy and adaptability of the proposed
imIFML technique. On the other hand, the power obtained from PV arrays and wind turbines as well
as load demand are often in positive values. Of course, the evaluation on efficacy of the proposed
method in load demand forecast is also important, and it will be extensively studied in our future work.

Energies 2018, 11, x FOR PEER REVIEW 18 of 26

approximated lower bound im IF M Lf (blue line) and upper bound im IFM Lf (pink line) of the

proposed imIFML technique and the imIFML confidence band (yellow). In addition, the coIFML
scheme is implemented for all test cases for reference with the proposed imIFML technique.

4.1. Test Case 1: Estimating the Power of a Battery Bank

Figure 9 shows assumed operational data for the battery bank power. Namely, ஻ܲୟ 	≥ 0 pu
indicates that the battery is in discharge mode, and ஻ܲୟ 	< 0 pu indicates that the battery is in
charge mode. In this test case, the MATLAB boundary command, described in the second design
stage (Section 3.2), was called as boundary(x, y, 0.73).

In panels (a) and (b) of Figure 7, the iteration values for tuning the lower bound imIFMLf and

upper bound imIFMLf of the proposed imIFML technique were lbm = 8 and ubm = 9, respectively.

The check errors in Equations (36) and (37) to stop the loops were
m in
lbe = 0 and

m in
ube = 0,

respectively.

Figure 9. Test case 1: Results of estimating battery power ஻ܲ௔	under the proposed imIFML
technique.

Figure 9 shows performance in this test case. Under the coIFML method, the lower and upper
bounds are highly conservative, especially for times t = 0 to 5 h and t = 11 to 24 h, and do not fit the
lower and upper reference bounds. However, using the proposed scheme described in Figures 6 and
7, the scaling matrices

s c
lbA and

s c
u bA of the modified linear programming in Equations (28) and

(29) are automatically tuned and are highly consistent with variation in the data of battery power ஻ܲୟ. This remarkably improves the response of the modified linear programming in the imIFML
technique. As a result, the approximated lower and upper bounds under the proposed imIFML
cover all the actual boundary data points, marked as red circles. The yellow band between the
approximated lower and upper bounds covers all data points. For example, from time t = 0 to 2 h,
the lower and upper bounds under the imIFML technique are suitably regulated to the reference
data bounds, but the two coIFML bounds are not. The responses from time t = 14 to 16 h are similar.
The check conditions for minimum error values at the boundary points in Equations (36) and (37)
are also satisfied. This clearly demonstrates the salient efficacy of the proposed imIFML technique.

In real renewable power systems with stationary battery banks, the operation of systems often
depends on forecasts of total power capacity, including battery power, and load demand. In this
study, the main purpose of this test case is to evaluate performance and efficacy of the proposed
modeling technique under large variation in battery power data. Estimation of battery power is
helpful to predict maximum total power of the systems for efficiently controlling ancillary services,
such as grid frequency regulation and voltage stability. Furthermore, the power obtained from
battery banks is in both positive and negative values, which is useful to evaluate efficacy and

Figure 9. Test case 1: Results of estimating battery power PBa under the proposed imIFML technique.

4.2. Test Case 2: Estimating the Output Power of Solar PV Arrays

In this test, the weather condition is assumed in summer and with a clear sky at noon as depicted
in Figure 10 to estimate the power obtained from solar PV arrays PPV . In this case, the additional limits
expressed in (48) are now applied for the approximated lower and upper bounds of the proposed
imIFML. In this test case, the MATLAB boundary command, described in the second design stage
(Section 3.2), was called as boundary(x, y, 1).

In panels (a) and (b) of Figure 7, the iteration values for tuning the lower bound f
imIFML

and

upper bound f imIFML of the proposed imIFML technique were mlb = 54 and mub = 62, respectively.
The check errors in (36) and (37) to stop the loops were emin

lb = 0 and emin
ub = 0, respectively.

Figure 10 shows performance in this test case. Under the coIFML method, the lower and upper
bounds are highly conservative, especially for times t = 4 to 9 h and t = 14 to 20 h, and do not fit
the lower and upper reference bounds. However, using the proposed scheme described in Figures 6
and 7, the scaling matrices Asc

lb and Asc
ub of the modified linear programming in Equations (28) and

(29) are automatically adjusted and correspond to variation in the data of solar PV power PPV . This
substantially enhances effectiveness of the modified linear programming in the introduced imIFML.
As a result, the computed lower and upper bounds under the imIFML technique cover all the actual
boundary data points, marked as red circles. For example, from time t = 6 to 8 h, the lower and upper

Energies 2018, 11, 482 19 of 26

bounds under the imIFML technique are suitably regulated to the reference data bounds, but the two
coIFML bounds are not. The responses from time t = 16 to 18 h are similar. The check conditions for
minimum error values at the boundary points in Equations (36) and (37) are also satisfied.

Energies 2018, 11, x FOR PEER REVIEW 19 of 26

adaptability of the proposed imIFML technique. On the other hand, the power obtained from PV
arrays and wind turbines as well as load demand are often in positive values. Of course, the
evaluation on efficacy of the proposed method in load demand forecast is also important, and it will
be extensively studied in our future work.

4.2. Test Case 2: Estimating the Output Power of Solar PV Arrays

In this test, the weather condition is assumed in summer and with a clear sky at noon as
depicted in Figure 10 to estimate the power obtained from solar PV arrays ௉ܲ௏. In this case, the
additional limits expressed in (48) are now applied for the approximated lower and upper bounds
of the proposed imIFML. In this test case, the MATLAB boundary command, described in the second
design stage (Section 3.2), was called as boundary(x, y, 1).

In panels (a) and (b) of Figure 7, the iteration values for tuning the lower bound imIFMLf and

upper bound imIFMLf of the proposed imIFML technique were lbm = 54 and ubm = 62, respectively.

The check errors in (36) and (37) to stop the loops were
m in
lbe = 0 and

m in
ube = 0, respectively.

Figure 10 shows performance in this test case. Under the coIFML method, the lower and upper
bounds are highly conservative, especially for times t = 4 to 9 h and t = 14 to 20 h, and do not fit the
lower and upper reference bounds. However, using the proposed scheme described in Figures 6 and
7, the scaling matrices

s c
lbA and

s c
u bA of the modified linear programming in Equations (28) and

(29) are automatically adjusted and correspond to variation in the data of solar PV power ௉ܲ௏. This
substantially enhances effectiveness of the modified linear programming in the introduced imIFML.
As a result, the computed lower and upper bounds under the imIFML technique cover all the actual
boundary data points, marked as red circles. For example, from time t = 6 to 8 h, the lower and
upper bounds under the imIFML technique are suitably regulated to the reference data bounds, but
the two coIFML bounds are not. The responses from time t = 16 to 18 h are similar. The check
conditions for minimum error values at the boundary points in Equations (36) and (37) are also
satisfied.

Figure 10. Test case 2: Results on estimating solar PV power ௉ܲ௏ under the proposed imIFML.

Since the power obtained from the PV arrays ௉ܲ௏ is often a non-negative value, in this case,
the lower bound imIFMLf of the proposed imIFML is applied with the additional limit given by the

first equation in Equation (48). The responses of this additional limit are shown from the time t = 0
to 4.1 h and t = 20.1 to 24 h. The yellow confidence band between the computed lower and upper
bounds covers all data points. This obviously shows the good performance and adaptability of the
proposed imIFML technique.

Figure 10. Test case 2: Results on estimating solar PV power PPV under the proposed imIFML.

Since the power obtained from the PV arrays PPV is often a non-negative value, in this case,
the lower bound f

imIFML
of the proposed imIFML is applied with the additional limit given by the

first equation in Equation (48). The responses of this additional limit are shown from the time t = 0 to
4.1 h and t = 20.1 to 24 h. The yellow confidence band between the computed lower and upper bounds
covers all data points. This obviously shows the good performance and adaptability of the proposed
imIFML technique.

4.3. Test Case 3: Estimating the Output Power of Wind Turbine

This test case considers estimation of the power obtained from the wind turbine PWi under very
large variation in the measured data as illustrated by Figure 11. The additional limits in (48) will
be applied for the approximated lower and upper bounds of the proposed imIFML if the related
conditions are satisfied. In this test case, the MATLAB boundary command, described in the second
design stage (Section 3.2), was called as boundary(x, y, 0.97).

The iteration values for tuning the lower bound f
imIFML

and upper bound f imIFML of the imIFML
technique in Figure 7 panels (a) and (b) are mlb = 466 and mub = 467, respectively. In this test case,
owing to the high variation in measured wind power, the iteration values mlb and mub are significantly
larger than in the two previous tests. The check errors at the actual boundary points in Equations (36)
and (37) to stop the loops are still satisfied with emin

lb = 0 and emin
ub = 0.

Figure 11 shows performance in this test case. Under the coIFML method, the lower and upper
bounds are highly conservative, especially for times t = 0 to 3 h, t = 9 to 11 h and t = 13 to 16 h, and
do not fit the lower and upper reference bounds. However, using the proposed scheme described in
Figures 6 and 7, the scaling matrices Asc

lb and Asc
ub of the modified linear programming in Equations

(28) and (29) are automatically altered, and are suitable with fluctuation in the data of wind power PWi.
This noticeably ameliorates performance of the modified linear programming in the imIFML method.
As a result, the estimated lower and upper bounds under the suggested imIFML cover all the actual
boundary data points, marked as red circles. For example, from time t = 5 to 7 h, the lower and upper
bounds under the imIFML technique are suitably regulated to the reference data bounds, but the two
coIFML bounds are not. The responses from time t = 14 to 16 h are almost same. The check conditions
for minimum error values at the boundary points in Equations (36) and (37) are also satisfied.

Energies 2018, 11, 482 20 of 26

Energies 2018, 11, x FOR PEER REVIEW 20 of 26

4.3. Test Case 3: Estimating the Output Power of Wind Turbine

This test case considers estimation of the power obtained from the wind turbine ௐܲ௜ under
very large variation in the measured data as illustrated by Figure 11. The additional limits in (48)
will be applied for the approximated lower and upper bounds of the proposed imIFML if the
related conditions are satisfied. In this test case, the MATLAB boundary command, described in the
second design stage (Section 3.2), was called as boundary(x, y, 0.97).

The iteration values for tuning the lower bound imIFMLf and upper bound imIFMLf of the

imIFML technique in Figure 7 panels (a) and (b) are lbm = 466 and ubm = 467, respectively. In this

test case, owing to the high variation in measured wind power, the iteration values lbm and ubm

are significantly larger than in the two previous tests. The check errors at the actual boundary
points in Equations (36) and (37) to stop the loops are still satisfied with

m in
lbe = 0 and

m in
ube = 0.

Figure 11 shows performance in this test case. Under the coIFML method, the lower and upper
bounds are highly conservative, especially for times t = 0 to 3 h, t = 9 to 11 h and t = 13 to 16 h, and
do not fit the lower and upper reference bounds. However, using the proposed scheme described in
Figures 6 and 7, the scaling matrices

s c
lbA and

s c
u bA of the modified linear programming in

Equations (28) and (29) are automatically altered, and are suitable with fluctuation in the data of
wind power ௐܲ௜. This noticeably ameliorates performance of the modified linear programming in
the imIFML method. As a result, the estimated lower and upper bounds under the suggested
imIFML cover all the actual boundary data points, marked as red circles. For example, from time t =
5 to 7 h, the lower and upper bounds under the imIFML technique are suitably regulated to the
reference data bounds, but the two coIFML bounds are not. The responses from time t = 14 to 16 h
are almost same. The check conditions for minimum error values at the boundary points in
Equations (36) and (37) are also satisfied.

Figure 11. Test case 3: Results on estimating wind power ௐܲ௜ under the proposed imIFML.

Although the variation in data of wind power is large, the yellow confidence band between the
two estimated lower and upper bounds of the proposed imIFML still covers data points pretty well,
especially at the actual boundary points of data, because the two error values in Equations (36) and
(37) are checked at these actual boundary points. This confirms the good adaptability of the
suggested imIFML technique under high variation and nonlinearity in the data.

5. Additional Discussions

In some unexpected cases, the value of the computed lower bound under the proposed
imIFML is slightly smaller than the one under the coIFML, and the value of the computed upper
bound under the proposed imIFML is slightly larger than the one under the coIFML. Therefore, to

Figure 11. Test case 3: Results on estimating wind power PWi under the proposed imIFML.

Although the variation in data of wind power is large, the yellow confidence band between the
two estimated lower and upper bounds of the proposed imIFML still covers data points pretty well,
especially at the actual boundary points of data, because the two error values in Equations (36) and
(37) are checked at these actual boundary points. This confirms the good adaptability of the suggested
imIFML technique under high variation and nonlinearity in the data.

5. Additional Discussions

In some unexpected cases, the value of the computed lower bound under the proposed imIFML
is slightly smaller than the one under the coIFML, and the value of the computed upper bound under
the proposed imIFML is slightly larger than the one under the coIFML. Therefore, to enhance the
robustness and efficacy of the final fuzzy model, the additional selections in Equation (49) can be
applied for the proposed imIFML. Moreover, in real applications, to reduce unpredicted noises in
the measured data of PV/wind/battery power, the data should be effectively filtered by low-pass
filters [26] or Kalman filters [39,40] before being used to develop and tune the suggested imIFML:

f
imIFML

(xi) = max
[

f
imIFML

(xi), f
coIFML

(xi)
]

f imIFML(xi) = min
[

f imIFML(xi), f coIFML(xi)
] , i = 1, . . . , N, (49)

In cases of big data and/or many fuzzy clusters (membership functions), the linear
programming technique may have difficulty in solving. This means that the command linprog in
MATLAB/Optimization cannot solve the optimization problems in Equations (19) and (23). Our
suggestion for these cases is that the data range for modeling should be suitably divided to several
smaller data ranges. For example, the two-day data of the PV/wind/battery power can be modeled
with two separate fuzzy models. The first one-day imIFML is used for the period t = 0 h to 24 h, and the
second one-day imIFML is utilized for the period t = 24 h to 48 h. Last, the final two-day imIFML is
computed by Equation (50). Similar procedures can be applied for cases of long-term prediction:

f [0h−48h]
imIFML

(
x f ull

)
=
[

f [0h−24h]
imIFML

(x1) , f [24h−48h]
imIFML

(x2)
]

f
[0h−48h]
imIFML

(
x f ull

)
=
[

f
[0h−24h]
imIFML (x1) , f

[24h−48h]
imIFML (x2)

] , x f ull = [x1, x2], (50)

Energies 2018, 11, 482 21 of 26

The values of the denominators in Equations (26), (27), (30), (31), (40), and (45) are larger than zero
in most circumstances, but the checking procedures for the values of these denominators compared to
zero should be conducted in the programming process to thoroughly avoid any unexpected errors.

This paper is fairly long because one of our key objectives was to explain in detail all the necessary
computing equations, diagrams, implementation stages, and several examples of sample codes for
the proposed imIFML technique, thereby providing a helpful reference document. The key ideas
and algorithms of the introduced imIFML technique are concisely illustrated in Figures 1 and 4–7.
These figures demonstrate that the proposed imIFML technique is not complex in design, and that
its computational load is not excessively heavy. In addition, the two implementation processes in
programming for the approximated lower and upper bounds of the imIFML technique are highly
similar. The above five figures are necessary and useful in realizing the proposed imIFML technique in
other programming languages, or in applying the imIFML technique to related applications.

The major objective of this paper is to develop an efficient method for estimating solar PV, wind
and battery power under high variation and nonlinearity in measured two-dimensional data. This
means that our paper mainly focuses on an estimation technique as shown in the paper title. In addition,
the proposed imIFML has the same applicability as the coIFML, which can be used for forecasting
renewable energy profiles as already presented and evaluated in [31–33]. The additional approach for
implementing an interval fuzzy model in day-ahead prediction of PV/wind/battery power is beyond
the key scope of this study, and this approach can be found in section II of [32].

6. Conclusions

This paper presented an imIFML technique based on the first-order model, modified linear
programming, and actual boundary data points. In the proposed imIFML technique, the scaling
matrices in the modified linear programming are automatically tuned to obtain the best possible
model. The response of the proposed imIFML is substantially superior to the coIFML, while its
robustness is similar. The computed lower and upper bounds of the imIFML technique are closely
fitted to the reference lower and upper bounds of the data. Furthermore, owing to the changeable
scaling matrices in the modified linear programming, the effectiveness of the imIFML technique is
not heavily dependent on fine-tuning the detailed values for fuzzy clusters. Good performance and
adaptability of the imIFML technique were assessed in estimating solar PV, wind and battery power
in a demonstrative renewable energy system under large variation in the data. The effectiveness of
the proposed imIFML technique was also compared with that of the coIFML. Moreover, this study
is helpful for experimental applications in that design flowcharts, computing equations, explanation
of the implementation stages, and MATLAB sample code for the introduced imIFML technique are
described in detail. Several additional useful discussions were also presented to apply the proposed
imIFML method to related actual applications appropriately.

Future work will investigate a novel hybrid-interval fuzzy modeling technique combined with an
artificial neural network for effectively forecasting renewable power and load profiles in cases of very
large datasets, long-term prediction modes, and high uncertainty of weather conditions.

Acknowledgments: This work was supported by JST-CREST Grant Number JPMJCR15K2, Japan.

Author Contributions: Nguyen Gia Minh Thao and Kenko Uchida conceived and designed the research contents
and simulations; Nguyen Gia Minh Thao performed the programming and simulations; Nguyen Gia Minh Thao
and Kenko Uchida analyzed the data; Kenko Uchida contributed simulation and analysis tools; Nguyen Gia Minh
Thao wrote the paper; Nguyen Gia Minh Thao and Kenko Uchida checked the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix presents the sample code in MATLAB for the first design stage of the imIFML,
(Section 3.1), where the two-dimensional data is the battery power in Test case 1 (Section 4.1).

Energies 2018, 11, 482 22 of 26

load batterypower.dat; % load the two-dimensional data of the battery power in Test Case 1.

N = length(batterypower); % N is the size of the measured two-dimensional data, N = 280
x = batterypower(:,1); % horizontal data axis (time in hour)
y = batterypower(:,2); % vertical data axis (battery power in per-unit value)

k = 24; % k is the number of fuzzy clusters (membership functions), k = 24
if (k > N) k = N; end % limit by the condition k ≤ N

%% ===== Fuzzification: Membership functions (for all design stages) =====
Eta = zeros(N, k); % initial matrix [row, column]
Eta(:,1) = fRfunction(x,[min(x),Cluster_centers(1+1)]); % Equation (13)
for j=2:1:(k − 1),
Eta(:,j) = fTriangle(x,[Cluster_centers(j − 1),Cluster_centers(j),Cluster_centers(j + 1)]); % Equation (14)
end
Eta(:,k) = fLfunction(x,[Cluster_centers(k−1),max(x)]); % Equation (15)

%% ========== for the Lower Bound (in the design stage 1) ==========
A1_lb = zeros(N,2*k+1); % initial matrix [row, column]
A2_lb = zeros(N,2*k+1); % initial matrix [row, column]
for i = 1:1:k, % k is the number of fuzzy clusters (membership functions), k = 24

A1_lb(:,2*i−1) = -Eta(:,i).*x; % left side of Equation (20)
A1_lb(:,2*i) = -Eta(:,i);
A2_lb(:,2*i−1) = Eta(:,i).*x; % left side of Equation (20)
A2_lb(:,2*i) = Eta(:,i);

end
A1_lb(:,2*k+1) = -ones(N,1); % left side of Equation (20)
A2_lb(:,2*k+1) = -zeros(N,1); % left side of Equation (20)

A_lb = [A1_lb; A2_lb]; % inequality constraint matrix in Equation (20)
a_lb = [−y; y]; % right side vector of inequality constraints in Equation (20)
c_lb = zeros(2*k+1,1); c_lb(2*k+1,1) = 1; % objective function coefficient in Equation (20)

[xsol_lb, fval_lb] = linprog(c_lb, A_lb, a_lb); % execute linear programming with command linprog

Lower_phi = zeros(k,2); % initial matrix [row, column]
for i = 1:1:k, % k is the number of fuzzy clusters (membership functions), k = 24

Lower_phi(i,1) = xsol_lb(2*i−1,1); % import the return vector solved by the command linprog
Lower_phi(i,2) = xsol_lb(2*i,1); % import the return vector solved by the command linprog

end

Value1 = zeros(N,2); % initial matrix [row, column]
Value1 = (Eta*Lower_phi).*[x,ones(N,1)]; % intermediate value to compute the lower bound in (18)
Lower_Bound = zeros(N,1); % initial value for the lower bound
for i = 1:1:N,

Lower_Bound(i,1) = Value1(i,1) + Value1(i,2); % determine the lower bound of the coIFML
end

%% ========== for the Upper Bound (in the design stage 1) ==========
A1_ub = zeros(N,2*k+1); % initial matrix [row, column]
A2_ub = zeros(N,2*k+1); % initial matrix [row, column]

for i = 1:1:k, % k is the number of fuzzy clusters (membership functions), k = 24
A1_ub(:,2*i−1) = Eta(:,i).*x; % left side of Equation (24)
A1_ub(:,2*i) = Eta(:,i);
A2_ub(:,2*i−1) = -Eta(:,i).*x; % left side of Equation (24)
A2_ub(:,2*i) = -Eta(:,i);

end
A1_ub(:,2*k+1) = -ones(N,1); % left side of Equation (24)
A2_ub(:,2*k+1) = -zeros(N,1); % left side of Equation (24)

A_ub = [A1_ub; A2_ub]; % inequality constraint matrix in Equation (24)
a_ub = [y; −y]; % right side vector of the inequality constraints in Equation (24)
c_ub = zeros(2*k+1,1); c_ub(2*k+1,1) = 1; % objective function coefficient in Equation (24)

[xsol_ub, fval_ub] = linprog(c_ub, A_ub, a_ub); % execute the linear programming with linprog

Upper_phi = zeros(k,2); % initial matrix [row, column]
for i = 1:1:k,

Upper_phi(i,1) = xsol_ub(2*i−1,1); % import the return vector solved by the command linprog
Upper_phi(i,2) = xsol_ub(2*i,1); % import the return vector solved by the command linprog

end
Value2 = zeros(N,2); % initial matrix [row, column]
Value2 = (Eta*Upper_phi).*[x,ones(N,1)]; % intermediate value for computing upper bound in (22)
Upper_bound = zeros(N,1); % initial value for the upper bound
for i = 1:1:N,

Upper_bound(i,1) = Value2(i,1) + Value2(i,2); % determine the upper bound of the coIFML
end

Energies 2018, 11, 482 23 of 26

Appendix B

This appendix briefly describes the sample code in MATLAB for the third design stage (Section 3.3),
where the two-dimensional data is the battery power in Test case 1 (Section 4.1).

%% ========== for the Lower Bound (in the design stage 3) ==========
R_lb = abs(Lower_bound_REF - Lower_bound)/max(abs(Lower_bound_REF − Lower_bound));

% Equation (26)
lower_gain_A = 0.8*max(abs(Lower_bound_REF(lower_bound_index) −
Lower_bound(lower_bound_index)))/max(abs(y));

% Equation (30)
alpha_lb = sign(y).* ones(N,1); % initial matrix
alpha_lb = sign(y) * lower_gain_A; % Equation (32)
for i = 1:1:N,

A_lb_sc(i,1) = 1 + alpha_lb(i,1) * R_lb(i,1); % Equation (33)
end

A_lb = [A1_lb; A2_lb]; % inequality constraint matrix, Equation (28)
a_lb = [−y.*A_lb_sc; y.*A_lb_sc] ; % right side vector of inequality constraints, Equation (28)
c_lb = zeros(2*k+1,1); c_lb(2*k+1,1) = 1; % objective function coefficient, Equation (28)

[xsol_lb, fval_lb] = linprog(c_lb, A_lb, a_lb); % execute modified linear programming with linprog

Lower_phi = zeros(k,2); % initial matrix
for i = 1:1:k, % k = 24, is the number of fuzzy clusters (membership functions)

Lower_phi(i,1) = xsol_lb(2*i-1,1); % import the return vector solved by the command linprog
Lower_phi(i,2) = xsol_lb(2*i,1); % import the return vector solved by the command linprog

end

Value1 = zeros(N,2); % initial matrix; N is the size of the two-dimensional data, N = 280
Value1 = (Eta*Lower_phi).*[x,ones(N,1)]; % intermediate value to compute the lower bound in (18)
Lower_bound= zeros(N,1); % initial matrix
for i = 1:1:N,

Lower_bound(i,1) = Value1(i,1) + Value1(i,2); % determine the lower bound of the imIFML
end

%% ========== for the Upper Bound (in the design stage 3) ==========
R_ub = abs(Upper_bound - Upper_bound_REF) / max(abs(Upper_bound - Upper_bound_REF));

% Equation (27)
upper_gain_A = 0.8*max(abs(Upper_bound(upper_bound_index) −
Upper_bound_REF(upper_bound_index)))/max(abs(y));

% Equation (31)

alpha_ub = sign(y) .* ones(N,1); % initial matrix
alpha_ub = sign(y) * upper_gain_A; % Equation (34)
for i = 1:1:N,

A_ub_sc(i,1) = 1 - alpha_ub(i,1) * R_ub(i,1); % Equation (35)
end
A_ub = [A1_ub; A2_ub]; % inequality constraint matrix, Equation (29)
a_ub = [y.*A_ub_sc; -y.*A_ub_sc]; % right side vector of inequality constraints, Equation (29)
c_ub = zeros(2*k+1,1); c_ub(2*k+1,1) = 1; % objective function coefficient, Equation (29)

[xsol_ub, fval_ub] = linprog(c_ub, A_ub, a_ub) % execute modified linear programming with linprog

Upper_phi = zeros(k,2);

Energies 2018, 11, 482 24 of 26

for i = 1:1:k, % k is the number of fuzzy clusters (membership functions), k = 24
Upper_phi(i,1) = xsol_ub(2*i-1,1); % import the return vector solved by the command linprog
Upper_phi(i,2) = xsol_ub(2*i,1); % import the return vector solved by the command linprog

end

Value2 = zeros(N,2); % initial matrix; N is the size of the two-dimensional data, N = 280
Value2 = (Eta*Upper_phi).*[x,ones(N,1)]; % intermediate value to compute the upper bound in (22)
Upper_bound = zeros(N,1); % initial matrix
for i = 1:1:N,

Upper_bound(i,1) = Value2(i,1) + Value2(i,2); % determine the upper bound of the imIFML
end

References

1. Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and Solar Power Forecasting for Smart Grid
Energy Management. CSEE J. Power Energy Syst. 2015, 1, 38–46. [CrossRef]

2. Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble methods for wind and solar power forecasting—
A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [CrossRef]

3. Nielsen, H.; Nielsen, T.; Madsen, H. An overview of wind power forecast types and their use in large-scale
integration of wind power. In Proceedings of the 10th International Workshop on Large-Scale Integration of
Wind Power into Power Systems, Aarhus, Denmark, 25–26 October 2011.

4. James, E.P.; Benjamin, S.G.; Marquis, M. A unified high-resolution wind and solar dataset from a rapidly
updating numerical weather prediction model. Renew. Energy 2017, 102, 390–405. [CrossRef]

5. Baharin, K.A.; Abdul Rahman, H.; Hassan, M.Y.; Gan, C.K. Short-term forecasting of solar photovoltaic
output power for tropical climate using ground-based measurement data. J. Renew. Sustain. Energy 2016, 8,
053701. [CrossRef]

6. Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed
and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [CrossRef]

7. Hammer, A.; Kuhnert, J.; Weinreich, K.; Lorenz, E. Short-Term Forecasting of Surface Solar Irradiance Based
on Meteosat-SEVIRI Data Using a Nighttime Cloud Index. Remote Sens. 2015, 7, 9070–9090. [CrossRef]

8. Sperati, S.; Alessandrini, S.; Pinson, P.; Kariniotakis, G. The “Weather Intelligence for Renewable Energies”
Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation. Energies 2015, 8,
9594–9619. [CrossRef]

9. Das, U.K.; Tey, K.S.; Seyedmahmoudiana, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.;
Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review.
Renew. Sustain. Energy Rev. 2018, 81, 912–928. [CrossRef]

10. Gao, R.; Gao, Z. Pitch control for wind turbine systems using optimization, estimation and compensation.
Renewable Energy 2016, 91, 501–515. [CrossRef]

11. Perng, J.W.; Chen, G.Y.; Hsieh, S.C. Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine
Systems. Energies 2014, 7, 191–209. [CrossRef]

12. Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural
Network Using Statistical Feature Parameters. Energies 2012, 5, 1355–1370. [CrossRef]

13. Elena Dragomir, O.; Dragomir, F.; Stefan, V.; Minca, E. Adaptive Neuro-Fuzzy Inference Systems as a Strategy
for Predicting and Controling the Energy Produced from Renewable Sources. Energies 2015, 8, 13047–13061.
[CrossRef]

14. Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Idna Idris, M.Y.; Mekhilef, S.; Horan, B.; Stojcevski, A. SVR-Based
Model to Forecast PV Power Generation under Different Weather Conditions. Energies 2017, 10, 876.
[CrossRef]

15. Monteiro, C.; Santos, T.; Fernandez-Jimenez, L.A.; Ramirez-Rosado, I.J.; Terreros-Olarte, M.S. Short-Term
Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity. Energies 2013, 6, 2624–2643.
[CrossRef]

http://dx.doi.org/10.17775/CSEEJPES.2015.00046
http://dx.doi.org/10.1016/j.rser.2015.04.081
http://dx.doi.org/10.1016/j.renene.2016.10.059
http://dx.doi.org/10.1063/1.4962412
http://dx.doi.org/10.1016/j.rser.2014.03.033
http://dx.doi.org/10.3390/rs70709070
http://dx.doi.org/10.3390/en8099594
http://dx.doi.org/10.1016/j.rser.2017.08.017
http://dx.doi.org/10.1016/j.renene.2016.01.057
http://dx.doi.org/10.3390/en7010191
http://dx.doi.org/10.3390/en5051355
http://dx.doi.org/10.3390/en81112355
http://dx.doi.org/10.3390/en10070876
http://dx.doi.org/10.3390/en6052624

Energies 2018, 11, 482 25 of 26

16. Mehran, K. Takagi-Sugeno Fuzzy Modeling for Process Control. School of Electrical, Electronic and Computer
Engineering, Newcastle University, 2008. Available online: https://www.staff.ncl.ac.uk/damian.giaouris/
pdf/IA%20Automation/TS%20FL%20tutorial.pdf (accessed on 22 February 2018).

17. Hadjili, M.L.; Kara, K. Modelling and control using Takagi-Sugeno fuzzy models. In Proceedings of the 2011
Saudi International Electronics, Communications and Photonics Conference, Riyadh, Saudi Arabia, 24–26
April 2011.

18. Babuska, R.; Roubos, J.A.; Verbruggen, H.B. Identification of MIMO Systems by Input-Output TS Fuzzy
Models. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, Anchorage, AK, USA,
4–9 May 1998.

19. Babuška, R. Fuzzy Modeling for Control; Springer: Berlin, Germany, 1998; pp. 49–74. ISBN 978-94-011-4868-9.
20. Liu, X.; Gao, Z.; Chen, M. Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation

with Application to Wind Turbines. IEEE Trans. Ind. Electron. 2017, 64, 5678–5689. [CrossRef]
21. Chen, Y.W.; Yang, J.B.; Pan, C.C.; Xu, D.L.; Zhou, Z.J. Identification of Uncertain Nonlinear Systems:

Constructing Belief Rule-Based Models. Knowl.-Based Syst. 2015, 73, 124–133. [CrossRef]
22. Ping, J.; Liu, F.; Song, Y. A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on

Optimization, Fuzzy Logic and Model Selection. Energies 2016, 9, 1–27.
23. Skrjanc, I.; Blazic, S.; Agamennoni, O. Identification of Dynamical Systems with A Robust Interval Fuzzy

Model. Automatica 2005, 41, 327–332. [CrossRef]
24. Oblak, S. Interval Fuzzy Modelling in Fault Detection For A Class of Processes with Interval-Type Parameters.

In Proceedings of the 2005 International Conference on Computer as a Tool, Belgrade, Serbia, 21–24
November 2005.

25. Oblak, S.; Skrjanc, I.; Blazic, S. On Applying Interval Fuzzy Model to Fault Detection and Isolation For
Nonlinear Input-Output Systems with Uncertain Parameters. In Proceedings of the 2005 IEEE Conference
on Control Applications, Toronto, ON, Canada, 28–31 August 2005.

26. Oblak, S.; Skrjanc, I.; Blazic, S. Fault detection for nonlinear systems with uncertain parameters based on the
interval fuzzy model. Eng. Appl. Artif. Intell. 2007, 20, 503–510. [CrossRef]

27. Oblak, S.; Skrjanc, I.; Blazic, S. A New Fault-Detection System for Nonlinear Systems Based on an Interval
Fuzzy Model. In Proceedings of the European Control Conference 2007, Kos, Greece, 2–5 July 2007.

28. Ghiasi, T.S.; Zarabadipour, H.; Shoorehdeli, M.A. Interval Fuzzy Modeling Applied to Model Based Fault
Detection of an Active Suspension System. In Proceedings of the 2011 IEEE International Conference on
Fuzzy Systems, Taipei, Taiwan, 27–30 June 2011.

29. Skrjanc, I. Fuzzy Confidence Interval For pH Titration Curve. Appl. Math. Model. 2011, 8, 4083–4090.
[CrossRef]

30. Nagode, K.; Škrjanc, I. Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine.
Energies 2014, 7, 874–889. [CrossRef]

31. Saez, D.; Avila, F.; Olivares, D.; Canizares, C.; Marin, L. Fuzzy Prediction Interval Models for Forecasting
Renewable Resources and Loads in Microgrids. IEEE Trans. Smart Grid 2015, 6, 548–556. [CrossRef]

32. Valencia, F.; Collado, J.; Saez, D.; Marin, L.G. Robust Energy Management System for a Microgrid Based on a
Fuzzy Prediction Interval Model. IEEE Trans. Smart Grid 2016, 7, 1486–1494. [CrossRef]

33. Valencia, F.; Sáez, D.; Collado, J.; Ávila, F.; Marquez, A.; Espinosa, J.J. Robust Energy Management System
Based on Interval Fuzzy Models. IEEE Trans. Control Syst. Technol. 2016, 24, 140–157. [CrossRef]

34. Babuska, R.; Van der Veen, P.J.; Kaymak, U. Improved Covariance Estimation for Gustafson-Kessel Clustering. In
Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, Honolulu, HI, USA, 12–17 May 2002.

35. Panda, S.; Sahu, S.; Jena, P.; Chattopadhyay, S. Comparing Fuzzy-C Means and K-Means Clustering
Techniques: A Comprehensive Study. Adv. Comput. Sci. Eng. App. 2012, 166, 451–460.

36. Geletu, A. Solving Optimization Problems Using the Matlab Optimization Toolbox—A Tutorial; The Technische
Universität Ilmenau: Ilmenau, Germany, 13 December 2007.

37. Duckham, M.; Kulikb, L.; Worboys, M.; Galton, A. Efficient Generation of Simple Polygons For Characterizing
The Shape of A Set of Points In The Plane. Pattern Recognit. 2008, 41, 3224–3236. [CrossRef]

38. Boundary Function. MATLAB User’s Guide, Version 8.4 (R2014b), 2014. Available online: www.mathworks.
com/help/matlab/ref/boundary.html (accessed on 6 February 2018).

https://www.staff.ncl.ac.uk/damian.giaouris/pdf/IA%20Automation/TS%20FL%20tutorial.pdf
https://www.staff.ncl.ac.uk/damian.giaouris/pdf/IA%20Automation/TS%20FL%20tutorial.pdf
http://dx.doi.org/10.1109/TIE.2017.2677327
http://dx.doi.org/10.1016/j.knosys.2014.09.010
http://dx.doi.org/10.1016/j.automatica.2004.09.010
http://dx.doi.org/10.1016/j.engappai.2006.08.002
http://dx.doi.org/10.1016/j.apm.2011.02.033
http://dx.doi.org/10.3390/en7020874
http://dx.doi.org/10.1109/TSG.2014.2377178
http://dx.doi.org/10.1109/TSG.2015.2463079
http://dx.doi.org/10.1109/TCST.2015.2421334
http://dx.doi.org/10.1016/j.patcog.2008.03.023
www.mathworks.com/help/matlab/ref/boundary.html
www.mathworks.com/help/matlab/ref/boundary.html

Energies 2018, 11, 482 26 of 26

39. Pelland, S.; Galanis, G.; Kallos, G. Solar and photovoltaic forecasting through post-processing of the Global
Environmental Multiscale numerical weather prediction model. Prog. Photovolt. Res. Appl. 2013, 21, 284–296.
[CrossRef]

40. Diagnea, M.; Davidb, M.; Bolandc, J.; Schmutza, N.; Lauret, P. Post-processing of solar irradiance forecasts
from WRF Model at Reunion Island. Sol. Energy 2014, 105, 99–108. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/pip.1180
http://dx.doi.org/10.1016/j.solener.2014.03.016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Backgrounds of Interval Fuzzy Model
	Design Stages of Proposed Improved Interval Fuzzy Modeling
	Design Stage 1: The coIFML with First-Order Model and Linear Programming
	Design Stage 2: Determine the Actual Boudnaries of Data, and Reference Lower and Upper Bounds
	Design Stage 3: Initially Adjust the Scaling Parameters in the Modified Linear Programming
	Design Stage 4: Automatically Fine-Tune the Parameters in the Modified Linear Programming
	Additional Limits for Application Cases in Estimating Solar PV and Wind Power

	Simulation Results
	Test Case 1: Estimating the Power of a Battery Bank
	Test Case 2: Estimating the Output Power of Solar PV Arrays
	Test Case 3: Estimating the Output Power of Wind Turbine

	Additional Discussions
	Conclusions
	
	
	References

