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Abstract: Photovoltaic pumping is considered to be the most used application amongst other
photovoltaic energy applications in isolated sites. This technology is developing with a slow
progression to allow the photovoltaic system to operate at its maximum power. This work introduces
the modified algorithm which is a perturb and observe (P&O) type to overcome the limitations of
the conventional P&O algorithm and increase its global performance in abrupt weather condition
changes. The most significant conventional P&O algorithm restriction is the difficulty faced when
choosing the variable step of the reference voltage value, a good compromise between the swift
dynamic response and the stability in the steady state. To adjust the step reference voltage according
to the location of the operating point of the maximum power point (MPP), a fuzzy logic controller
(FLC) block adapted to the P&O algorithm is used. This allows the improvement of the tracking pace
and the steady state oscillation elimination. The suggested method was evaluated by simulation using
MATLAB/SimPowerSystems blocks and compared to the classical P&O under different irradiation
levels. The results obtained show the effectiveness of the technique proposed and its capacity for the
practical and efficient tracking of maximum power.
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1. Introduction

The electrical energy use is an important demand of our daily life that keeps on growing. Thus,
the increase in the electrical energy production is linked to the value of the consumption and the
increase in consumption cannot be completely stopped. To remedy that, we boost the systems’
efficiency. In addition, the solar energy production via photovoltaic (PV) cells is a very interesting
renewable source that should be used to meet the demand for electrical energy.

The abundance and risk-free nature of photovoltaic energy has increased its widespread use until
it arrived at an annual growth rate of 35–40% [1].

Recently, photovoltaic energy has caught a lot of interest because its benefits include relatively
modest and low complexity structural requirements that are harmless to our planet and renewable
compared to standard energy sources. The use of photovoltaic systems allows us to improve the living
conditions in remote areas while preserving a clean environment. Last year, photovoltaic systems
were installed all around the world. As an example, in 1993, around 10,000 photovoltaic systems
were installed for water pumping, and after five years, the photovoltaic systems increased in number
six-fold to almost 60,000 systems [2].
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The photovoltaic system is constituted of elements that are interconnected and created to achieve
the specific purpose and to provide the required electricity by the use of a device related to the
load conditions.

The efficiency range may decrease during the fluctuation in: solar radiation, panel temperature
conditions, and load. For this, many scientists have examined different maximum power point tracking
(MPPT) techniques that were discussed by designers to study control methods and power converters
for the tracking of the MPP of a photovoltaic module and extract their disadvantages and advantages
so as to understand better their influence on the system’s performance.

Lately, for the automatic identification and exploitation at a MPPT, various methods and
techniques have been published that differ in many degrees (complexity, yield, cost, material,
popularity, speed of convergence, etc.).

A comparison between several aspects of the principal MPPT techniques (CV, P&O, INC, SC,
and OV) was discussed in [3–5]. Among the drawbacks of the CV technique (constant voltage) [3]
is the negligence of its purpose, which is the tracking of the MPP that was visible when it set the
reference voltage to a better fixed voltage and kept it constant under any operating condition, but this
technique is also advantageous compared to the P&O (perturb and observe) and INC techniques
(incremental conductance), since it overcomes them in efficiency when it is a photovoltaic network of
a feeble irradiation and a low implementation cost.

The fact that the OV (fractional open-circuit voltage) and SC (fractional short-circuit current)
techniques use an additional static switch to perform the open-circuit and short-circuit conditions
makes them more moderate and efficient in energy gains compared to the CV technique. The triviality
of the static switches made the authors in [3,5] prefer the P&O and INC techniques for their lower
relative cost. In reference [5], the author shows that the P&O techniques implantation cost is more
economical than the INC technique’s despite the similarity of their performances.

In [6–8] the authors deduced that the P&O method is the most commonly used technique in
practice, due to its ease of implementation of a low-cost device. The P&O method has a high MPP
tracking performance compared to other techniques. However, it loses this characteristic during
quick changes of irradiation and temperature. When weather conditions change slowly or constantly,
the algorithm also oscillates around or near the MPP, wasting an amount of the available energy [9].

In this work, a drive system of variable speed consists of a set of interacting elements such as:
the photovoltaic panels, the voltage inverter, the permanent magnet synchronous motor (PMSM),
and the centrifugal pump. The motor, the space vector pulse width modulation (SVPWM) control,
the PV model, and the P&O algorithm will be explained in detail. To improve the drive system in both
dynamic response and steady-state, a variable step of reference voltage with P&O algorithm can be
implemented using a fuzzy logic controller (FLC).

The collaboration of the system’s various elements (motor, P&O algorithm, FLC, and drive system)
will be analyzed in terms of performance under different operating conditions such as the irradiation
and variation. The results are acquired using MATLAB/Sim-Power-System blocks.

2. Modeling of the Photovoltaic Cells

The modeling of photovoltaic cells resembles the modelling of a current generator mounted in
parallel with a diode, as shown in Figure 1. The cell behaves like a diode when there isn’t any light to
generate the current. As the incident light intensity increases, the cell generates a current.
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The solar cells’ efficiency is decreased by the power dissipation through the internal resistors 
during operation. The modeling of these exploitative resistances can be done as that of a parallel 
shunt resistor (RSH) and a series resistor (RS). If the RSH decreases too much, the VOC decreases, while 
the RS increase may drop the ISC. It is doable to approximate the series values and shunt resistors, RS 
and RSH, from the slopes of the I/V curve respectively to the VOC and the ISC. However, the series 
resistance RS of the PV module is determined from the 1/slope of the I-V characteristics at open 
circuit voltage VOC, and the shunt resistance RSH is equal to the inverse of the slope of the I-V 
characteristics at the short-circuit ISC. After that, the measurements of the resistances to the ISC and 
the VOC will then be taken and noted. 

Figure 1. The electrical modeling of the photovoltaic (PV) cell.

The characteristic equation can be deduced directly by using the Kirchhoff law: [10,11]

IPV = Iph − Id − ISH (1)

The expansion of the equation connecting the current delivered by a PV module, which consists of
putting NS cells in series and the voltage at its terminals and several variables (as summarized in
Table 1 which gives the simplified circuit model), is represented below and in the associated equations:

IPV = Iph − IS

[
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Vt
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− 1

]
−
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)
(2)

Id = IS

[
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and ISH =

(
RS·IPV + VPV
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)
(3)

Iph = Np·Iph,cell , IS = Np·IS,cell and Vt =
NS·n·k·T

q
(4)

where n is defined as the diode’s ideality factor (typically between 1 and 2), and RS and RSH represent
the series and shunt resistors. Manufacturers often tend to supply the RS value in the datasheet of the
product [11]. If not provided, the equation of RS can be extracted by differentiating the Equation (1)
then rearranging it in the RS phrase.

dIPV = 0 − IS·q
(

dVPV + RS·dIPV
n·k·T

)
·eq( VPV+RS ·IPV

n·k·T ) (5)

RS = − dIPV
dVPV

− n·k·(T/q)

IS·eq( VPV+RS ·IPV
n·k·T )

(6)

The solar cells’ efficiency is decreased by the power dissipation through the internal resistors
during operation. The modeling of these exploitative resistances can be done as that of a parallel shunt
resistor (RSH) and a series resistor (RS). If the RSH decreases too much, the VOC decreases, while the RS
increase may drop the ISC. It is doable to approximate the series values and shunt resistors, RS and RSH,
from the slopes of the I/V curve respectively to the VOC and the ISC. However, the series resistance
RS of the PV module is determined from the 1/slope of the I-V characteristics at open circuit voltage
VOC, and the shunt resistance RSH is equal to the inverse of the slope of the I-V characteristics at the
short-circuit ISC. After that, the measurements of the resistances to the ISC and the VOC will then be
taken and noted.
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Table 1. PV Cell Parameters.

Hints PV Cell Parameters

IS Diode saturation current for Np
IS,cell Cell diode saturation current

Iph Photocurrent for Np
Iph,cell Cell photocurrent

Ipv The output current
Id The diode current

ISH The shunt resistance current
Vt Thermal voltage for Ns
n The ideality factor of diode (1.1007)
k The Boltzmann’s constant (1.38 × 10−23 J/K)
T The p–n junction’s temperature
q The electron’s charge (1.6 × 10−19 ◦C)

Under Matlab/Simulink, the IPV equation was used to define the electrical characteristics of the
PV module (Appolo-solar-energy ASEC-205 G6M), as well as to simulate the characteristics of the
P-V and I-V for various levels of temperature and irradiation, which are shown in Table 2 by respecting
the standard STC’s three factors (irradiation, air mass, cell temperature).

Table 2. Manufacturer Specifications for a PV Module.

Parameter Value

Cell Type Polycrystalline
Rated Power 205 ± 3.0% (W)

Voltage at Maximum Power Vmp 25.87 (V)
Open Circuit Voltage Voc 33.58 (V)
Short-Circuit Current Isc 8.61 (A)

Diode saturation current Id 2.3682 × 10−9 (A)
Current at Maximum Power Imp 7.93 (A)
Temperature Coefficient of Voc −0.42 (%/◦C)
Temperature Coefficient of Isc 0.19 (%/◦C)

Cells number per module 6 × 9
Series resistance RS 0.43947 (Ω)

Shunt Resistance RSH 116.9171 (Ω)

Figure 2 shows the variation of the I-V and P-V output’s characteristics of the simulated PV module
as a function of the irradiation and temperature variation. These agree with the characteristics provided
by the module manufacturer.
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Figure 2. (a) P–V and I–V curves for different irradiance and constant T (b) P–V and I–V curves for 
different temperatures and constant G. 
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and the previous disturbance P (n) is the P&O’s operating principle. 

The disturbance has to be maintained in the same initial direction if the disturbance of the 
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of power. This can be remedied by implementing either a direct duty cycle control where the power 
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manipulated as a disturbance parameter and a proportional integral (PI) controller is required to 
accommodate the duty cycle [15–17]. 

To eliminate the limitation that exists in the conventional P&O algorithm’s implementations, 
we use a P&O algorithm based on the modified conventional algorithm, in which we implemented a 
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P&O algorithm’s flowchart is shown in Figure 3. 

Figure 2. (a) P–V and I–V curves for different irradiance and constant T; (b) P–V and I–V curves for
different temperatures and constant G.

3. Fuzzy Logic-Based P&O Algorithm with Variable Step of a Reference Voltage

The P&O algorithm’s basic structure and easy implementation caused it to be considered as
the most commonly used MPPT algorithm for all techniques. It is built on the notion that the
power–voltage curve dP/dV reaches zero at the curve’s top.

Decrementing or incrementing periodically the photovoltaic generator’s voltage values or the
current output, the corresponding output power comparison of the photovoltaic generator P (n + 1),
and the previous disturbance P (n) is the P&O’s operating principle.

The disturbance has to be maintained in the same initial direction if the disturbance of the
terminal voltage causes an increase in the power (dP/dV > 0), otherwise it will be moved in the
converse direction. This process is redone until the maximum power reaches the point dP/dV = 0.
We prefer the P&O algorithm for its advantages, but let us not forget its disadvantage, which is the
unstoppable oscillation around the power even when it reaches the MPP, which causes extra losses
of power. This can be remedied by implementing either a direct duty cycle control where the power
is measured at each PWM cycle [12–14], or a reference voltage control where a reference voltage is
manipulated as a disturbance parameter and a proportional integral (PI) controller is required to
accommodate the duty cycle [15–17].

To eliminate the limitation that exists in the conventional P&O algorithm’s implementations,
we use a P&O algorithm based on the modified conventional algorithm, in which we implemented
a fuzzy logic controller block to provide a variable step of reference voltage. The suggested modified
P&O algorithm’s flowchart is shown in Figure 3.
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Figure 3. Flowchart of the modified perturb and observe (P&O) algorithm.

The modified power values ∆PPV as well as the modified current values ∆IPV of the photovoltaic
generator present the inputs of the fuzzy logic controller block. The adjustments of the controller to
the variable step ∆Vref of the P&O depend on the current solar temperature and irradiation. To lower
the cost and complexity of the FLC block’s implementation, it is implemented in a way so that it shares
the same sensors with the P&O that measure the voltages and currents of the PV generator.

The reference voltage is deemed as a disturbance and control element of the proposed algorithm,
so the ∆Vref is disturbed by subtracting or adding the variable step in accordance with the variation of
the acquired PV output power. This step is calculated by the adapted FLC block, so it has the role of
adjusting the value of the step in accordance with the operating point position. The step value changes
proportionally with the interval between the operating point and the MPP. This process continues
until the MPP is attained, whose FLC block sets the step value as zero. Therefore, this ensures a fast
dynamic response and eliminates the oscillations around the MPP when a steady state is reached.

4. Fuzzy Logic Controller

The fuzzy logic controller proposed is based on an initial knowledge of the system. It is used
to modify and control the step of reference voltage. A functional diagram of a FLC block can be
structured by collaborating between four sections: fuzzification, inference, defuzzification, and rule
base, as illustrated in Figure 4 where the modified values of the photovoltaic generator power ∆PPV and
those of the current ∆IPV present the inputs and ∆Vref presents the output that we will send to the
P&O algorithm.
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The input variables, ∆PPV, ∆IPV, and output ∆Vref of the fuzzy logic controller proposed can be
calculated by the use of these equations:

∆VPV(k) = (VPV(k)− VPV(k − 1)) (7)

∆IPV(k) = (IPV(k)− IPV(k − 1)) (8)

∆PPV(k) = ∆VPV(k)× ∆IPV(k) (9)

Using Equations (7) and (8), the power variation values ∆PPV and the output current variation
∆IPV of the PV generator can be stabilized before the fuzzification process to achieve the control
calculation’s simplification.

In this model, the membership function of the output and input variables used as presented
in Figure 5, all membership functions (∆PPV, ∆IPV, ∆Vref), are expressed with a triangular function.
Five linguistic terms are defined: NB as negative big, NS as negative small, ZZ as zero, PS as positive
small, and PB as positive big.
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All information of the monitored parameters are available in the fuzzy rules base that is a set
of verification laws (IF THEN). We possess two inputs and each one has five membership functions,
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which gives a 25 rule constitution in the FLC inference rules, as given in the Table 3. The function of
the latter is to define the variable step of reference voltage so as to convey it to the P&O algorithm to
track the PPM and stop iteration once that point is reached.

Table 3. Fuzzy rules base.

∆IPV
∆PPV

NB NS ZZ PS PB

NB NB NS NS ZZ ZZ
NS NS ZZ ZZ ZZ PS
ZZ ZZ ZZ ZZ PS PS
PS ZZ PS PS PS PB
PB PS PS PB PB PB

A fuzzy controller output is always a fuzzy set, so it must be filtered by a defuzzification process
to define the net output of the proposed fuzzy control.

Diverse defuzzification techniques were proposed by different authors. In which the defuzzification
method of the center of gravity (COG) or centroid [18–20] is the most common, where the shredder
determines the gravity center to use its value as an FLC output.

5. Description of Solar Permanent Magnet Synchronous Motor (PMSM) Drive System

5.1. Vector Control of PMSM

One single source composed of three parallel panels is enough to power the PMSM and increase
its efficiency. The Kirchhoff voltage law can be utilized so as to express the PMSM voltage equation,
as given in the equation:

Vd(t) = Rid(t) +
dψd(t)

dt
− ωeψq(t) (10)

Vq(t) = Riq(t) +
dψq(t)

dt
− ωeψd(t) (11)

where R is the winding resistance of the stator, ωe is the electrical rotor frequency, and, respectively,
ψd and ψq are the linkage fluxes of the two axis (d-axis and q-axis) when:

ψd = Ldid + ψm (12)

ψq = Lqiq. (13)

The ψm is the linkage of the flux due to the rotor magnets effects. The electromagnetic torque of
a PMSM in the axis d and q can be given by:

Te =
2
3

p
[
ψdid − ψqiq

]
. (14)

The sign p shows the number of pairs of poles. Based on the authors’ approach [21], the pole
placement method can design the PI controller’s parameters. In Figure 6, a global schematic
presentation of the PMSM controlled by a vector control powered by an inverter is shown. The desired
voltage Vref will be created according to the power generated from three PV panels to consume all the
power generated from the panel.
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Effectively, after comparing the measured voltage VPV and the desired Vref, the PI controller
is added in the outer loop so as to generate the desired Ωref speed. This latter speed signal is also
compared with the measured one as an inner loop. This error signal will be sent to the PI controller,
which generates transversal stator current as a reference one. Because the magnets produce a constant
flux, the current Id must be controlled at zero current. PMSM parameters are cited in Appendix A.

5.2. Space Vector Pulse Width Modulation SVPWM

The SVPWM is used in modern drive of electric motors so as to obtain arbitrary waveforms.
It will be studied on a three-phase inverter. The concept of the SVPWM consists of reconstructing the
voltage vector Vmoy from eight voltage vectors. Each one of these vectors corresponds to an association
of the states of the three-phase voltage inverter switches [20].

A reference voltage vector is calculated globally and approximated over a modulation period
T by an average voltage vector Vmoy. The latter is elaborated by the application of the adjacent voltage
vectors and the null vectors V0 and V7. A combinatorial analysis of all the possible states of the
switches makes it doable to calculate the voltage vector (VSα, VSβ).

The eight voltage vectors redefined by the association of the switches are represented in the plane
(α, β) by Figure 7, [22–25].
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5.3. Modeling of the Centrifugal Pump

A pump has a maximum suction (aspiration) capacity, which is the value of the vacuum it can
produce. This characteristic differs depending on the type and the pump’s technical design.

The centrifugal pump’s work involves three parameters: the height, the flow, and the speed.
To find the solution of this system of equation, we consider one of the three constant parameters;
in general it is the speed which is constant. We have tested our system using a load where the torque
increases with the speed squared, such as a pump centrifugal, fan, etc.

Tr = k × Ω2 (15)

where k is the constant.

6. Simulation Results

The simulation has been done using MATLAB/Sim-Power-Systems blocks as clarified in Figure 8.
The modified P&O block requires the VPV and IPV of the PV array to estimate the reference voltage
shown in Figure 8. The Vref is compared with VPV and regulated by a PI controller to define
the reference speed of the pump motor. The time sampling step of the models of the two blocks
(control blocks and power blocks) is taken as 5.14 µs.
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In the first part, a comparative study on the conventional P&O and the P&O based on fuzzy logic
is done to show the performance of both techniques under similar conditions. The comparative study
takes into consideration two important characteristics: the maximum power point’s tracking speed and
the oscillation in the steady state. To display the practice of the suggested FLC-based P&O algorithm,
this algorithm was tested with two reference voltage steps: 0.01 and 0.05 under two irradiation changes.
The irradiation was changed from 1000 to 500 W/m2 at 0.2 s, then augmented to 1000 W/m2 at 0.6 s as
shown in Figure 9a.

Compared to the P&O with a fixed step of 0.01, the P&O with a fixed step of 0.05 shows a good
dynamic performance. It can converge more rapidly to the steady state, but the oscillation is much
higher. The dynamic performance of the P&O algorithm can be further improved with a larger
step size.

Figure 9b represent variation of voltage reference step size at 0.2 s and 0.6 s. Figure 9c shows that
the steady-state oscillation has been totally eliminated in the case of the FLC-based P&O and when
the output power of the PV generator is greater than 615 W. In addition, the FLC-based P&O offers
a faster dynamic response than the P&O of 0.01 and 0.05.

In the second part, the results of the simulation were obtained to show the performance of the
fuzzy logic-based P&O algorithm under different conditions such as quick changes of irradiation.
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The results of the drive system of the solar pumping motor are obtained to operate at 25 ◦C and
1000 W/m2. They are given in Figure 10a–d. The power characteristic of the photovoltaic generator is
shown in Figure 10a with a maximum power point determined as 615 W. The PV generator’s voltage
and current are changed as shown in Figure 10b. It should be known that the PV generator’s voltage is
adjusted to the MPP of about 26 V. The three-phase stator currents are given in Figure 10c. The motor
speed is changed, as illustrated in Figure 10d, which is limited to the maximum available speed of
about 3000 rpm. As a second work, the irradiation is adjusted to 500 W/m2. The results are given in
Figure 10e–h for this adjusted condition. In this circumstance, the MPP of the PV generator is obtained
at about 315 W, as presented in Figure 10e. The photovoltaic generator’s current is decreased from
24 A to 12 A, as illustrated in Figure 10f. Depending on this current decrease, the stator’s currents and
the motor speed are decreased as shown in Figure 10g–h. The motor speed is decreased from 2980 rpm
to 2250 rpm. The results show that the motor operates at the point of maximum power.
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Figure 9. Steady-state and dynamic response comparison of the proposed fuzzy logic controller
(FLC)-based P&O with the P&O algorithm with step of reference voltage of 0.05 and 0.01. (a) Changes
of irradiation; (b) Variable Step of a Reference Voltage; (c) PV array output power.
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Figure 10. Simulation results of FLC-based P&O algorithm. Operating at 25 °C and 1000 W/m2 
conditions; (a) P-V curve of PV array, (b) the PV array’s current and voltage, (c) Stator currents, (d) 
Motor speed, operating at 25 °C and 500 W/m2 conditions; (e) the PV array’s P-V curve, (f) the 
parameters (I, V) of the PV array, (g) Stator currents, (h) Motor speed. 
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Figure 10. Simulation results of FLC-based P&O algorithm. Operating at 25 ◦C and 1000 W/m2 conditions;
(a) P-V curve of PV array, (b) the PV array’s current and voltage, (c) Stator currents, (d) Motor speed,
operating at 25 ◦C and 500 W/m2 conditions; (e) the PV array’s P-V curve, (f) the parameters (I, V) of the
PV array, (g) Stator currents, (h) Motor speed.

7. Conclusions

In this paper, an improvement of the P&O algorithm with the Fuzzy Logic is developed for
a permanent magnet synchronous motor (PMSM) drive system to increase the efficiency of the system
without the energy storage by a DC/DC converter and batteries. The system is connected directly to
the photovoltaic panels. To ensure a nominal power supply of 26 volts for the motor, a minimum of
three panels in parallel is sufficient.

For a direct connection to PV panels that can generate a low voltage level, a low-voltage PMSM
is used. To reduce the torque ripple, we use six poles. Because of the need for a 3000 rpm speed,
the nominal frequency of the motor is equal to 150 Hz.

In addition, so as to maximize the power flow between the PMSM and the PV array in situations
of vigorous radiation and temperature changes, the FLC-based P&O algorithm has been developed.
In a changing condition environment, the analysis of the performance of the developed FLC-based
P&O algorithm, low voltage PMSM, motor drive, and solar system using MATLAB/SimPowerSystems
blocks is performed. The results of the simulation show that at its peak capacity, the pump motor
works perfectly even under rapidly changing solar radiation. This proves that the MPPs have been
accurately measured with the developed P&O algorithm.

Author Contributions: Mohamed Redha Rezoug, Rachid Chenni, and Djamel Taibi conceived and designed the
experiments and performed them; Djamel Taibi and Mohamed Redha Rezoug analyzed the data; Rachid Chenni
contributed reagents/materials/analysis tools; Mohamed Redha Rezoug wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A.

PMSM Parameters;
Vdc = 26 V; R = 0,002 Ω; Ld = 786.10−5 H; Lq = 102.10−4 H; p = 3; Tn = 1.8 Nm; ψm = 0.058 Wb; Pn = 415 W;
In = 20 A; Ωn = 2980 rpm; Un = 15 V.
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