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Abstract: Maximum Power Point Tracking (MPPT) methods are used in photovoltaic (PV) systems to
continually maximize the PV array output power, which strongly depends on both solar radiation and
cell temperature. The PV power oscillations around the maximum power point (MPP) resulting from
the conventional methods and complexity of the non-conventional ones are convincing reasons to
look for novel MPPT methods. This paper deals with simple Genetic Algorithms (GAs) based MPPT
method in order to improve the convergence, rapidity, and accuracy of the PV system. The proposed
method can also efficiently track the global MPP, which is very useful for partial shading. At first,
a review of the algorithm is given, followed with many test examples; then, a comparison by means
Matlab/Simulink© (R2009b) is conducted between the proposed MPPT and, the popular Perturb and
Observe (PO) and Incremental Conductance (IC) techniques. The results show clearly the superiority
of the proposed controller. Indeed, with the proposed algorithm, oscillations around the MPP are
dramatically minimized, a better stability is observed and increase in the output power efficiency is
obtained. All these results are experimentally validated by a test bench developed at LIAS laboratory
(Poitiers University, Poitiers, France) using real PV panels and a PV emulator which allows one to
define a profile insolation model. In addition, the proposed method permits one to perform the test of
linearity between the optimal current Imp (current at maximum power) and the short-circuit current
Isc, and between the optimal voltage Vmp and open-circuit voltage Voc, so the current and voltage
factors can be easily obtained with our algorithm.

Keywords: genetic algorithms; maximum power point trackers; optimization methods; photovoltaic
systems; power system simulation

1. Introduction

PV energy has been widely used during recent years because of its advantages, the growth in the
world demand of energy, and the lowering of the PV panels’ cost [1].

The PV output power efficiency is low and can be even lower if the panels do not operate at their
MPP, but this changes with atmospheric conditions (insolation and temperature) so it is very important
to ensure the panels operate around that point.

Many methods are used to track the MPP, they can be divided in two groups: conventional and
non-conventional methods. The conventional methods are widely used (such as Perturb and Observe
(PO) [2,3], Incremental Conductance (IC) [4,5]) because they are simple and easy to implement. But,
both the PO and IC methods result in oscillation of power around the MPP because the perturbation
remains even when the system operates at MPP. This problem can be reduced by decreasing the step
of the duty cycle. But in this case, the algorithm will track the MPP slowly in response to changing

Energies 2018, 11, 459; doi:10.3390/en11020459 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-9529-5291
http://dx.doi.org/10.3390/en11020459
http://www.mdpi.com/journal/energies


Energies 2018, 11, 459 2 of 17

atmospheric conditions, leading to more power loss. Another solution based on variable duty cycle
step is proposed [6,7].

In addition, the two previously mentioned conventional techniques may converge to a local
optimum which is not necessarily the real MPP. Indeed, the search technique of these algorithms is
done point by point and the P–V curve can present more than one optimum in case of partial shading.

The linear method [8,9] is also widely used due to its simplicity. It assumes a linear relation
between Imp and Isc (current factor Mc), and between Vmp and Voc (voltage factor MV), but these
relations are not absolutely linear because of the nonlinear cell model and because of the temperature
and the insolation dependency of Mc and MV. With the proposed algorithm, both Isc and Voc are
measured (including insolation and temperature effect) and the nonlinear cell model is really used.

Many investigations about non-conventional MPPT methods have been presented (fuzzy
logic [10,11], sliding-mode [12], neural-network [13], ...) during the last decade. They give interesting
theoretical results, but their complexity needs much knowledge, making their implementation
very difficult.

A good review and comparison of MPPT methods for PV systems under normal and partial
shading conditions is given by Ramli et al. [14]. Kamarzaman & Tan [15] made a short theoretical
review comparison between conventional MPPT and stochastic based MPPT algorithms and showed
an interesting performance of GAs-based MPPT. Daraban et al. [16] used GAs with an embedded PO
algorithm, which slightly reduces the oscillations, although they remain important. Logeswarana &
SenthilKumar [17] introduced a re-initialization step to avoid a local convergence.

The proposed algorithm needs short-circuit current Isc and open-circuit voltage Voc as inputs
and uses the cell model to find the MPP (not using perturbation step), so it can rapidly track the
variation of climatic conditions (temperature and insolation). The genetic parameters are chosen to
ensure a large diversity. In order to improve the rapidity of the controller and avoid a local optimum,
it is important to choose a suitable fitness function. In this paper, the fitness function is extracted
from the PV cell model (PV power) in order to give a greater opportunity to the optimal individuals
and to not completely eliminate the others. To validate the performance of the proposed algorithm,
theoretical (by using Matlab/Simulink (R2009b)) and experimental (by using real panels) comparison
with the PO and IC methods is given. The algorithm works by global tracking using a population of
points instead of only one (case of IC and PO). This can avoid the problem of convergence to the local
optimum. Even better, the problem of power oscillation around the MPP can be solved.

Using the proposed algorithm, the linear method is verified, and the factors Mc and MV can be
easily obtained.

2. Conventional Methods

2.1. PO and IC Algorithms

With PO [2,3], the MPP tracking operates by perturbing (i.e., incrementing or decrementing the
duty cycle) the array terminal voltage and comparing the PV output power and voltage values with the
previous cycle values. If the PV output power increases (∆P > 0), the perturbation will continue with
the same direction in the next cycle, otherwise (∆P < 0) the perturbation direction will be reversed
(Figure 1a).

Various PO algorithms are widely used in MPPT because of their simple structure and the
requirement for few measured parameters. Therefore, when the MPP is reached, the PO algorithm
will oscillate around it, resulting in a loss of PV power. Also, by taking just the power variation (∆P),
in rapidly changing atmospheric conditions the PO algorithm can deviate from the MPP and search
in the wrong direction. This can be solved by the IC method by considering the power derivation
(dP/dV).
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Power derivation allows one to track the MPP with the real direction because dP/dV informs us
about the operating point (Figure 1b) at the right or the left of MPP. The derivation of power can be
written: dP

dV = d(I·V)
dV = V· dI

dV + I, so at MPP we can write:

dP
dV

= 0⇒ dI
dV

= − I
V

, (1)

We can see that the MPP is given by comparing the incremental and instantaneous conductance:

dI
dV > − I

V → Increase PV array voltage (V)
dI
dV < − I

V → Decrease V
dI
dV ≈ −

I
V ↔ At the MPP

This algorithm can rapidly follow the variation of atmospheric conditions, but by trying to obtain
dP/dV = 0 makes it sensitive to the perturbations.
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Figure 1. Tracking the MPP: (a) with PO; (b) with IC.

2.2. The Linear Method

This method [8,9] assumes a linear relation between the optimal current Imp (current at maximum
power) and the short-circuit current Isc, and between the optimal voltage Vmp and open-circuit voltage
Voc, so we can write:

Imp = Mc·Isc, (2)

Vmp = MV·Voc (3)

where Mc and MV are constants.
Using a pilot cell, one can measure Isc and Voc and find the MPP. This method is very simple and

gives acceptable results, however the two factors are not a constant because of the nonlinear cell model.

3. The Proposed Method

MPPT techniques try to track the optimum point corresponding to the maximum PV power,
this point is defined by an optimum current Imp (current at maximum power). By using GAs, one can
find this current and keep PV panels working around the maximum power. Figure 2 depicts the
GAs-based MPPT PV system.

The main idea is to perform genetic transformations (Selection, crossover, mutation, and insertion)
on a population of individuals in order to finally obtain an optimal individual corresponding to the
maximum of a function (fitness function) [18]. The following flow chart (Figure 3) shows the steps of
the algorithm:
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Figure 3. Flow chart of GAs-based MPPT.

3.1. Initialization

In our Algorithm, the initial population is a binary matrix which is randomly created. It contains
N individuals (photovoltaic current) coded on S bits:

population(I) =

 I1
...

IN

 With : Imax = Isc = 111 . . . 11

So, population(I) =

 · · ·
...

. . .
...

· · ·

.

The effect of the number of bits (S) and the population length (N) is discussed on Section 4.
The created population will be evaluated according to the power (fitness) of each individual.

3.2. Evaluation

The evaluation is a very important operation; it ensures the survival of an optimal individual.
This can be done by the fitness function (it is a positive function and the individual is optimized for
the maximum value of its fitness function). In our case, the fitness function is simply the PV power,
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so the optimal individual gives the maximum power. An evaluation of each individual (PV current) is
given according to the corresponding power:

P = V·I, (4)

The cell model, shown by the circuit in Figure 4, is used to evaluate the power of each individual
(fitness function), where Rp and Rs are the series and parallel resistances of the cell, respectively [19,20].
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Usually the value of Rp is very high, so the equation for the output current can be given by:

I = Iph − Id, (5)

with:
Id = Irs

[
e
(

q
kTA (V+RsI)

)
− 1
]
, (6)

where: I: Output current (A); V: Output Voltage (V); Id: Current through the intrinsic diode; Iph:
Cell photocurrent; Irs: Cell reverse saturation current; q: The charge of an electron; k: Bolzmann’s
constant; A: The p–n junction ideality factor; T: Cell temperature (K); Rs: Series resistances of the
cell (Ω).

Making the approximation that Iph ≈ Isc where Isc is short-circuit current, (5) becomes:

I = Isc − Irs

[
e
(

V+RsI
VT

)
− 1
]

, (7)

where:
VT =

kTA
q

, (8)

At open circuit: I = 0 and V = Voc, with Voc is open-circuit voltage; Using (7), we can write:

Irs =
Isc

e
(

Voc
VT

)
− 1

, (9)

Using (7) and (9), the output voltage equation of the cell will be:

V = VT Ln
[(

1− I
Isc

)(
e(

Voc
VT

) − 1
)
+ 1
]
− RsI, (10)

Finally, the power equation can be given with (4) and (10):

P =

(
VT Ln

[(
1− I

Isc

)(
e(

Voc
VT

) − 1
)
+ 1
]
− RsI

)
·I, (11)

Using this equation, power (fitness function) is calculated for each individual and this value will
be used in genetic operations to create a new population (generation) and this one will be inserted in
the parent population according to their fitness function.
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3.3. Genetic Operations

Genetic operations are the base of GAs; they do not exclude probability theories, but they give
very interesting results. These operations are:

1. Selection: Select, with a rate Tsel (%), a part of the population corresponding to the optimum
fitness; in nature, only the individuals more adapted to the environment will survive. The roulette
wheel selection method is used.

2. Crossover: After selection, natural reproduction is performed by crossing pairs of individuals.
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4. Insertion: The new population will be integrated to the old one to replace individuals with the
minimum fitness function, so a new generation contains the same number of individuals.

3.4. Program Termination

The program creates new optimal individuals. It ends after a set number of iterations, so we
obtain a constant execution time. Many tests were performed to choose an iteration number that
balances optimal results and processing time.

4. Test of the Algorithm

The algorithm is implemented as an embedded function on Matlab/Simulink® using parameters
of the “Conergy PowerPlus 214P” polycrystalline photovoltaic solar panel module. The inputs of
the algorithm are Voc and Isc (Figure 5), so there is no need to use temperature and insolation
sensors. Instead, two pilot cells are used. Temperature and insolation affect Voc and Isc, respectively.
By measuring these parameters, the algorithm tracks the MPP even with rapid variation of
climatic conditions.
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The algorithm gives the real MPP. We can see in Figure 6a the evolution of power with generations;
the MPP (217.1 W) is given after 10 generations. This point is shown on Figure 6b and it is the real MPP.

The algorithm is tested by changing the matrix dimensions (Number of individuals Nind and bits
number S), with Selection rate: Tsel = 0.8; Crossover rate: Trcm = 0.8; Mutation Probability: Pm = 0.01.Energies 2018, 11, x FOR PEER REVIEW  7 of 17 

 

  
(a) (b) 

Figure 6. The MPP with GAs: (a) MPP evolution with generations; (b) The position of MPP on the  

P–V curve. 

4.1. Changing Number of Individuals 

Figure 7a,b shows fitness function evolution for each generation using 30 individuals and 10 

individuals, respectively. With a population of 30 individuals, the MPP (217.1 W) is achieved by the 

25th generation, while it appears in the 33rd generation when using 10 individuals. 

  
(a) (b) 

Figure 7. Maximum fitness evolution using: (a) 30 individuals; (b) 10 individuals. 

4.2. Changing Bits Number (Accuracy) 

Figure 8a,b shows fitness function evolution for each generation using 8 bits and 32 bits, 

respectively. With a larger bits number, we get greater accuracy but slower convergence. However, 

the variation of power obtained with a small bits number is more important. 

  
(a) (b) 

Figure 8. Maximum fitness evolution using: (a) 8 bits; (b) 32 bits. 

Figure 6. The MPP with GAs: (a) MPP evolution with generations; (b) The position of MPP on the
P–V curve.

4.1. Changing Number of Individuals

Figure 7a,b shows fitness function evolution for each generation using 30 individuals and
10 individuals, respectively. With a population of 30 individuals, the MPP (217.1 W) is achieved
by the 25th generation, while it appears in the 33rd generation when using 10 individuals.
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4.2. Changing Bits Number (Accuracy)

Figure 8a,b shows fitness function evolution for each generation using 8 bits and 32 bits,
respectively. With a larger bits number, we get greater accuracy but slower convergence. However,
the variation of power obtained with a small bits number is more important.
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5. Simulation Tests

To test the algorithm under climatic variation, the Simulink block of GAs-based MPPT is inserted
in the PV system (Figure 9).
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Figure 9. PV system with climatic variation.

An irradiation model is applied (Figure 10a) to the PV generator. Figure 10b shows the PV power
evolution using GAs-based MPPT, one can observe the rapid response of the algorithm to the variation
in insolation.
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Figure 10. Evolution of power with time under insolation model: (a) Insolation; (b) PV power.

Figure 11 shows PV output power evolution using GAs (red curve) and PO (green curve).
Zooming in on the graph exposes the difference between the two methods (Figure 12).
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Figure 11. Evolution of power with time under insolation model (GAs and PO).

The Figure 12a illustrates the response time of the two controllers. One can notice that the
GAs-based MPPT ensures better rapidity than the PO technique: 1.010 s with the proposed method
compared to 1.025 s with PO. The observable power oscillations (Figure 12b) are much greater with
the PO method. Oscillations are about 3% of the power with PO and less than 0.1% with the proposed
algorithm, so less power is lost and more stability is guaranteed.
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Figure 12. GAs-based MPPT and PO controller comparison: (a) response time; (b) stability.

Figure 13 shows PV output power evolution with time and variable insolation by using GAs-based
MPPT (red curve) and IC controller (blue curve) with duty increment ∆D = 0.02. The two methods
track the MPP but the rapidity of the proposed method is clearly better than the IC method (Figure 14a).
Also, the power oscillation around the MPP is minimized (Figure 14b).

If the ∆D value is increased, tracking will be faster but the oscillations will be more sizeable.
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Figure 13. Evolution of power with time under insolation model (GAs and IC).
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Figure 14. GAs-based MPPT and IC controller comparison: (a) response time; (b) stability.

6. Experimental Tests

Experimental work was performed in the LIAS laboratory (Laboratoire d’Informatique
et d’Automatique pour les Systèmes) of Poitiers University, France (Figure 15a). GAs-based, PO,
and IC MPPT algorithms are implemented on a real-time interface (dSPACE1005) [21] which is inserted
in a real PV system with 3 panels (Figure 15b).
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Figure 15. The experimental PV system: (a) The test bench; (b) Architecture.

Differential probes (PR30) are used to measure the PV voltage and Voc (bandwidth: 20 MHz,
accuracy: ±2%, maximum voltage: 1 KVDC, input impedance: 4 MΩ//2.5 pF), and current clamps to
measure the PV current and Isc (bandwidth > 100 kHz, current range: 1–30 A, accuracy: ±1%).

All data and results (Ipv, Vpv, PV power, duty cycle . . . ) are collected in real-time from
dSPACE1005 using the ControlDesk® package. The step of measurements is 5× 10−5 s so we get
continuous experimental curves.

6.1. Comparing GAs and IC

Experimental duty cycle evolution with the proposed algorithm and IC algorithm is shown on
Figure 16, with duty increment ∆D = 0.01 (Figure 16a) and ∆D = 0.02 (Figure 16b) of the IC algorithm.

It is clear that the duty cycle is more stable with the proposed algorithm. With the IC algorithm
the duty cycle oscillates between 0.29 and 0.34 with ∆D = 0.01, and between 0.27 and 0.37 with
∆D = 0.02, which causes oscillation of power while with the proposed method the duty cycle is
practically constant. One can say that with GAs, the duty cycle is constant and the PV output power is
stable and thus the problem of power oscillation is solved.
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Oscillation of duty in the IC method is less important with ∆D = 0.01 than with ∆D = 0.02 but
this will decrease the response time (see next section). Kivimäki et al. [22,23] discussed perturbation
frequency (limited by the combined energy conversion system settling time) and perturbation step
size (must be high enough to differentiate system response from that caused by irradiation variation).
With the proposed algorithm, the problem of limitation in step size is not present because the MPP is
not tracked point by point (as it is with the IC and PO methods).
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Figure 16. Experimental evolution of the duty cycle with GAs and IC: (a) ∆D = 0.01; (b) ∆D = 0.02.

The stability of the duty cycle results in stability of the PV current (Figure 17) and PV power
(Figure 18), so we get a PV system more stable with the proposed algorithm, about 1.1% and 3.3% of
power is saved, respectively, with ∆D = 0.01 and ∆D = 0.02.
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6.2. Comparing GAs and PO

Figure 19 shows the experimental evolution of the duty cycle with both GAs-based MPPT and
the PO algorithm, with duty increment ∆D = 0.01 (Figure 19a) and ∆D = 0.02 (Figure 19b) of the
PO algorithm. Even if the climatic conditions are stable (conditions of experimental tests) the duty
oscillates, while with the proposed controller the duty cycle is stable. This stability can also be seen in
the PV current (Figure 20).
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The evolution of the output PV power with the two methods is shown in Figure 21. The goal of
obtaining a stable power is guaranteed with the proposed algorithm and about 1.3% and 3.2% power
is saved, respectively, with ∆D = 0.01 and ∆D = 0.02.
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The experimental results confirm the simulated results and prove the stability of GAs-based MPPT
compared to the conventional methods. One can see clearly less variation of power with the proposed
algorithm, and therefore better efficiency. This is due to a stable reference (optimal current), whereas
oscillations result from the variation in the duty cycle when using the PO and IC methods even under
constant climatic conditions. We can further reduce ∆D but the tracking of MPP becomes slow.

7. Experimental Tests with PV Emulator

A PV emulator realized by Kadri et al. [24,25] in the LIAS laboratory (Figure 22b) allowed us to
define an irradiance profile changing (Figure 22a). It is based on a programmable DC power supply
GEN300-11 (voltage range: 0–300 V, current range: 0–11 A, maximum output power: 3300 W) so it can
replace the three PV panels used.

The PV emulator is inserted in the PV system instead of the PV panels, so we can test the tracking
of the MPP by the three methods with variable insolation.
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7.1. Comparing GAs and IC

With the insolation profile defined previously, the next figures show the evolution duty cycle
(Figure 23) and PV power (Figure 24) with both GAs-based MPPT and the IC method.

Energies 2018, 11, x FOR PEER REVIEW  14 of 17 

 

  
(a) (b) 

Figure 23. Evolution of the duty cycle with GAs and IC: (a) ΔD = 0.01; (b) ΔD = 0.02. 

The power evolution with the proposed method (red curve) is clearly more stable and faster 

than with the IC method (blue curve). 

  
(a) (b) 

Figure 24. Evolution of PV power with GAs and IC: (a) ΔD = 0.01; (b) ΔD = 0.02. 

Less oscillations of the duty cycle and power are obtained with ΔD = 0.01 but the MPP is 

tracked faster with  ΔD = 0.02 . For example, the maximum of insolation is given at  t = 5.0 s   

(Figure 22a). With the proposed algorithm the MPP is tracked at t = 5.4 s, while with IC method the 

MPP is obtained at t = 8.7 s and t = 7.3 s, with ΔD = 0.01 and ΔD = 0.02, respectively.  

Therefore, the GAs method rapidly tracks the MPP (red curve) and solves the problem of power 

oscillation around it. 

7.2. Comparing GAs and PO 

Under the same conditions, tests are made for the PO method and the results of duty cycle and 

power evolution of both the GAs-based MPPT and PO methods are shown in the following figures 

(Figures 25 and 26, respectively). Here too, the stability and rapidity of the proposed method is 

proven. 

The problem of choosing a good duty cycle increment is not exposed with the proposed 

algorithm and the experimental results prove a nice stability of the controller with good rapidity.  

Figure 23. Evolution of the duty cycle with GAs and IC: (a) ∆D = 0.01; (b) ∆D = 0.02.

The power evolution with the proposed method (red curve) is clearly more stable and faster than
with the IC method (blue curve).
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Less oscillations of the duty cycle and power are obtained with ∆D = 0.01 but the MPP is tracked
faster with ∆D = 0.02. For example, the maximum of insolation is given at t = 5.0 s (Figure 22a).
With the proposed algorithm the MPP is tracked at t = 5.4 s, while with IC method the MPP is obtained
at t = 8.7 s and t = 7.3 s, with ∆D = 0.01 and ∆D = 0.02, respectively.

Therefore, the GAs method rapidly tracks the MPP (red curve) and solves the problem of power
oscillation around it.

7.2. Comparing GAs and PO

Under the same conditions, tests are made for the PO method and the results of duty cycle and
power evolution of both the GAs-based MPPT and PO methods are shown in the following figures
(Figures 25 and 26, respectively). Here too, the stability and rapidity of the proposed method is proven.

The problem of choosing a good duty cycle increment is not exposed with the proposed algorithm
and the experimental results prove a nice stability of the controller with good rapidity.Energies 2018, 11, x FOR PEER REVIEW  15 of 17 
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8. Verification of the Linear Method of MPPT

In order to verify Equation (2), the proposed algorithm is used to determine the optimal current
Imp for different values of Isc. The results are shown in Table 1. The current factor can be assumed to
be constant Mc ≈ 0.94. This linearity is shown in Figure 27a.

Table 1. Optimal current values by varying short-circuit current.

Isc (A) 1 2 3 4 5 6 7 8 9 10
Imp (A) 0.944 1.875 2.812 3.781 4.687 5.650 6.590 7.500 8.442 9.365

Mc =
Imp
Isc

0.944 0.937 0.937 0.945 0.937 0.942 0.941 0.937 0.938 0.936

By the same way, Table 2 shows the optimal voltage Vmp for different values of Voc. The voltage
factor Mv is not totally constant and the real Vmp–Voc curve is not perfectly linear (Figure 27b).

Table 2. Optimal voltage values by varying open-circuit voltage.

Voc (A) 6 12 18 24 30 36 42 48
Vmp (A) 3.30 7.51 12.35 17.70 22.79 28.75 34.44 40.14

Mv =
Vmp
Voc

0.55 0.63 0.69 0.74 0.76 0.80 0.82 0.84

The results prove that the linear method can be used to track the MPP. Hence, the proposed
algorithm can be used to rapidly calculate the current and voltage factors for any PV panel.Energies 2018, 11, x FOR PEER REVIEW  16 of 17 
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9. Conclusions

In this paper, a novel, simple and efficient GAs-based MPPT method is proposed.
By using the same parameters, the concordance of simulation and experimental results prove the

advantage of the proposed MPPT method to ensure rapidity and stability of the output PV power.
This stability is provided by maximizing a function (fitness function), whereas the conventional
methods are searching for a minimum. In addition, GAs use a global search for the optimum (useful at
partial shading).

The problem of PV output power oscillation around the MPP is solved. The experimental results
with the IC method, using a very small step of duty cycle (∆D = 0.01), show duty cycle oscillation
between 0.31 and 0.35 which causes oscillation of power, while the duty cycle is practically constant.

The linear method is validated by our algorithm. Even better, it can be used to calculate current
and voltage factors for use with the linear MPPT method.

For perspective, the GAs-based MPPT can be used to track the MPP at partial shading because the
search for the optimum is performed using a population of individuals, rather than on a point-by-point
basis, so it searches for the global optimum.
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