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Abstract: The introduction of non-conventional energy sources (NCES) to industrial processes is
a viable alternative to reducing the energy consumed from the grid. However, a robust coordination
of the local energy resources with the power imported from the distribution grid is still an open
issue, especially in countries that do not allow selling energy surpluses to the main grid. In this
paper, we propose a stochastic-programming-based energy management system (EMS) focused on
self-consumption that provides robustness to both sudden NCES or load variations, while preventing
power injection to the main grid. The approach is based on a finite number of scenarios that combines
a deterministic structure based on spectral analysis and a stochastic model that represents variability.
The parameters to generate these scenarios are updated when new information arrives. We tested
the proposed approach with data from a copper extraction mining process. It was compared to
a traditional EMS with perfect prediction, i.e., a best case scenario. Test results show that the
proposed EMS is comparable to the EMS with perfect prediction in terms of energy imported from
the grid (slightly higher), but with less power changes in the distribution side and enhanced dynamic
response to transients of wind power and load. This improvement is achieved with a non-significant
computational time overload.

Keywords: non-conventional energy sources; energy management system; stochastic programming;
industrial processes

1. Introduction

In recent years, the integration of non-conventional energy sources (NCES) into the distribution
networks has became an interesting area of research in power systems. The design of energy management
systems (EMS) is one of the most widely studied topics within this area due to its crucial contribution
in the attempt of keeping the load-generation balance in the network. An EMS is a control system that
aims to reduce as much as possible the operating costs of a network with both multiple energy sources
and high penetration of NCES (which is the case of micro-grids), while maintaining its reliable operation.
This is performed through the dispatch and commitment of those generation units that can be scheduled
throughout the day (e.g., energy storage systems and diesel generators). Since the objective is to reduce the
operating costs, the energy management problem is often formulated as an minimization problem. Given
the predicted contributions of the NCES, the estimated load, and the reserve requirements in the network,
the solution of the energy management problem assigns to each generation unit (that can be scheduled)
the amount of power that they have to provide [1]. Such scheduling of the generation units defines the
interaction among local demand, local energy sources, and the distribution network, by determining the
amount of energy that must be imported/exported from the distribution system, for instance depending
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on the non-conventional energy availability. Therefore, an EMS has many possible uses in distribution
grids, for example in coordinating among local generation resources so that the local demand is supplied
with an optimal use of the available infrastructure [2–4]. They have also been investigated as a potential
alternative for reducing the loses of distribution systems through the integration of NCES in different
contexts such as homes, buildings, and energy hubs [5–7].

However, the performance of an EMS highly depends on how the uncertainty of the NCES,
the energy prices, and the load is addressed in the formulation of the corresponding optimization
problem. An alternative for addressing the uncertainty of those variables in the formulation of the
energy management problem is the use of uncertainty models. The idea behind this alternative is
to integrate the differences that could appear between the model used in the optimization-based
EMS and the real system. Then, the solution obtained will be robust against any realization of the
uncertain variables that can be represented by the model used in the formulation. In the specialized
literature, different methods have been proposed to model the uncertainty in the energy management
problem [8,9]. Depending on the uncertainty modeling, these approaches were classified as stochastic
or robust [8,10–12]. In the former, probability density functions (p.d.f) were used to generate possible
realizations of the uncertain variables. Based on these realizations, a solution of the energy management
problem that satisfies all constraints in all considered realizations is obtained [13]. In [14], for instance,
a specific application of the stochastic EMS was presented. In this approach, a p.d.f was obtained
for each uncertain variable and a set of realizations for each variable was conformed. From this
set, the EMS decided the amount of power of each generation unit in the network. By contrast,
in the robust approach it is assumed that the uncertain variables evolve within a defined set. Often,
ellipsoids and polytopes are used to approximate such a set. The obtained solution of the energy
management problem satisfies all constraints for any realization of the uncertain variables within the
defined uncertainty set [13]. In [15], an application of the robust EMS was presented. In this particular
application, the uncertainty sets evolved with time. That is, at each sample time the parameters of the
uncertainty sets were computed, and then the energy management problem was solved. This increases
the complexity of the EMS but might reduce its conservativeness. Other approaches of stochastic
and robust EMS were proposed in [9,16,17]. In these cases, the EMS was applied in transmission
networks as part of a multi-stage approach for operation with different degrees of uncertainty (e.g.,
in the price-elastic demand curve).

Although the use of robust- and stochastic-programming-based EMS at transmission and
distribution levels demonstrated their effectiveness on allowing a massive integration of NCES in
the operation of power grids at different scales (e.g., from micro-grids to bulk power grids, and from
distribution to transmission networks), little attention has been paid to their use in promoting the
self-consumption. Focusing on self-consumption is important because there are several countries
worldwide that forbid that small electric energy producers inject their energy surpluses into the
distribution grid. Some examples of these countries are Colombia, Norway, Paraguay, Saudi Arabia
and another 37 countries according to [18]. Furthermore, countries (like Chile) in which small electric
energy producers are allowed to inject their energy surpluses into the distribution network are
experiencing congestion and voltage issues at the distribution level. An alternative to overcome these
issues (without reducing the penetration rate of NCES) is focusing on promoting self-consumption.

The present paper presents a stochastic-programming-based EMS for applications with
self-consumption. To guarantee that the injection of energy surpluses is minimized, additional
constraints are included as well as terms to avoid as much as possible the effects of energy curtailment
of NCES. Moreover, in the proposed EMS we use a limited set of synthetically generated prediction
scenarios. These scenarios are generated using a model obtained from an analysis of the historical data
of the uncertain variables. This model combines a deterministic structure obtained from a spectral
analysis and a random structure that allows generating different prediction scenarios of the uncertain
variables, such as non-conventional energy resources and local power demand. The number of
scenarios used at each execution of the EMS is computed based on the mean and variance of the



Energies 2018, 11, 441 3 of 15

empirical probability density function (e.p.d.f) of the uncertain variables. Since the e.p.d.f of the
uncertain variables is used to generate the scenarios, its mean and variance are updated with the new
measured values of the corresponding variable. Thus, an adaptation structure is obtained in which
more scenarios are generated when uncertain variables exhibit more variability. Furthermore, since the
industrial sector is the most pollutant end-user sector [19], a special emphasis has been done in this
kind of applications. Indeed, the IEEE (Institute of Electrical and electronics Engineers) nine-busbars
system was adapted to simulate an equivalent grid of a typical copper mine with co-generation.
The obtained results show that the proposed EMS allows for significantly reducing the injection of
energy surpluses in comparison with a conventional EMS strategy, while maximizing the use of NCES
to satisfy the local demand and minimize the effects of energy curtailment of the NCES. The remainder
of this paper is organized as follows: Section 2 presents the formulation of the proposed EMS; Section 3
shows the case study and the simulation results; and Section 4 presents the concluding remarks.

2. Proposed Stochastic Energy Management System

On the current investigation, we formulate a novel stochastic-programing-based EMS for NCES
applications oriented to promote self-consumption. In particular, the industrial case is analyzed
since the demand is almost predictable based on the scheduling of the machines involved in the
process (the uncertainty in the industrial demand is mainly due to variation in the quality of the
raw materials). On industrial processes, the coincidence between energy availability and demand
is higher than residential load centers; then, the effect of self-consumption policies is higher in
industries than in homes, and the possibility of having co-generation allows avoiding the necessity of
a battery storage system that increases the investment costs to around 20% [20] of the total cost of the
NCES application. In addition, the massive inclusion of batteries in NCES application implies some
environmental consequences. For instance, the world scarcity of lithium is an issue, as it is currently
the most commonly used raw material for battery manufacturing. Indeed, it has been estimated that if
developing countries use lithium at the same rate as developed countries, the amounts required of this
mineral could be up to nine times as much as we currently globally use. On the other hand, production
of lithium batteries has the most significant contribution to greenhouse gases, CO2, demanded energy
(24.4 KWh per Kg) and metal depletion compared to other battery manufacturing materials such as lead
acid and nickel cadmium [21]. Nonetheless, the proposed EMS could be easily extended to consider
applications that combine both energy storage systems and NCES such as residential applications to
promote self-consumption. The mathematical framework presented in [22] was used to formulate
the proposed EMS. Our approach additionally considers a rolling horizon that requires updating the
prediction of the uncertain variables at every sample-time. Based on this, a prediction model of each
uncertain variable was derived based on historical datasets. Furthermore, these datasets were also
used to determine the probability of occurrence of each realization of the uncertain models generated
with the prediction models. This mathematical framework was selected because it is possible to derive
a tractable worst-case scenario formulation for the resulting optimization problem.

In addition to the uncertainty representation, one of the main concerns regarding current EMS
approaches is the use of single-node representations of the distribution system. With this representation,
it cannot be guaranteed that the scheduled power could be transmitted to the load centers in a secure
way. However, since the EMS proposed in this paper is focused on industrial applications of
NCES, it can be assumed that the internal energy system is designed in accordance to the demand
requirements, that the losses are not significant since the electric system is circumscribed to a relatively
small area, and that the distribution system behaves as a source/sink of energy. Then, the single-node
representation of the distribution system is adequate for this kind of application.

2.1. EMS Formulation

For a given industrial process, let Np denote the prediction horizon. At time step k, let Prj(k)
denote the real power generated by the j-th NCES (j = 1, . . . , N); Pdo(k) denotes the real power
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demanded by the o-th load center/process (o = 1, . . . , O); Pgi(k) and Cgi respectively denote the
real power generated by the i-th co-generation source and its corresponding generation cost (i =

1, . . . , M); Pns(k) and Cns respectively denote the non-supplied energy and its corresponding cost;
Plo(k) and Clo respectively denote the lost energy and its corresponding cost; and Pdist(k) and Cdist(k)
respectively denote the real power imported from the distribution grid and its corresponding cost.
Then, the optimization problem associated with the proposed EMS is given by:

min
Pdist(k),Pgi(k),
Pns(k),Plo(k)

Np

∑
k=1

[
Cdist(k)Pdist(k) +

M

∑
i

CgiPgi(k) + CnsPns(k) + CloPlo(k)

]

s.t:

Pdist(k) +
M

∑
i=1

Pgi(k) +
N

∑
j=1

Prj(k) + Pns(k) =
O

∑
o=1

Pdo(k) + Plo(k), k = 1, . . . , Np

Pmin
gi ≤ Pgi(k) ≤ Pmax

gi , i = 1, . . . , M; k = 1, . . . , Np

Pdist(k) ≥ 0, Pns(k) ≥ 0, Plo(k) ≥ 0, k = 1, . . . , Np

(1)

with Pmin
gi and Pmax

gi the minimum and maximum real power generation capacity of co-generation
source i, respectively. Note that in Equation (1) both Pns(k) and Plo(k) are used to relax the power
balance constraint; that the generation costs of co-generation units are assumed constant but their
variation with time (e.g., due to the availability of primary energy sources) could be easily included in
the formulation; that the additional constraint Pdist(k) ≥ 0 has been added to prevent injecting power
to the distribution grid and therefore to promote the self-consumption; and that the uncertainties
come from the price of the energy imported form the distribution network, the power generated by
the NCES, and the demand. In the practice, these variables highly determine the scheduling of the
generation units, but they are highly uncertain and therefore the uncertainty has to be accounted for in
the energy management problem. In this paper, we derive a stochastic-programming formulation for
the energy management problem Equation (1) following the procedure explained in [22].

2.2. Stochastic Robust Formulation

Let us assume that the uncertain variables are independent to each other, i.e., Cdist(k), Prj(k),
and Pdo(k) are independent stochastic processes. Then, a model for each variable could be derived so
that a set of synthetic series is generated. At time step k, let S(k) denote the number of series generated
for each uncertain variable; let Γdist(k) : = {C̃1

dist(k), . . . , C̃S(k)
dist (k)}, Γrj(k) : = {P̃1

rj(k), . . . , P̃S(k)
rj (k)}

(j = 1, . . . , N), and Γdo(k) : = {P̃1
do(k), . . . , P̃S(k)

do (k)} (o = 1, . . . , O) denote the sets of synthetic
series for the energy price, the power generated by each NCES, and the power demanded by each
load center, respectively, with C̃q

dist(k), P̃q
rj(k), and P̃q

do(k) series of longitude Np (q = 1, . . . , S(k));

and let Ξdist(k) : = {ξ1
dist(k), . . . , ξ

S(k)
dist (k)}, Ξrj(k) : = {ξ1

rj(k), . . . , ξ
S(k)
rj (k)}, and Ξdo(k) : =

{ξ1
do(k), . . . , ξ

S(k)
do (k)}, denote the set of probabilities of occurrence of each synthetic series for the

energy price, the power generated by each NCES, and the power demanded by each load center,
respectively, with ∑

S(k)
q=1 ξ

q
dist(k) = 1, ∑

S(k)
q=1 ξ

q
rj(k) = 1 (j = 1, . . . , N), and ∑

S(k)
q=1 ξ

q
do(k) = 1 (o = 1, . . . , O).

Then, a scenario q is defined as the tuple ϕq(k) : = (C̃q
dist(k), P̃q

r1(k), . . . , P̃q
rN(k), P̃q

d1(k), . . . , P̃q
dO(k)),

with probability of occurrence µq(k) = ξ
q
dist(k)(Π

N
j=1ξ

q
rj(k))(Π

O
o=1ξ

q
do(k)).

For illustrative purposes, consider a NCES application with two NCES, two load centers,
and two scenarios. According to the previous definitions, each scenario is given by
ϕ1(k) = (C̃1

dist(k), P̃1
r1(k), P̃1

r2(k), P̃1
d1(k), P̃1

d2(k)) and ϕ2(k) = (C̃2
dist(k), P̃2

r1(k), P̃2
r2(k), P̃2

d1(k), P̃2
d2(k)),

with probabilities of occurrence µ1(k) = ξ1
dist(k)ξ

1
r1(k)ξ

1
r2(k)ξ

1
d1(k)ξ

1
d2(k) and µ2(k) =

ξ2
dist(k)ξ

2
r1(k)ξ

2
r2(k)ξ

2
d1(k)ξ

2
d2(k). In this context, the minimization problem Equation (1) becomes
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an expected value problem, in which the objective is to find the values of Pdist(k), Pgi(k), Pns(k),
and Plo(k) that minimize the expected operating cost of the industrial application. Mathematically,
this minimization problem is written as follows:

min
Pdist(k),Pgi(k),
Pns(k),Plo(k)

S(k)

∑
q=1

µq(k)

{ Np

∑
k=1

[
Cq

dist(k)Pdist(k) +
M

∑
i

CgiPgi(k) + CnsPns(k) + CloPlo(k)

]}

s.t:

Pdist(k) +
M

∑
i=1

Pgi(k) +
N

∑
j=1

Pq
rj(k) + Pns(k) =

O

∑
o=1

Pq
do(k) + Plo(k), k = 1, . . . , Np; q = 1, . . . , S(k)

Pmin
gi ≤ Pgi(k) ≤ Pmax

gi , i = 1, . . . , M, k = 1, . . . , Np

Pdist(k) ≥ 0, Pns(k) ≥ 0, Plo(k) ≥ 0, k = 1, . . . , Np

(2)

Minimization problem of Equation (2) is known as the stochastic robust approximation
of Equation (1), and is a convex optimization problem [22]. Thus, it has a unique solution
and gradient-based algorithms can be used to compute the solution in an efficient way.
The input data to numerically compute the solution of Equation (2) are the scenarios ϕq(k) : =

(C̃q
dist(k), P̃q

r1(k), . . . , P̃q
rN(k), P̃q

d1(k), . . . , P̃q
dO(k)), and their probabilities of occurrence µq(k) =

ξ
q
dist(k)(Π

N
j=1ξ

q
rj(k))(Π

O
o=1ξ

q
do(k)). Next, the proposed procedure to obtain the scenarios and their

probability of occurrence from the current measurements and the historical data is described.

2.3. Generation of Scenarios

The solution of the minimization problem of Equation (2) requires determining the sets of synthetic
prediction series, or in other words, the sets of prediction scenarios for the energy price: Γdist(k),
the power generated by each NCES: Γrj(k), and the power demanded by each load center: Γdo(k).
These synthetic prediction series can be obtained with any approach reported in the literature (see for
instance the approaches reported in [23,24]), being the auto-regressive (ARMA) models the most
widely used. In this paper, we propose an alternative model based on both spectral decomposition
and ARMA models to generate the prediction scenarios. In our approach, the historical data of energy
price, power generation of the NCES, and power demand of the load centers are represented as a sum
of sinusoidal functions with different frequencies. The amplitude and frequency of each function are
tuned so that the resulting model fits with the daily and hourly trends in the series. Then, the remaining
variations are represented using an auto-regressive model. As a result, a prediction model of the form

x(k + 1) = f (x(k)) + ARMA(x(k)) + ε(k) (3)

is obtained, where x(k) must be replaced by Γdist(k), Γrj(k), and Γdo(k) individually; f (·) is the spectral
decomposition of the series, ARMA(·) is the auto-regressive part of the model, and ε(k) is a white
noise signal that allows generating different synthetic series for the variable x(k). This brings more
flexibility to the model in comparison with pure auto-regressive models, since only the residuals
of the spectral decomposition have to fulfill the statistical conditions for using ARMA-like models,
without being as complex as artificial-intelligence based approaches.

To determine the number of scenarios S(k) to be generated, the e.p.d.f of the uncertain variables
is used. Very often, EMS are designed with prediction horizons Np covering one-day ahead. Thus,
the time series are arranged in one-day slots given the historical data sets of the energy price, the power
generated by each NCES, and the power demanded by each load center. From such an arrangement,
an e.p.d.f is obtained (the number of e.p.d.f functions will depend on the resolution of the data sets,
e.g., for one hour resolution series, 24 e.p.d.f functions are obtained for each uncertain variable). Then,
with the mean and variance of each e.p.d.f computed, new synthetic prediction series are generated
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for each uncertain variable until both their mean and variance are equal to the values taken from each
e.p.d.f of the historical series. The value of S(k) is determined by the largest number of synthetic
series to be generated so that the mean and variance criteria are accomplished. Note that fulfilling this
criteria depends on the variability of each data set, i.e., less synthetic series are required to represent
variables with less variability. Hence, it is expected that the uncertainty of some variables is better
represented than others.

To avoid the generation of an excessive number of synthetic series, a 5% error limit was used as
stopping criteria. That is, once the error between the mean and variance of the synthetic prediction
series, and the mean and variance of the e.p.d.f from the historical data is less than 5%, the generation
of synthetic series stops. At this point, the number of series generated for each uncertain variable
are compared, and additional series are generated for those variables with less variability. Once all
synthetic series are generated, the probability of each one of them is computed, as well as the sets
Ξdist(k), Ξrj(k), and Ξdo(k). From these sets and Γdist(k), Γrj(k), and Γdo(k) the scenarios ϕq(k) and
their corresponding probability of occurrence µq(k) are generated. The statistics of the uncertain
variables might change as time evolves. Therefore, to counteract possible mismatches between the
scenarios and the real data, at each sample time k the measurements are included into the historical
data of each variable, and the oldest values are deleted. With the new historical data, the procedure to
compute Ξdist(k), Ξrj(k), Ξdo(k), Γdist(k), Γrj(k), and Γdo(k) is carried out again. In this way, a kind of
adaptation rule is obtained without increasing the memory and computational requirements of the
proposed stochastic-programming-based EMS.

The proposed procedure is presented on the following algorithm:

Algorithm 1: Procedure to generate scenarios.

Initialize the algorithm:

1. Load the whole available historic data of Γdist(k), Γrj(k), and Γdo(k), and generate an e.p.d.f for
each of them.

2. Generate the spectral decomposition f (x(k)) and the ARMA models for Γdist(k), Γrj(k),
and Γdo(k).
Start running the algorithm:

3. update k
4. Load the last historical data sample of Γdist(k), Γrj(k), and Γdo(k), erase the oldest sample of the

historical data (to guarantee the moving horizon), and update their e.p.d.f.
5. Update the error terms ε(k) = {εdist(k), εrj(k), εdo(k)}, defined as Gaussian distributions with

zero mean, and variance given by the respective e.p.d.f updated on the previous step.
6. Start generating synthetic prediction series of length Np for Γdist(k), Γrj(k), and Γdo(k) using

Equation (3), until their mean and variance show less than 5% error compared to the e.p.d.f
from the historical data.

7. Given that Γdist(k), Γrj(k), and Γdo(k) may have a different number of synthetic series, create
more synthetic series to those with less series until the three variables achieve the same
number: S(k).

8. Compute the probability of each series, and create the sets: Ξdist(k), Ξrj(k), and Ξdo(k).
9. Create the scenarios ϕq(k) and their corresponding probability of occurrence µq(k).

10. Return to 3.

In comparison with similar approaches already reported in the literature [8,10–12], the proposed
EMS presents an alternative to generating scenarios for a stochastic programming approach,
and focuses on solving the problem of determining the probability of occurrence of each scenario.
The main drawbacks of stochastic programming arises from the use of probability density functions
(p.d.f) of variables whose p.d.f is not completely known. Often, these issues are covered by assuming
a uniform or a normal distribution [15]. Nevertheless, since the results obtained with stochastic
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programming are highly dependent on the selection of the p.d.f, using uniform or normal distributions
might lead to loss of robustness in the system performance (in this case, the industrial application with
NCES). Such loss of robustness in industrial processes could lead to undesired operating conditions.
Furthermore, since the solution obtained from stochastic programming is robust only against those
scenarios considered in the optimization, their definition is highly important to obtaining adequate
results. In this regard, the proposed methodology allows guaranteeing the generation of prediction
scenarios such that the uncertainties are represented in a suitable way. In the next section, the proposed
EMS is applied to a copper mining process.

3. Case Study and Simulation Results

Previous results indicate that stochastic and robust EMS improve the performance of micro-grids
(as a whole) [14,15,25,26]. According to [26], a larger assignment of power reserves allows mitigating
the effects on the variability of NCES, which improves the performance of micro-grids but increases
their operating costs.

In our approach, uncertain variables were modeled through a set of scenarios, each one of
them with a probability of occurrence. A procedure based on spectral analysis, stochastic models,
and the e.p.d.f of each uncertain variable was proposed to (i) determine, at each sample time,
the minimum number of scenarios required to adequately represent the uncertain variables in
Equation (2); (ii) generate each scenario; and (iii) determine the probability of occurrence of each
scenario. It is worth noting that unlike the approaches presented in [14,15,25–27], the proposed EMS
is focused on applications for end-users that are not allowed to inject power at the distribution level,
which is the case of countries that we are focused on; and for applications that attempt to promote the
self-consumption rather than the distributed generation at the customer level.

For assessing the performance of the proposed EMS, the widely known benchmark system IEEE
9-busbars, with three generation units and three load centers was used as test-bench. The original
system was adapted to represent the connection of an industrial process to a main grid. Thus,
(i) an equivalent wind generator with same nominal power capacity and same voltage level) connected
to busbar 1 was included, (ii) the busbar 2 was assumed as the point of common coupling, i.e., the node
where the industrial process is connected to the distribution/sub-transmission grid; and (iii) the
generator connected to the busbar 3 represented the local co-generation machine. The selection of such
a power system benchmark for the simulations led to the possibility of representing both different
load centers and local generation resources distributed within the industrial power network and their
individual behavior. Then, the effects of coincidence and complementarity of different load centers
in the performance of the network as a whole can be evaluated. Note that in an industrial process,
the operation of the machines is scheduled according to the production plan and the corresponding
operating constraints. As a consequence, there exist load centers that are demanding power at the
same time, and load centers that alternate one to each other to demand electric power. Furthermore,
it is possible to evaluate how the voltage profile changes within the industrial network as the power
injection of the wind turbine increases.

For simulation purposes, a voltage source converter (VSC) was used to model the wind generator.
The sources were controlled by both the voltage and current control loops involved in the operation of
the converter. The switching of the power electronics devices was neglected since the time-scale of
this phenomenon is significantly faster than the time-scale of the EMS response. The power measured
(with a resolution of 1 min) in a wind generator located at the Atacama desert (north of Chile was
used as a reference signal for the controllers of the converter. Since the measured values did not
match with the power requirements of the simulation, it was scaled up to match the capacity generator.
Furthermore, the load centers connected to busbars 5, 6, and 8 were modeled as constant power
loads and implemented with real demand curves. The behavior (time evolution) of each load center
was determined by real data taken from three different processes in a copper mine in Chile (the
magnitude of the datasets was adapted to meet the conditions of the original benchmark system.
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The generation units were modeled considering the fifth degree model with both controllers, namely,
the automatic voltage regulator and the speed controller. The parameters used in those models and for
the transmission lines were taken from [28,29]. The simulations were implemented in Matlab/Simulink
and performed using a continuous time simulation with the following characteristics:

1. The numerical method to solve the differential equations was Runge-Kutta 4.
2. The fixed-step used to solve the differential equations was 50 µs.
3. The EMS was executed every 15 minutes (simulation time).
4. Rate transition blocks were included into the model to emulate delays in the communications

present in real applications.

Figure 1 presents the aggregated demand and the wind power signals considered in the
simulations (a base power of 100 MVA was used for normalization). The data used for simulation
was obtained by measuring the power consumed by a copper mine in Chile (power demand dataset),
and by measuring the power generated by a wind power plant (close to the place where power demand
data were obtained). The measurements were done asynchronously but with the same sample time,
so that in the simulations they could be used without time-scale issues. The simulation considered
one-day length operation of the industrial process. During this day, during the first 800 min the
power demanded by the load centers must be satisfied from the local co-generation resource and
the distribution/transmission grid. After that moment, the wind turbine started injecting power.
The amount of power produced by the wind turbine is able to satisfy the total demand of the process
from minute 900 until the end of the simulation. Thus, it is expected that the EMS reduces the power
taken from the distribution grid towards zero and uses the power injected by the co-generation resource
to compensate the variation of the power generated by the wind turbine.
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Figure 1. Power delivered by the wind turbine (red), and total power demand of the industrial process
(blue) used in the simulations. After 900 min, the non-conventional energy sources (NCES) provides
enough power to satisfy the demand.

Figure 2 displays the results obtained with the proposed EMS, and when implementing the
EMS of Equation (1) considering perfect predictions (an EMS with perfect predictions was selected
for comparison purposes because it represents the best performance that could be achieved when
using a rolling-horizon-based EMS). These results were obtained by artificially introducing a sudden
reduction (to zero) of the power produced by the wind turbine (Figure 2a), and a load impact consisting
on the sudden disconnection of load centers located at nodes 5 an 6 (Figure 2b). Both the reduction in
wind power production and the load impact had a duration of 30 min. In both cases, the modification
of the original datasets was performed after 1000 min of simulation. These modifications were
introduced to assess the robustness of the system with the proposed EMS and with the EMS with
perfect predictions of Equation (1). Indeed, the datasets used to derive the scenarios, their number,
and their probability of occurrence did not consider the values introduced artificially. In all cases the
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power imported from the grid was lower in the perfect predictions EMS, before the wind turbine
started to inject power to the grid. This result is consistent with the assumption of perfect predictions
for the EMS based on Equation (1). Actually, under this assumption, such an EMS schedules the
local co-generation unit at its maximum power, which allows reducing the power imported from the
distribution grid.
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Figure 2. Result obtained from the simulations with both the proposed Energy Management System
(solid blue line) and the EMS with perfect predictions of Equation (1) (dashed red line). (a) Power
imported from the grid (top) and locally generated (bottom) under a sudden disconnection of the wind
turbine at 1000 min; (b) Power imported from the grid (top) and locally generated (bottom) under a
load impact at 1000 min.

By contrast, since the proposed EMS has a set of scenarios in which wind power is expected
before minute 800, the scheduling of the local co-generation unit is a function of the generation costs.
Accordingly, the power demand until minute 800 is shared between the distribution grid and the
local co-generation unit. In addition, once the wind power production starts, the contribution of
the distribution grid decreases towards zero (as expected). However, in the case of the proposed
EMS, the contribution of the co-generation unit remains almost the same in comparison with the case
of the EMS with perfect predictions. This behavior is explained by the fact that the proposed EMS
provides several scenarios with less wind generation than that used in the simulations. For these
scenarios, the solution of the minimization problem of Equation (2) must also satisfy the power balance
constraint. Then, the reduction in the contribution of the local co-generation unit is a function of the
probability of occurrence of the set of scenarios with less wind generation than the simulated case.

Note that when the local co-generation unit provides power, in case of a sudden reduction of
wind power, less amounts of power are imported from the grid and larger surpluses of energy are
produced in case of load impacts (e.g., an abrupt reduction on the demand due to an unexpected stop
of a process in a production line). Such behavior is evidenced in the zoom-in squares on Figure 2a,b.
Another important contribution of the local co-generation unit with the proposed EMS is the reduced
effect of internal disturbances in the distribution grid (here internal disturbances are understood
as the disturbances within the industrial grid). From the simulations and despite the disturbances
analyzed (sudden reduction of the wind power production or load impact), the change in the power
imported from the grid was lower with the proposed EMS than with the EMS with perfect predictions.
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In the case of the wind power reduction, the maximum power change with the proposed EMS was
1.3 MW, whereas with the EMS with perfect predictions it was 10.7 MW. This is a striking difference
between both EMS formulations. Similar results were obtained for the load impact. In this case,
the maximum power changes were 6.7 MW and 25.4 MW for the proposed and the EMS with perfect
predictions, respectively.

The selection of the IEEE 9-nodes power system benchmark additionally allowed analyzing the
behavior of the voltage profile along the simulation. Voltage profile was analyzed because (at the
customer level) it is one of the most sensitive variables to the integration of NCES. Moreover, large levels
of integration of NCES at the customer level might cause reverse power flows at both over and under
voltages. Figure 3 presents the evolution of the voltage profile through the simulation (only the voltage
profile under a sudden disconnection of the wind turbine was considered, since similar results were
obtained in the case of a load impact). In this figure, the voltage profile with the proposed EMS has a
lower value than that of the EMS with perfect predictions. Such a result suggests that less reactive
power is flowing trough the lines, which can be traduced in a better use of the industrial network
infrastructure and in a reduction of energy costs due to reactive power consumption. Note that once
the wind turbine starts to inject power into the grid, the voltage at the point of common coupling raises,
as well as the voltage at the load centers. This is consistent with the results reported in the literature
about integration of NCES in weak networks such as distribution and industrial ones. However,
with the proposed EMS, the transient behavior generated by the injection of wind power is attenuated
faster than with the EMS with perfect predictions. Then, (as expected) the proposed EMS provides
more robustness to the system as a whole than the EMS with perfect predictions. Such robustness
is exhibited in the reduction of power changes in the distribution side, and in a fastest attenuation
of the transients produced by the variability of the wind power injections and other disturbances.
In fact, the transients associated with the sudden interruption of power supplied from the wind turbine
and its corresponding re-connection were better addressed by the system when the proposed EMS
was scheduling the local co-generation unit and the power to be imported from the distribution grid.
This result is shown in the zoom-in squares of Figure 3.

However, enhancing the robustness of the grid implies an increase in the operating costs, due to
a rising in the time of use of the local co-generation unit and the amount of power imported from
the grid. From Figure 1, such an increase is more evident during the first 800 min of simulation.
In this time-span, the amount of power imported from the distribution grid is slightly higher with the
proposed EMS than with the EMS with perfect predictions. The difference in power taken from the
grid is traduced in an increment in the cumulative operating costs of 15.2%, which is traduced in better
dynamic response and use of infrastructure, and in reduction of maximum power fluctuations in the
point of common coupling arising from disturbances in the industrial grid. Moreover, the performance
of a rolling-horizon-based EMS depends upon the quality of the predictions and hence on the accuracy
of the model. Thus, Figure 4 shows a function of the accuracy of the models used to represent the
uncertain variables. Indeed, if the model is not accurate enough, the difference between the operating
costs with the proposed EMS and the EMS based on the minimization problem of Equation (1) could
tend towards zero without the additional benefits provided by the robustness of our proposal.

Furthermore, the computational time required to carry out all the processes involved in the
proposed EMS could be an issue. The EMS with perfect predictions only requires the predictions of
the uncertain variables. However, for the proposed approach, the time involved in the scenario’s
generation and in the solution of the minimization problem of Equation (2) would be significantly
larger. However, as Figure 5 shows, the proposed procedure to determine the number of scenarios to
be generated, their generation, the computation of the corresponding probability of occurrence, and the
solution of the minimization problem of Equation (2) did not significantly increase the computational
time. Actually, the mean execution time of the proposed EMS is about 2.4 times the mean execution
time of the EMS with perfect predictions. From our point of view, this is a striking difference between
the two approaches assessed in this paper, since as previously discussed, the proposed EMS provides
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several additional benefits in the operation of the grid, by keeping the execution time within reasonable
margins (the average execution time was about 0.767 s, and the largest execution time was 2.5 s). These
results were obtained by means of the tic-toc function of Matlab. Moreover, since the computational
time is less than 3 s, and the sampling time used to test the performance of the power system with the
proposed robust EMS was 15 min (which is a typical sampling time in this kind of EMS), the sampling
time could be dramatically reduced to improve the dynamic response of the system [30]. The minimum
sample time to implement the proposed EMS will depend of the capabilities of the co-generation unit
to follow the changes in the scheduled power.
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Figure 3. Voltages in the main nodes of the power system under unexpected reduction of the wind
power. Proposed robust EMS (solid blue line). EMS with perfect prediction (dash red line).
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Figure 5. Computational time of the proposed EMS (blue solid line) and the EMS with perfect
predictions (red dashed line).

4. Discussion and Concluding Remarks

Previous works have documented the effectiveness of robust and stochastic programming
energy management systems (EMS) approaches to enhance the performance of micro-grids with
high penetration of non-conventional energy resources (NCES); in [14,15,25,26], for example,
authors report that EMS based in robust and stochastic programming improved their dynamic response
(in comparison with deterministic EMS such as the reported in [27]), including the case of unexpected
disturbances (e.g., those beyond the expected variability of NCES like load impacts). However,
these approaches have been either formulated for micro-grids (both grid connected and off-grid) or
have not focused on promoting the self-consumption instead of fostering the power exchange with
a main grid (by maximizing the profit in a net-billing/net-metering scheme).

In this paper, we proposed a stochastic-programming-based EMS to promote the self-consumption
in NCES applications, in which additional constraints are included to prevent the power injection to
the grid as well as terms to avoid as much as possible the energy curtailment of NCES.The expected
scenarios are estimated based on the proposed prediction model, which is composed by a deterministic
and a stochastic component. The deterministic component consists of a frequency-based model defined
by the spectral decomposition of the available historical data set, e.g., the wind power. The stochastic
component consists of an ARMA model that attempts to represent the information still present in
the residuals of the deterministic model. Both of them are identified off-line using historical data.
Such historical data could come from weather predictions, free available databases, or measurements.
Here, we used field measurements for model identification.

Once the model is identified, the predictions are carried out taking into consideration current
measurements of the variables, e.g., wind power, and its first two statistical moments, namely, the mean
and variance. Current measurements are integrated in the historical data used to identify the prediction
models; then the mean and variance of each dataset are computed. Based on this information and
considering the models previously identified, scenarios are generated. The number of scenarios to be
generated is determined by the error between the first two statistical moments of the scenarios and
the first two statistical moments of the original time-series. Note that since our approach is stochastic,
it is not necessary to perfectly match the predictions with the real values. Indeed, the idea of using
a stochastic approach is to adequately represent the uncertainty present in the predictions, so that the
EMS can make a scheduling of the generation units robust enough to withstand any sound realization
of the uncertain variables.

We also found that the proposed EMS imported slightly higher amounts of power from the main
grid than the deterministic EMS with perfect predictions used for comparison purposes. This increase
in the power imported from the main grid, combined with a rising in the use of the local co-generation
unit considered in the simulations allowed (i) reducing the power changes in the distribution side
in case of local disturbances; and (ii) enhancing the dynamic response of the system by reducing
the transients produced by the variability of the wind power injections and other disturbances,
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without making the operation of the grid significantly costly compared to the EMS with perfect
predictions. These findings extend those of [15], confirming that despite the increase in the operating
costs, stochastic and robust programming based EMS provides additional benefits to the operation
of any application of NCES. In this specific case, applications of NCES were oriented to promote the
self-consumption in industrial processes.

In addition, the improvements noted in this paper were independent of the type of industrial
process or NCES application. Therefore, the results obtained indicate that the benefits gained with
the proposed EMS could be extended to a wide range of NCES applications, that in principle focus
on self-consumption. Furthermore, our results provide compelling evidence for taking advantage of
local generation resources to provide energy to industrial processes, and suggest that the proposed
EMS appears to be an effective alternative to integrate NCES in industrial processes without the
constraints, often imposed by the distribution system operators, to the injection of energy surpluses to
the distribution grid. However, some limitations are worth noting. Although the results confirmed the
potentialities of the proposed EMS, more details about the industrial process should be included to
better exploit the features of the EMS. Future work should therefore include a better representation of
the industrial process and its operational and physical constraints.

Additionally, we intentionally avoided using storage systems such as batteries, which are known
to increase the degrees of freedom in the energy management. Here we promoted the integration of
non-conventional energy resources by combining with local co-generation. However, this does not
imply that the proposed solution cannot be applied in industrial processes with an energy storage
system. In this case, an additional term appears in the cost function and additional constraints related
with the operating conditions of the energy storage must be added in the formulation. For instance,
if a battery storage system is considered, it must be quantified in the cost function and constraints
regarding the available energy have to be included in the optimization problem. Such additional costs
and constraints can be modeled as in [26].

Although energy storage systems significantly increase the flexibility of an EMS, including them
also increases the initial investment costs as well as the operating and maintenance costs. Furthermore,
the proposed approach is focused on those countries where power injection in the distribution grid is
not completely regularized. In these countries, the adoption of non-conventional energy solutions has
an economic barrier that is related with their investment cost. Thus, reducing it by taking advantage
of co-generation is a sound alternative to cope with such an economic barrier. The next step of
the proposed approach is to include energy storage solutions once an increase in the integration of
non-conventional energy resources in industrial processes is evidenced.
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