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Abstract: This paper proposes a method to stabilize and enhance the dynamic performance of a
cascaded DC-DC system by adaptively reshaping the source output impedance. The method aims to
reduce the ratio of the source output impedance to the load input impedance, referred to as the minor
loop gain, to eliminate the interaction between the load and the source systems. This interaction can
deteriorate the dynamic performance or might lead to instability. Thus, the bus current is used to
improve the dynamic performance by reducing the magnitude of the source’s output impedance
adaptively according to the loading condition such that the dynamic performance is consistently
improved. Utilizing the bus current facilitates the compatibility between the proposed controller and
most widely used DC-DC converters controlled in voltage mode, including non-minimum phase
converters. In addition to the flexibility the bus current provides to embed the proposed solution
with conventional control schemes. Experimental results have validated the effectiveness of the
proposed controller along with time-based simulation and theoretical analysis, for minimum and
non-minimum phase converters.

Keywords: adaptive reshaping, cascaded systems, constant power load (CPL), dynamic performance
improvement, loaded loop gain, minimum-phase converters, negative impedance, non-minimum
phase converters, output Impedance

1. Introduction

Cascaded DC-DC systems have been widely used in aerospace, maritime, and automobile
industries due to their attractive features such as modularity, scalability, high power density, and high
reliability [1]. They provide a flexible environment to efficiently integrate renewable energy resources
with the existing power systems [2,3]. Typically, a cascaded system consists of a line regulating
converter (LRC) [4], which acts as the source, connected in series with a load subsystem, as shown in
Figure 1. The load system might consist of DC-DC converters, inverters, or a combination connected
in parallel [5]. Since most load converter modules are tightly regulated and supply a load with
one-to-one characteristic of voltage-to-current or speed-to-torque relationships [6,7], these modules act
as constant power loads (CPL). CPLs exhibit a negative incremental impedance seen by the LRC [8].
This characteristic is notorious for degrading the dynamic performance of cascaded systems and might
lead to instability [9].
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Figure 1. Cascaded DC-DC system.

Assessing the stability and the dynamic performance of cascaded DC-DC systems was initiated
by R.D. Middlebrook in 1976, who studied the impact of the input filters on the stability and on the
performance of regulated DC-DC converters [8]. His study resulted in the Middlebrook criterion,
which ensures the stability and performance of cascaded systems. It is based on relating the ratio
of the source output impedance to the load input impedance, which is called the minor loop gain
(Tm(s) = Zo(s)/Zin(s)) in Figure 1), to system stability properties. The criterion is deemed to be very
conservative [3], and requires infinite phase margin. Consequently, high capacitance is needed at
the DC bus to achieve the required phase margin. Those requirements are impractical because they
reduce the power density of cascaded systems, which is not desirable for most applications. To relax
the conservativeness imposed by the Middlebrook criterion, other criteria have been proposed in
the literature such as the Gain Margin Phase Margin (GMPM) [10], the Opposing Argument [11],
and Energy Source Analysis Consortium (ESAC) [12], which in various ways confine the polar plot of
Tm in a specific region of the complex plane to guarantee acceptable dynamic performance [2,13]. All these
criteria assume that the load and the source converters are standalone stable. The Three-Steps criterion
was introduced in [14] to assess the stability of cascaded systems even if the source converter was
standalone unstable. In addition, the Passivity-Based criterion was introduced in [15] to further
relax the artificial conservativeness of designing cascaded systems. It examines the stability of
a cascaded system by injecting current into the DC bus to determine the passivity of the bus
impedance. Bus impedance passivity would ensure stability. All of the above mentioned criteria
provide sufficient conditions to ensure stability or dynamic performance, so their violation does not
necessarily mean instability.

It is desirable to implement the system of Figure 1 in a modular and scalable manner, such that it
can host various load and source subsystems from different vendors [2]. However, these miscellaneous
components have different dynamic properties and ensuring stability with satisfactory performance of
such an assorted system is a challenging task. Hence, passive damping methods have been proposed
to preserve the stability and to improve the dynamic performance of such a system. Using passive
components to damp out system oscillations incurs inevitable power loss that reduces the overall
efficiency. In addition, passive damping reduces the power density of the system by including bulky
passive components.

Active damping methods were introduced to overcome the passive damping disadvantages [1,9,16].
In this approach, stability is ensured by modifying the control loop of the LRC or the load system.
However, in the existing active damping methods, little attention has been given to preservation or
improvement of system dynamic behavior, and it is typically compromised in favor of ensuring system
stability. The existing solutions for enhancing the dynamic performance are either applicable to a
single load converter, or limited to a particular configuration of source (LRC) DC-DC converter. In [17],
the stability of the system has been exclusively ensured for buck converters, as the LRC, via adding
extra feedback loops to modify the inductor’s series resistance. Although the system stability is
guaranteed, the dynamic performance of the system is not improved because the system dynamics are
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changed while the controller has not been modified to accommodate that. In [18], the Middlebrook
criterion was partially fulfilled; the stability condition has been met by inserting a virtual resistance in
series with the load via feeding back the bus current into the controller. The performance requirement
of the Middlebrook criterion was neglected. Moreover, a second controller is required to compensate for
the voltage drop across the DC bus, which may introduce other stability and performance issues.
In [19], the magnitude or the phase of the load’s input impedance is modified to prevent the interaction
between the load and the source subsystems where the impedance overlap occurs using a band pass
filter based on a method in [20]. It is achieved by inserting a virtual resistance either in series or in
parallel with the load subsystem. The relative stability margins will be affected in that region, while
the solution requires modifications for every converter that would be connected as a load.

In [21], an adaptive virtual capacitor connected to the DC bus is proposed to stabilize the
system; the solution results in power density reduction because the virtual capacitor is implemented
using an additional auxiliary converter, making it less desirable for density-sensitive applications.
In reference [22], a method to improve the dynamic performance of a cascaded system that consists of
a single DC-DC converter as the load was introduced. The proposed solution cannot handle multiple
load converters operating in parallel. The authors of reference [23] proposed a method to design
both source and load controllers simultaneously, such that their interaction is minimized. Similar
to [22], the proposed method is solely valid for a single load DC-DC converter. The vast majority of the
above mentioned active damping methods were introduced, and tested to stabilize minimum phase
converters, e.g., buck converters, while the non-minimum phase converters have not received much
attention in this sense.

To devise a method for ensuring stability and performance of cascaded DC-DC systems with
multiple loads and to address the discussed issues, we propose a method that reshapes the output
impedance of the LRC to stabilize the system and improve its dynamic performance. The proposed
method is applicable to minimum and non-minimum phase converters, and it neither incurs additional
power losses nor changes the LRC controller parameters. Additionally, it is applicable to linearized
feedback control schemes, without changing the controller parameters. The method is based on
adaptively reducing the magnitude of the source output impedance by feeding back the average
value of the bus current. Consequently, the output impedance is reduced depending on the loading
condition. Reducing the output impedance helps eliminate the interaction between load and source
systems, and effectively decouples these two.

This paper first discusses the stability and performance issues of cascaded systems in Section 2.
Then the proposed controller is explained in Section 3. The compatibility of the proposed controller
with minimum and non-minimum phase converters is discussed in Sections 4 and 5, respectively.
Finally, the conclusions are drawn in Section 6.

2. Stability and Performance of Cascaded DC-DC Systems

The stability and performance of cascaded DC-DC systems are deteriorated by the incremental
negative impedance exhibited by the load subsystem. The negative impedance appears to be due to
the active nature of the load subsystem, which tightly regulates its output voltage while delivering a
constant amount of power despite the variation in the input voltage. The mathematical derivation of
the negative input impedance [24,25], is

r =
∂Vbus
∂Ibus

=
∂

∂Ibus
(
Pbus
Ibus

) = −Pbus

I2
bus

= −Vbus
Ibus

(1)

where r is the load low frequency impedance, Vbus is the DC bus voltage, and Ibus is the DC bus current.
Equation (1) can be related to the bus voltage and output power of each load converter (Poi), assuming
lossless converters [26], as

r = − V2
bus

∑n
1 Poi

(2)
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where n is the number of loads. Equations (1) and (2) are valid for the frequencies that are less than the
cut-off frequency of the load converter (ωc) [8], where the impedance is |r| 6 180◦. Beyond ωc, the load
input impedance resembles an inductor impedance. Typical plots of the source output impedance Zo

and the load input impedance Zin are shown in Figure 2, [13,24,27]. The proposed stabilization method
depends on the maximum frequency (ωi,max) of the interaction region, as illustrated in Figure 2.
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Figure 2. Typical source and load impedances of Figure 1, highlighting their interaction around ωi,max.

The roles of Zo and Zin in assessing the stability of cascaded systems can be visualized using the
characteristic equation of distributed DC systems [10,27] as

vo,i

vin
=

GvdsGvdl,i

1 + Tm
(3)

where vo,i is the ith load output voltage, vin is the source converter input voltage, Gvds is the source
converter control to output transfer function, and Gvdl,i is the ith load converter control to output
transfer function. For multiple loads, the input impedance of the load system is the parallel combination
of each load module input impedance, i.e., Zin = Zi1 ‖ Zi2 ‖ Zi3 ‖ · · ·.

To determine stability properties of the cascaded system, Nyquist criterion is used [13,16].
Stability is preserved if the polar plot of Tm(s) does not encircle (−1, j0). An impedance overlap
in the low-frequency region (ω < ωc) implies |Tm|≥ 1 and 6 Tm(s) > 180◦, consequently the polar plot
of Tm(s) will encircle (−1, j0).

Source and load subsystems interaction alters the dynamic performance of the overall system.
As a result of this interaction, the source control loop gain (Ts) is altered [28,29] as

TL
s =

Ts

1 +
Zo

Zin︸︷︷︸
Tm

(1 + Ts)
(4)

where Ts and TL
s are the original and load affected control loop gain of the LRC, respectively. The LRC

dynamic performance stays intact from the loading effect iff Zo � 1, consequently TL
s ≈ Ts in

Equation (4). Moreover, if Tm encircles (−1, j0), so does TL
s [16,29]. On the other hand, the dynamic

performance of the load is degraded by the source according to

TS
L = TL

1 + Tm

1 + Zo
Zin_o

(5)
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where Zin_o is the open-loop input impedance impedance of the load converter, TL is the load converter
control loop gain, and TS

L is source affected control loop gain of the load. Similarly, the load dynamic
performance will be preserved iff Zo � 1, which implies TS

L ≈ TL in Equation (5). Since reducing Zo

helps decouple the dynamics of source and load systems, we propose to reduce the magnitude of the
source output impedance based on

Znew
o =

Zo

1 + ρ
ρ > 0 (6)

where ρ is a positive constant. Having (1 + ρ) as the divisor is justified in the next section. Using
Equation (6) the minor loop gain can be re-expressed as

Tm =
Zo

(1 + ρ)Zin
(7)

Increasing ρ reduces the magnitude of Znew
o , and consequently reduces |Tm|, which implies

TL
s ≈ Ts and TS

L ≈ TL. Thus the source and the load systems are decoupled, and the Middlebrook
criterion of ensuring stability and preserving the dynamic performance is satisfied without artificial
conservativeness.

3. The Controller Design

The proposed controller aims to adaptively stabilize and preserve the dynamic performance of
cascaded DC-DC converters without changing the LRC controller parameters. To do so, Ts must stay
intact from the loading effect as discussed earlier, and Zo must be reshaped adaptively according to the
load conditions. In addition, the closed-loop transfer function of reference voltage to output voltage
(ṽo/ṽre f ) should stay as (Ts/(1 + Ts)).

In references [30,31], a controller that preserves (ṽo/ṽre f ) relationship, and reshapes the output
impedance of single phase inverters or multi-input-dual-active-bridge DC-DC converters was
introduced, as shown in Figure 3. We propose modifications to this controller such that the output
impedance is adaptively shaped according to Equation (6). The small-signal output voltage (ṽo) of a
DC-DC converter equipped with the controller of Figure 3 is expressed as

ṽo = ṽre f
Ts

1 + Ts
− ĩo

Zo_o

1 + HGvdGPWM
+ ṽg

Gvg

(1 + Ts)(1 + HGvdGPWM)
(8)

where ĩo, ṽg are the variations in the output current and input voltage, respectively. The coefficient H
is used to shape Zo, Gvg is the input to output transfer function, Ts = GcGvdGPWM, Gc is the original
controller, Zo_o is the open loop output impedance of the source, and Zo = Zo_o/(1 + Ts). GPWM is
assumed unity hereinafter, for the sake of simplicity.

ṽref

−
∑

Gc

HGvdGPWM

∑

−H

∑
GPWM

Gvd

Gvg

−Zo o

Power Stage

d̃

ṽg

ĩo

ṽo
+

Figure 3. Closed-loop LRC using the proposed modifications in [30,31], where their additions to the
original control are highlighted in red.
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3.1. The Proposed Reshaping

To achieve the proposed reshaping of the output impedance according to Equation (6),
the denominator 1 + HGvd in Equation (8) should equal 1 + ρ [32]. Choosing H to be ρG−1

vd is an
obvious option, yet it is a non-realizable choice. Gvd is a strictly proper transfer function for DC-DC
converters. Thus, G−1

vd yields more zeros than poles, emulating an anticipatory system. We propose
to realize G−1

vd in a certain frequency range using the transfer function of a low pass filter with unity
DC gain

GLPF =
ω

p
x

(s + ωx)p (9)

where ωx is the corner frequency in rad/s, and p specifies the order of the filter. G−1
vd is practically

realized as

GR = G−1
vd

ω
p
x

(s + ωx)p (10)

The coefficient p depends on LRC control-to-output transfer function and is selected such
that Equation (10) is always realizable for DC-DC converters. Thus, Equation (6) is achieved by
setting H equals to

H = ρGR (11)

Consequently, (1 + HGvd) in Equation (8) can be interpreted as (1 + ρ) ∀ ω ≤ ωx. Hence, Znew
o in

Equation (6) can be practically realized as a function of ρ as

Zp(ρ) =
Zo

1 + ρGRGvd

=
Zo

1 + ρ
∀ ω < ωx

(12)

where Zp(ρ) is the output impedance of the LRC corresponding to the proposed controller, referred as
the proposed output impedance hereinafter. Zp(ρ) does not require any change to the controller
parameter while the desired response of ṽo/ṽre f and the dynamic performance are preserved.
In addition, it is applicable to linearized feedback control configuration, not limited to PI controllers
only as in [30] or a specific converter as in [20]. The final shape of the source converter output
impedance using (12) compared to Zo, which corresponds to the original controller, is shown in
Figure 4, where ωx = 1× 105 rad/s. Ultimately, substituting Equation (12) into Equation (8) expresses
the output voltage of a DC-DC converter that utilizes the controller with the proposed modifications as

ṽo = ṽre f
Ts

1 + Ts
− ĩo

Zo

1 + ρ
+ ṽg

Gvg

(1 + Ts)(1 + HGvd)
ω < ωx (13)
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Figure 4. Reshaping of source output impedance, where Zo represents that of the original controller,
and Zp(ρ) is the reshaped impedance for the proposed controller with ρ = 1, 3 in equation (12) and
ωx = 1× 105 rad/s.
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3.2. The Adaptivity

Evidently, any ρ > 0 in Equation (12) will reduce the output impedance of the LRC. To make the
proposed technique adaptive to load changes, we propose to use the average bus current

Ibus =
1

Vbus
(Po1 + Po2 + Po3 + ...) (14)

in Equation (12) such that ρ = Ibus. The bus current is used because it makes the proposed control
adaptive to load changes. In addition, it equips the controller with the flexibility required to integrate it
with minimum and non-minimum phase DC-DC converters. Thus, replacing ρ by Ibus in Equation (12)
reduces Zp(ρ) adaptively by a factor of (1 + Ibus) at various loading conditions. Figure 5 shows the
practical implementation of the proposed controller.

DC-DC
Converter

Gc

HGvd

−HGPWM

+

−
Vbus

+

+

d̃

−ṽref

Ibus

Figure 5. The proposed controller for the line regulating converter, where modifications to original
controller are highlighted in red.

3.3. Determining the Low Pass Filter Corner Frequency

Selecting ωx is vital in successfully implementing the proposed controller. The interaction between
the source and the load subsystems tends to occur around the LRC peak output impedance [13,16,24].
Thus, ωx should be selected as

ωx > ωi,max (15)

where ωi,max is shown in Figure 2. Selecting ωx < ωi,max will neither stabilize the system nor preserve
the dynamic performance because Zp(ρ) = Zo , ∀ ω > ωx, as shown in Figure 4.

3.4. Modification for Non-Minimum Phase Converters

Non-minimum phase converters are featuring right-half-plane (RHP) zero(s) in their control-to-output
transfer functions (Gvd). Boost, buck-boost, fly-back and Cũk converters are typical examples of the
non-minimum phase converter family. As a result, inverting their Gvd yields unstable poles in the
proposed controller. Although Equation (12) implies that the unstable poles in (G−1

vd Gvd) would be
canceled by the RHP zeros, it is misleading. Unstable pole-zero cancellation violates the internal
stability of the system [33], so the controller will still be unstable despite the cancellation.

The unstable poles impediment can be addressed by the proposed controller, which depends on
the magnitude of Gvd to reshape the source output impedance. Hence, we propose to replace the RHP
zeros of Gvd by their left-half-plane (LHP) mirrors to obtain the modified control-to-output transfer
function (Gvdm) for non-minimum phase converters. The magnitudes of Gvd and Gvdm are the same [34].
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Gvdm will have a different phase response compared to Gvd, which will not impact our scheme as it
mainly depends on the magnitude. ρ is a DC value, so the phase response of H in Equation (11) would
have no impact on the proposed impedance reduction method. It solely manipulates the magnitude of
the output impedance. GR in Equation (10) can be re-expressed for non-minimum phase converters as

GR = G−1
vdm

ω
p
x

(s + ωx)p (16)

while Equations (11)–(13) hold.

4. Minimum-Phase Cascaded System

4.1. Theoretical Analysis

A test system consisting of a buck converter, as the (LRC), and two loads has been designed to
validate the performance of the proposed controller. Figure 6 shows the system schematic diagram,
and Table 1 tabulates its parameters. The loads’ controllers are described by Equation (A1) in the
Appendix A.

Controller
LRC

Controller
B

Controller
A

Vbus
+ −

d̃ Ibus
+
−Vin

L

+

−

vc

L

+

−

VoA

L

+

−

VoB

d̃

d̃

ṽoA

ṽoB

L
oad

A
L
oad

B

Figure 6. Experimental setup schematic diagram.

Table 1. Numerical parameters of the test system.

Parameter Source Load A Load B

Vin 20 7 7
Vo 7 4 4
L(uH) 510 390 400
rL() 0.05 0.01 0.04
C(uF) 697 697 697
rC(Ω) 0.1 0.1 0.1
Rload(Ω) · · · 2 2

fswitching(KHz) 100
VPWM(V) 1

Source Controller

Gc 0.001 +
18
s

The LRC was designed to supply two load converters, however, an impedance overlap occurs
while supplying full load using the original controller, as shown in Figure 7. Supplying a single
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converter (50% of the load) degraded the dynamic performance by lowering the gain margin of the
LRC from 6.12 dB (≈20log10(1/0.49)) to 3.09 dB (≈20log10(1/0.7)), as depicted in Figure 8. Moreover,
the system become completely unstable after adding the second load, when TL

s encircles (−1, j0).
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Figure 7. Impedance interaction for the experimental system, for the original controller, with two
different loading conditions.
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Figure 8. Nyquist diagram of the LRC loop gain (TS) for the original controller for three loading
conditions, where it encircles (−1, j0) at 100% loading.

To validate the proposed controller, its corresponding LRC output impedance (Zp(ρ)) is compared
to the LRC impedance induced by using the original controller, Zo, in Figure 9 at full load condition.
ωx was selected to be 1× 105 rad/s. Zo had a peak impedance of 12.7 dBΩ (4.32 Ω), while Zp(ρ) had
1.77 dBΩ (1.23 Ω). The difference between them is 10.93 dBΩ which corresponds to (1 + Ibus), where
Ibus = 2.52 A.

As Zp(ρ) decreases while increasing the output power, the poles of the loaded system (TL
s /(1 + TL

s ))
move towards the poles of the unloaded system (Ts/(1 + Ts)), as illustrated in Figure 10. Consequently,
the loading impact is reduced. Hence, the dynamic performance is improved. Figure 11 compares
the impact of loading on Ts using the original controller verses the proposed controller. The system
was unstable while supplying 100% of the load using the original controller. In contrast, the proposed
modifications not only stabilized the system, but also were able to improve the dynamic performance.
The LRC gain margin improved to 4.42 dB using the proposed controller compared to −3.88 dB using
the original controller, as displayed in Figure 11.
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Figure 9. Comparison between original and proposed output impedances of the LRC, highlighting the
capability of the proposed controller in removing the interaction.
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decoupling capability, as a function of ρ.
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4.2. Simulation Case Studies

The system described in Figure 6 was simulated using PLECS Standalone software package
(Plexim, Zürich, Switzerland) to verify the effectiveness of the proposed controller in order to
adaptively reshape the source output impedance, and to improve the overall dynamic performance.
The system with its original controller (depicted in Figure 3) was simulated to demonstrate the impact
of loading on its stability. Figure 12a shows connecting LoadA caused substantial oscillations in the bus
voltage due to the loss of 3.09 dB of gain margin, as expected from Figure 8. After 200 ms LoadB was
connected, which completely destabilized the bus voltage. Despite the oscillations in the bus voltage,
the output voltages of both loads were stable. Reference [35] explains this phenomena as every load
controller was able to successfully track its input voltage due to their high bandwidth.

The performance of the proposed controller to stabilize and enhance the relative stability margins
was then assessed. LoadA was connected first, and the dynamic response of the bus voltage was
highly improved, as illustrated in Figure 12b. The settling time was substantially reduced from 100 ms,
in Figure 12a, to 25 ms. Connecting loadB, after 200 ms, has neither destabilized the system nor
degraded its dynamic performance.
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Figure 12. Simulation results for sequential switchings of LoadA (at t = 0.2 s) and LoadB (at t = 0.4 s):
(a) without the proposed control; and (b) with the proposed control.

To further demonstrate the effectiveness of the proposed controller, both loads were connected
simultaneously to the DC bus. The original controller was unable to handle both loads, as shown in
Figure 13a. Figure 13b demonstrates the capability of our controller, which stabilized the system in
25 ms.
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Figure 13. Simulation results for sequential switchings of LoadA and LoadB (at t = 0.2 s): (a) without
the proposed control; and (b) with the proposed control.

4.3. Experiment

To validate the effectiveness of the proposed controller experimentally, the system in Figure 6 was
built in the laboratory, as shown in Figure 14.
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Figure 14. The experimental setup.

Two digital control platforms, using NI-cRIO systems ( National Instruments, Austin, TX, USA),
were employed. One NI-cRIO was used to implement the LRC controller including the proposed
method and the other one realizes two voltage controllers for two load converters. The selected
sampling rate was 30 kHz, and the discrete transfer functions such as

y(z)
x(z)

=
n3z3 + n2z2 + n1z + n0

z3 + d2z2 + d1z + d0
(17)

were realized using Normal Direct Form II (NDF-II) [36], as illustrated in Figure 15.

+

Z−1

Z−1

+

++

Z−1

+ +

x[k] y[k]n3

n2

n1

n0

−d2

−d1

−d0

Figure 15. Normal Direct Form-II realization of the discrete transfer function of Equation (17).

Two tests were conducted to verify the effectiveness of the proposed controller. For the first test,
the load converters were sequentially connected to the DC bus such that loadB connects to the system
200 ms after LoadA. For the second test, the load converters were simultaneously connected to the
DC bus.

4.3.1. Sequential Connection

Figure 16a shows the response of the system with the original controller to show its inability to
handle the entire load, where VoA and VoB denote the output voltages of loads A and B, respectively.
Connecting LoadA caused a decaying oscillatory response for 100 ms. Then, integrating loadB totally
destabilized the bus voltage. As discussed earlier, the output voltages of the loads were stable.
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Vbus:[5V/div]

VoA:[5V/div]

VoB :[5V/div]

Ibus:[5A/div]

Time:[50ms/div]

(a)

Vbus:[5V/div]

VoA:[5V/div]

VoB :[5V/div]

Ibus:[5A/div]

Time:[50ms/div]

(b)

Figure 16. Experimental results of sequential switching of LoadA and LoadB: (a) without the proposed
controller; and (b) with the proposed controller.

Figure 16b shows the enhancement in the dynamic performance accomplished by the proposed
controller. Connecting LoadA created oscillations in the bus voltage for 40 ms, showing 60%
improvement in the settling time compared to Figure 16a. The reduction in the settling time implies
that the poles of the system have moved towards the original system’s dominant poles, as shown in
Figure 10. Then, connecting loadB caused negligible oscillations because the new gain margin is 4.2 dB
compared to −3.88 dB, as shown in Figure 11.

4.3.2. Simultaneous Testing

The effectiveness of the proposed controller to stabilize and improve the dynamic performance
while connecting the two loads simultaneously is verified in this case study. Figure 17a shows
connecting the two loads without the proposed modification destabilizes the bus voltage. Then,
the proposed controller was implemented, and it was able to stabilize the system in 50 ms, as shown
in Figure 17b, which proves the ability of the introduced method to stabilize and enhance the
dynamic performance.

Vbus:[5V/div]

VoA:[5V/div]

VoB :[5V/div]

Ibus:[5A/div]

Time:[50ms/div]

(a)

Vbus:[10V/div]

VoA:[5V/div]

VoB :[5V/div]

Ibus:[5A/div]

Time:[50ms/div]

(b)

Figure 17. Experimental results of simultaneous switching of LoadA and LoadB: (a) without the
proposed controller; and (b) with the proposed controller.

5. Non-Minimum Phase Cascaded System

5.1. Theoretical Analysis

Another prototype consisting of a boost converter, as the LRC, supplying a buck converter was
designed, as shown in Figure 18. This prototype is studied to validate the capability of the proposed
controller in controlling non-minimum phase converters. Table 2 tabulates the parameters of the system,
where the source controller is (0.005 + 13.2/s) and the load controller is described by Equation (A2) in
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the Appendix A. The load converter was designed to supply 9.25 W. However, an impedance overlap
occurs, as seen in Figure 19, that destabilizes the bus voltage.

+

−
Vin

Boost
Converter

+

−
VLoad

Buck
Converter

+

−
Vbus

Figure 18. Cascaded system with a boost converter as the LRC.

Table 2. Numerical parameters of the test system in Figure 18.

Parameter Boost Buck

Vin 5 7
Vo 7 3.6
L(uH) 930 390
rL(Ω) 0.05 0.01
C(uF) 697 697
rC(Ω) 0.1 0.1
Rload(Ω) · · · 1.4

fswitching(KHz) 100
VPWM(V) 1
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Figure 19. Impedance interaction between the boost and the buck converters.

The boost converter control-to-output transfer function is described by

Gvd = 0.56
(s− 1.435× 104)(s + 657.9)

s2 + 339.5s + 7.871× 105 (18)

which has a RHP zero, and is modified to

Gvdm = 0.56
(s + 1.435× 104)(s + 657.9)
s2 + 339.5s + 7.871× 105 (19)

Gvdm and Equation (16) were used to shape the output impedance of the boost converter. ωx was
chosen to be 105 rad/s because the impedance overlap occurred at ω = 103 rad/s, as Figure 19 depicts.
As a result, the reshaped output impedance of the boost converter, using Equation (19), is shown
in Figure 20, which highlights the ability of the proposed method to reshape the output impedance
of the non-minimum phase converters. In addition, Figure 21 shows the unloaded loop gain (TS),
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the unstable loop gain (TL
S ) due to the loading impact, and the improved loop gain using the proposed

controller (TI).

102 103 104

−10
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ω (rad/s)

Im
p
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a
cn

e
(d

B
Ω

)

Zo

Zin at 100% load

Figure 20. Impedance interaction decoupling between the boost and the buck converters using the
proposed method.
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Figure 21. The unloaded, improved, and unstable loop gains of the source converter, depicting the
ability of the proposed controller to stabilized the non-minimum phase systems.

5.2. Simulation Case Studies

The system described in Figure 18 along with its parameters in Table 2 was simulated to verify
the effectiveness of the proposed controller to stabilize a non-minimum phase converter. The test
was performed by supplying 70% of the load. Then, the remaining 30% was connected at t = 0.2 s.
Figure 22a shows that the bus voltage has become unstable at the full load condition using the
original controller.

Next the system was equipped with the proposed controller, and the test was preformed again.
Adding the load at t = 0.2 s did not compromise the stability of the system. The bus voltage
suffered from neither permanent oscillations nor a long settling time. Hence, the simulation validates
the effectiveness of the proposed controller, and the proposed modification of Gvd to stabilize a
non-minimum phase converter.
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Figure 22. The dynamic performance of the boost-driven cascaded system: (a) without the proposed
controller; and (b) with the proposed controller.

5.3. Experiment

The analytical and simulation results were further validated by experiments. A single NI-cRIO
digital platform controller, with a sampling rate was of 30 kHz, was used to control the entire system
of Figure 18. The digital transfer functions, such as Equation (17) were realized, as demonstrated in
Figure 15.

The test was run first to demonstrate the inability of the original controller to preserve the bus
voltage stability at full load condition, as shown in Figure 23a. The impact of the impedance overlap
is evident. Thus, the proposed controller was implemented to decouple the impedance interaction,
and the test was run again. The bus voltage stability was preserved, as Figure 23b depicts, so the
experimental results are in agreement with the analytical and simulation outcomes. Collectively,
these results validate the effectiveness of the proposed controller to stabilize and improve the dynamic
performance of non-minimum phase converters.

Vbus:[5V/div]

VLoad:[5V/div]

Ibus:[2A/div]

Time:[50ms/div]

(a)

Vbus:[5V/div]

VLoad:[5V/div]

Ibus:[2A/div]

Time:[50ms/div]

(b)

Figure 23. Experimental results the boost-driven cascaded system: (a) without the proposed controller;
and (b) with the proposed controller.
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6. Conclusions

This paper presents a method to stabilize and enhance the dynamic performance of cascaded
DC-DC systems by reducing the magnitude of the source output impedance adaptively. The proposed
controller is applicable to minimum and non-minimum phase converters that employ linearized
feedback control schemes. In addition, the method can handle single or multiple loads. This flexibility
is achieved by utilizing the average value of the bus current to reduce the magnitude of the source
output impedance by the factor of (1 + Ibus). The problem of reciprocating the control-to-output transfer
function of DC-DC converters is solved by utilizing a low pass filter in order to realize the inversion
in a certain frequency range. However, the RHP zeros of non-minimum phase converters cause
instability if the corresponding transfer function is reciprocated as a result of introducing unstable
poles to the system, which has been solved by mirroring the RHP zeros about the imaginary-axis of
the complex plane.

Assessing the effectiveness of the controller is carried out by mathematical analysis, simulation,
and experiments. All of the analyses results are in agreement and validated the satisfactory
performance of the proposed control. Implementing the proposed controller could improve the relative
stability margins of the studied systems. It is noteworthy that filtering the bus current introduces delay,
which might prolong the settling time if the introduced delay was substantial. In addition, the discrete
transfer functions are implemented practically by NDF-II, which produces the closest experimental
outcomes to the simulation and to the theoretical results.

Author Contributions: The authors have participated equally in this work. Analyses, simulations, and
experiments were conducted and analyzed by both of the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The loads’ controllers for the system in Section 4 is

Gcl =
6.1783× 106

s

[
s + 2439

s + 1.012× 105

]2
(A1)

and the load controller of the system in Section 5 is

Gcl =
6.6336× 106

s

[
s + 2321

s + 1.063× 106

]2
(A2)
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