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Abstract: A single-objective optimization energy management strategy (EMS) for an onboard

hybrid energy storage system (HESS) for light rail (LR) vehicles is proposed. The HESS uses batteries

and supercapacitors (SCs). The main objective of the proposed optimization is to reduce the battery

and SC losses while maintaining the SC state of charge (SOC) within specific limits based on the

distance between consecutive LR stations. To do this, a series of optimized SOC limits is used to

prevent the SC from becoming exhausted prematurely instead of the standard SC SOC penalty term

in the cost function. Meanwhile, a rule-based EMS (RB-EMS) is used to give the SCs charging

priority over the batteries when the vehicle is braking. Moreover, a simplified method for the

optimization is proposed to reduce the computational burden. Simulation and experimental results

for the proposed EMS and a standard SC SOC penalty-based cost function optimization are provided

to evaluate losses. As a result, it is shown that the proposed EMS, compared with standard SC SOC

penalty-based cost function optimization, decreases losses and prevents the SOC from reach the

discharging limits.

Keywords: energy management strategy; supercapacitors; batteries; light rail

1. Introduction

A typical light rail (LR) network has a high volume, a high density of vehicle operation, and a

short distance between stations. Most of these LR networks are powered by an overhead catenary

system, which has some negative consequences [1]: First, a catenary system visually pollutes a

city’s infrastructure. Second, peak power delivery and consumption patterns of the LR vehicle can

provoke power supply issues, such as voltage variations. Third, the catenary system has a low energy

efficiency due to limited braking energy recovery and high losses. An effective solution to the above

issues is the implementation of an energy storage system (ESS) on urban transportation networks for

braking energy recovery purposes [2]. Another feasible solution is the direct installation of an ESS on

LR vehicles that can meet the requirements of traction applications and serve as power supplies [3–6].

An onboard ESS for LR vehicles has the following advantages: First, urban transportation areas

can be extended to catenary-free zones. Second, energy transmission does not need to go through

the catenary, which significantly minimizes transportation systems losses [7]. Third, it allows a

flexible and simpler infrastructure. Finally, the energy recovery of an onboard ESS, compared to

its competitors, has greater flexibility and lower investment costs [6].

Batteries have been considered the most common energy storage component of an ESS because

of their high energy density, compact size, and reliability [8–10]. However, they also have well-known

disadvantages such as low specific power, poor properties at low temperature, and a short life-cycle.

Supercapacitors (SCs) by comparison have much higher power densities and much longer service
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lives, but lower energy densities [1]. Additionally, the use of SCs as auxiliary ESSs for hybrid

energy storage systems (HESSs) has been demonstrated to increase the system’s peak power, reduce

internal losses, and assist batteries during peak power demands and regenerative braking. Therefore,

such use reduces battery drain, lengthens battery life, and enables the use of smaller battery

packs [9,11]. The HESSs combining two or more types of storage components with complementary

features have been extensively studied, and HESSs composed of batteries and SCs are one of the

most prominent combinations [9,12–19]. In an HESS, SCs are usually used to absorb the high power

of regenerative braking and to supply maximum power for acceleration, while batteries are used for

vehicle operations that involves less/rated power [20].

Recently, the development of control strategies for energy management systems (EMS) has

become a topic of interest for researchers [5,11–13,21–28]. The EMS plays an important role to ensure

that the onboard ESS can meet energy reduction requirements [24,26]. Meanwhile, it can also optimize

objectives by, for example, constraining the magnitude of the battery charge/discharge current to

extend its life-cycle, minimizing HESS losses, and maintaining the state-of-charge (SOC) of SCs in a

suitable range to make sure that it has enough energy to work.

A thorough survey of the current literature shows that the research works concerning EMS can

be classified into two categories. The first category of EMS uses a qualitative rule to split the total

required power into two parts, such as a battery and an SC, based on several input parameters,

i.e., power demand, maximum battery power, SC SOC and battery SOC, etc. Among these EMSs,

the most common method is the rule-based energy management strategy (RB-EMS) [11,21–23].

This control method is very easy to implement and deals with the limitations of the battery current

reference, the SC power reference, etc. RB-EMS is based on a set of conditions that have been

decided previously. However, it still has two main drawbacks: First, the distribution rule based

on the input parameters, such as the SC SOC and the battery SOC, is hard to design due to the

different power demand conditions that need to be evaluated. Second, the HESS loss calculation is

not considered carefully. In this category of EMS, fuzzy logic control [26,27] has been developed for

power sharing in HESS. These fuzzy-logic-based control algorithms can make this distribution rule

more adaptable to complex power demand conditions based on vague or imprecise information [27].

However, the foundation of the membership function of fuzzy control is still based on experience

instead of careful calculation. For the RB-EMS, most of the input parameters of the controller

need to be decided without quantitative consideration, which means it is hard to achieve optimal

performance. The second category is to formulate the HESS power sharing problem as a convex

optimization problem that minimizes the system losses (as a major objective) with a cost function.

In [13,24,25,28], optimization algorithms and model predictive control (MPC) are proposed to achieve

the goal of reducing system losses, employing loss calculations of current instants or a prediction

horizon with discrete models. However, these EMSs also have two main drawbacks: First, prediction

horizons are relatively short (less than 3 in these papers). As a result, the optimization horizon needs

to be tuned in the simulation for a better performance [28]. Second, a single-objective cost function

that minimizes power losses cannot be directly implemented. The main reason is that the energy

provided by the SC is cheaper than the battery in terms of losses, so the SC will be discharged to

its minimum SOC limit prematurely. To solve this problem, all of the above-mentioned literature

employs a multi-objective cost function that not only takes power loss into account but also penalizes

deviation from the SC SOC operating point. However, this solution also needs to tune the penalty

weights to improve performance, especially based on different power demand profiles. For instance,

as described in [28], to further utilize the SC SOC range, parameters in the penalty function need to be

tuned. Meanwhile, the multi-objective cost function causes the energy distribution result to deviate

from the original single objective, minimizing power loss, which is a drawback.

The aim of this work is to propose an EMS based on a single-objective optimization strategy

that minimizes the total losses of the battery and the SC. Meanwhile, a variable-length prediction

horizon based on a sliding forward window strategy is proposed to extend the optimization horizon
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to cover the entire LR traction process. Moreover, the penalty term based on the deviation from the SC

SOC operating point is replaced with an SC SOC limit based on the distance between consecutive LR

stations. An RB-EMS is used to preferentially charge the SC. As a result, a sufficiently long prediction

horizon optimization based on the HESS losses is achieved in each entire LR traction power profile.

Lastly, simulation and experimental results are provided to evaluate the proposed EMS in terms

of loss and SC SOC limit objectives. The performance is also compared with a standard SC SOC

penalty-based cost function optimization.

2. Onboard HESS Configurations Analysis

Various topologies for HESSs combining batteries and SCs have been proposed [29–31].

In general, onboard ESSs consist of a DC main ESS and one or more DC/DC converters. With such

configuration, the use of DC/DC converters is essential for controlling power flow at different voltage

levels. In Figure 1a,b, the SC bank and battery bank are connected in parallel with, and through,

a DC/DC converter or directly to the DC bus [29]. This configuration is the simplest battery/SC

HESS combination, but the power distribution between the batteries and the SCs is uncontrolled.

In addition, the conclusions of [30] indicate that a battery–SC hybrid power source can supply a

pulsed load with higher peak power, but due to the limitation of the battery bank voltage to the SC

bank, the current supplied by the SC bank drops very quickly. Ultimately, the battery–SC hybrid

power only shows the battery characteristics, which cannot reflect the power characteristics of the

SC bank.
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Figure 1. Onboard energy storage system (ESS) configurations: (a) Passive battery/SC

(supercapacitor). (b) Passive cascaded battery/SC. (c) Active cascaded SC/battery. (d) Active

cascaded battery/SC. (e) Multiple DC/DC converters.

A widely used configuration of hybrid HESS in HEVs is shown in Figure 1c [31]. The DC/DC

converter allows the SC to be used on its wide voltage range and the battery bank is directly connected

to the DC bus, while maintaining a relatively constant dc-link voltage. But the power of the DC/DC

converter must match the large and intermittent SC power, while the battery is forced to suffer from

a high frequency current. In Figure 1d, the positions of the battery bank and SC bank are reversed

with respect to Figure 1c. In this way, the DC/DC converter can be smaller and the battery current

can be controlled, but the DC bus voltage will fluctuate in a wide range because of the uncontrolled

working voltage range of the SC. Finally, in Figure 1e, there are two DC/DC converters for the battery

bank and the SC bank, respectively. In this configuration, all main electrical variables, i.e., the battery

current, the SC current, and the DC bus voltage can be controlled. The main disadvantage is that two
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converters are required, which increases size and cost. To control the flexibility of both energy storage

components and the DC bus voltage stability, this topology is used in this work.

3. Energy Management Strategy Design

3.1. Description

This work proposes a single-objective optimization EMS to minimize the battery and SC

losses. The main ideal is to formulate a cost function based on a variable-length prediction horizon

to optimize the power sharing problem between consecutive LR stations. Meanwhile, the SOC

limitations of SC are obtained due to the prediction horizon. In this way, a series of SOC limitations

based on optimizations in each traction/brake stage, instead of the penalty term in the cost function,

is used to prevent the SC from becoming exhausted prematurely.

3.2. Proposed Sliding Forward Window Strategy in Traction Stage

Basically, the entire power demand profile of an LR route from the first to the last station consists

of a series of inter-station power demand stages. Each stage has two parts: a traction stage and a

braking stage. In the traction stage, the energy is provided by an HESS to meet the needs of the

LR acceleration operation and is then transferred back to the HESS in the braking stage to improve

the efficiency. As described in [26], the power demand profile of an LR route, unlike that of electric

vehicles, is known at the beginning of the journey, which makes the future power demand known at

each instant k in the prediction horizon. Based on this, a sliding forward window strategy in an LR

traction stage is proposed.

As shown in Figure 2, an LR traction stage is divided into a series of steps. The variable-length

prediction horizons will extend to the end of this traction stage in each step. For instance, the

prediction horizon is n − i at step i, and it is changed to n − j at step j. In this way, the sliding

forward window will move as the prediction step increases to always cover the entire traction stage.

The proposed EMS considers not only a few steps in the future but also the entire LR traction stage

horizon to minimize battery and SC losses, so that it can avoid falling into the zone that deviates

from the optimal point, such as when the SC is exhausted prematurely and the batteries then have to

supply the power demand alone, which increases the total loss.
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Figure 2. Block diagram of the proposed sliding forward window strategy in the traction stage.
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3.3. Proposed EMS in the Braking Stage

In order to minimize the battery and SC losses, the SC should be used as much as possible during

the traction stages. To achieve this, it is reasonable to give SC charging priority over the battery in the

braking stages. As shown in Equation (1), an RB-EMS is used in braking stages to split the power to

charge both the battery and the SC.

PSC(k) =



















|Pd(k)| |Pd(k)| 6 Pmax
dcdc and SOCSC(k) < SOCSC,max

Pmax
dcdc |Pd(k)| > Pmax

dcdc and SOCSC(k) < SOCSC,max

0 SOCSC(k) > SOCSC,max

Pbat(k) =







|Pd(k)| − PSC(k) SOCbat(k) < SOCbat,max

0 SOCbat(k) > SOCbat,max

(1)

where PSC and Pbat represent the charging power of the SC and the battery, respectively. The Pd

refers to the power demand of the LR in the braking stage, Pmax
dcdc is the maximum power of the

DC-DC converter, and SOCSC,max and SOCbat,max are the maximum SOC of the battery and the

SC, respectively.

3.4. SC Constraints in Each Traction Stage

A practical LR system in Zhuhai, China, is used to show how the proposed EMS works. The LR

power demand and speed profile in the first three stops are shown in Figure 3. The speed curve is

considered as a starting point for the design of the LR system by the manufacturer, and the power

curve is calculated based on the speed curve and the parameters of the LR. For the auxiliary power

load, an average value of 55 kW is considered during the entire line.
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Figure 3. 3 Typical stops in the driving cycle of the Light Rail (LR): (a) speed and (b) power

demand profile.

The power demand profile in Figure 3 is divided into nine stages alternately: three traction

stages, three braking stages, and three stop stages. In each traction stage, the proposed EMS splits

the power demand of the battery and the SC by formulating a cost function that minimizes their

losses. Since each LR traction stage prediction horizon formulation is used and the SC costs less than

batteries in term of losses, the minimum SOC limitation of the SC is probably the end SOC of the

SC in each traction stage. Therefore, each traction stage of the SC has a minimum SOC constraint at

the end so that the SC is not over-discharged too early, which has the same effect as penalizing the

deviation from the SC SOC operating point reference into the cost function. When the LR is braking,

the proposed RB-EMS, which gives charging priority to the SC, is used, and the SC will be charged if

there is a charger in the substations.
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3.5. Battery Model and Super Capacitor Model

For this case, a Toshiba 8.5 Ah Lithium titanate battery was chosen. This battery has better power

specifications [32] and a wider operating temperature range compared with other batteries of the

same type and is more suitable for applying to LR vehicles [33]. A Thevenin battery model was used

for the battery, and the model parameters were obtained by identification techniques, as described

in [34]. Figure 4a shows the battery circuit model, where Vocv is the battery open-circuit voltage

(OCV) and Rbat is the battery internal resistance. The parameters Cp and Rp model the transient

voltage response of the battery, and Vp represents their voltage. These parameters Vocv, Ro, Cp, and

Rp are all variables based on different battery SOCs as shown in Figure 5. The term io represents the

battery output current. The power loss of the battery at any time k can be expressed as

Lossbat(k) = i2
o(k)Rbat(k). (2)

+
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+
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Figure 4. Circuit diagram of (a) the battery model and (b) the SC model.
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Figure 5. Parameters Vocv and Ro in the 8.5 Ah Thevenin battery circuit model.

Figure 4b shows the SC model, where Vocv is the SC OCV, and RSC is the internal resistance.

The value of RSC can be obtained from the manufacturer’s data sheet as a constant value, and the

SC’s power losses expression is same as Equation (2), but considering its internal resistance as

LossSC(k) = i2
o(k)RSC(k). (3)
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3.6. The Proposed Cost Function and Constraints

In each traction stage, the cost function that minimizes the HESS losses based on Equation (2)

and Equation (3) is written as follows:

ELoss =
n

∑
i=1

PLoss(k)Ts = (
n

∑
k=1

Lossbat(k) +
n

∑
k=1

LossSC(k))Ts

n

∑
k=1

Lossbat(k) =
n

∑
k=1

(
Pd(k)[1 − α(k)]

Vbat(k)
)2Rbat(k)Ts

n

∑
k=1

LossSC(k) =
n

∑
k=1

(
Pd(k)α(k)

VSC(k)
)2RSC(k)Ts

α(k) ∈ [0, 1]

(4)

where ELoss and PLoss(k) represent the total loss energy of the HESS in a traction stage and the power

of loss at instant Ts, respectively, Pd(k) and α(k) refer to the power demand of the LR vehicle and the

power mix to split the power demand between the battery and the SC at instant k, respectively, and

Lossbat(k) and LossSC(k) are the power of loss from the battery and the SC at instant k, respectively.

Thus, the prediction of the SC and the battery voltage in k + 1 based on the models can be obtained as

VSC(k + 1) =

√

V2
SC(k)−

2Pd(k + 1)α(k + 1)Ts

C

Vbat(k + 1) = Vocv(k)−
Pd(k + 1)Rbat(k)(1− α(k + 1))

Vbat(k)
− Vp(k)

Vp(k) = Vp(k − 1) + (ibat(k − 1)−
Vp(k − 1)

Rp(k − 1)
)

Ts

Cp(k − 1)
.

(5)

Based on Equations (4) and (5), the total loss of HESS ELoss in a traction stage can be expressed via

ELoss =
n

∑
k=1

(
Pd(k)[1 − α(k)]

Vbat(k)
)2RbatTs +

n

∑
k=1

[Pd(k)α(k)]
2

(V2
SC(1)−

k−1

∑
i=1

Pd(i)α(i))

RSCTs

SOCbat,min 6 SOCbat(k) 6 SOCbat,max

SOCSC,min 6 SOCSC(k) 6 SOCSC,max

CBat(k) 6 CBat,max

0 6 α(k) 6 1

(6)

where SOCbat,min, SOCbat,max, SOCSC,min, and SOCSC,max are the SOC limits of the battery and the SC,

respectively. CBat,max is the maximum current rate of the battery. The cost function, Equation (6), is

minimized by using MATLAB’sfmincon function [28], mainly with the SC SOC constraint SOCSC,min

as a final point, 25%, where an SC releases 75% of its stored energy [25]. Meanwhile, initialization

strategies can be used to speed up the optimization computation as described in [35]. According to

the total time of one traction stage, as shown in Figure 3, here the Ts is set to be 2 s. Considering that

the DC-DC converter loss calculation is always a kind of approximate calculation [28] and that this

study is intended to simulate the power flow between the battery and the SC, the DC-DC converters’

losses are considered constant. Only the losses of the energy storage components (the battery and the

SC) are considered in this work.

3.7. Simplified Prediction Horizon and Minimization

It is well known that long horizon predictions increase computational burden. However,

a moving block technique, where the prediction horizon, n, is divided into two parts n = n1 + n2, and
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a larger sampling period for the second horizon achieving n2 to obtain less computational complexity

has been adopted in [36]. Following this method, here a variable-horizon can be used to decrease the

computational burden with a relatively inaccurate minimum loss based on a larger sampling period

in n2. The above simplified solution can reduce the prediction horizon but relatively increase the loss

of the HESS. The performance of this solution will be discussed in the following section.

4. Simulation Results

To demonstrate the performance of the proposed EMS, simulations were performed in

MATLAB/Simulink. The first three stops of the power demand profile are shown in Figure 3b.

Considering that the total route has 20 stops and the total energy demand is 60 kWh, here the sizing

of the battery is set at 78 kWh to provide additional energy to overcome the capacity decline. The SC

sizing is set at 5.3 kWh to help the battery to supply the maximum power demand point. Based on the

total sizing of the battery and SC and the voltage level of the HESS (approximate 500 V), the numbers

of series and parallel are obtained. The battery and SC sizing parameters are shown in Tables 1 and 2

respectively. The power mix α is optimized at every 2 s.

Table 1. Battery parameters.

Parameter Description Value

m Number of cells in series 200
n Number of cells in parallel 20

C [Ah] Rated Capacitance 8.5
Vout [V] Rated Voltage 2.3
Imax [A] Charge/discharge current 85 (10 C)

Table 2. Supercapacitor parameters.

Parameter Description Value

m Number of modules in series 10
n Number of modules in parallel 20

C [F] Rated Capacitance 83
Vout [V] Rated Voltage 48
Imax [A] Absolute Maximum Current 1150
Ro [mΩ] Maximum ESR 10

The results with two different cost functions are shown in Figures 6 and 7. As shown in Figure 6b,

the SC reaches its minimum SOC limit, 240 V, when the train does not finish the last two traction

stages with one-step predictive horizon single-objective optimization EMS. The battery then has to

supply the power demand alone from t = 103 to t = 130 s and from t = 205 to t = 223 s, which is

not ideal.
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Figure 6. Simulation results for one-step predictive horizon single-objective optimization energy

management systems (EMS with three typical stops in the driving cycle of the LR: (a) battery current

and SC current and (b) battery voltage and SC voltage.
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Figure 7. Simulation results for MPC based two-objectives cost function optimization energy

management systems (EMS) with three typical stops in the driving cycle of the LR: (a) battery current

and SC current and (b) battery voltage and SC voltage.

In Figure 7, the MPC-based cost function has two terms: minimizing the loss and penalization

for SC SOC. The penalization term is defined as follows [28]:

fsc(k) = 1 + sgn(isc(k)(1 − e−|isc(k)|)(
SOCsc,mid − S0Csc(k)

SOCsc,mid − S0Csc,min
) (7)

where SOCsc,mid is the selected SC SOC midpoint, SOCsc,min is the SOC limit of the SC, and isc(k) is the

SC output current. It can be seen that the SC works during all traction stages due to the penalization

term, unlike in the one-step predictive horizon single-objective optimization EMS. The total loss of the

battery and the SC with the one-step predictive horizon optimization EMS and the SC SOC penalty

MPC-based optimization EMS are 0.617 kWh and 0.623 kWh, respectively.

In Figure 8 the proposed sliding forward window optimization EMS allows the SC SOC to reach

the minimum SOC limit, 240 V, at the end of the last two traction stages when t = 130 s and t = 223 s.

The total loss of the battery and the SC with the proposed EMS is 0.541 kWh. The simulation results

show that the proposed energy management strategy has a lower loss compared with the MPC-based

two objectives cost function optimization.
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]
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200

300

400
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00 5050 100100 150150 200200 250250
Time [s]Time [s]

[V
]

Vbat VSC

(a) (b)

Figure 8. Simulation results for the proposed sliding forward window optimization EMS with three

typical stops in the driving cycle of the LR: (a) battery current and SC current and (b) battery voltage

and SC voltage.

Figure 9 shows the simplified method as described in Section 3.7. In Figure 9c, the prediction

interval is changed in each traction stage. For instance, in Areas, A, B, and C, the power mix α is

optimized every 2 s, every 4 s, and only once, respectively, in each area. The total loss of the battery

and the SC with the variable predictive horizon optimization EMS is 0.549 kWh, but it is only 1.5%

higher than the loss with the proposed sliding forward window optimization EMS.
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Figure 9. Simulation results for variable predictive horizon optimization EMS with three typical stops

in the driving cycle of the LR: (a) battery current and SC current and (b) battery voltage and SC voltage

and (c) power mix α.

5. Experimental Results

This section presents an experimental verification of the proposed EMS. Three buck/boost

bidirectional converter circuits were built using IRF650B MOSFETs, an IFR18650P-1100mAh LiFePO4

battery pack, and a ZNP-2R7-V-107SS2245 SC pack as input sources and a DC bus in parallel as

outputs. The first converter was controlled as a reduced power source to simulate the train power

requirements. The input current reference i⋆L1(k) was set as

i⋆L1(k) = βPd(k)/vin1(k) (8)

where Pd(k) is the power demand of the LR, β is the reduced ratio of the power demand profile in

Figure 3b, and vin1(k) stands for the input battery pack voltage of the first converter.

The other two converters are controlled under DC bus voltage control and input current control,

respectively, to simulate the HESS. The second converter, with another LiFePO4 battery pack as an

input source, controls the DC BUS voltage with an outer voltage PI controller and an inner current PI

controller. The third converter employs the SC pack to control the SC current. The input SC current

reference i⋆L3(k) is set as

i⋆L3(k) = βα(k)Pd(k) (9)

where α(k) is the power mix. As described in [26], the power mix α(k) can be obtained by

interpolating the LR traveled distance (using look-up-tables), but here it is obtained with a time

counter in the controller using a look-up-table, which was obtained in simulation. The controller

was implemented on a dSPACE DS1005 and a Slave DSP PWM Generation to generate three 20 kHz

symmetrical PWMs. The experimental platform parameters are shown in Table 3 and the setup is

shown in Figure 10.

As shown in Figure 11, the SC voltage reaches its limit of 6 V when t = 272 s; the battery

then has to supply the power demand alone from t = 272 to t = 290 s. Thus, the battery current

reaches 1.6 A. In Figure 12, with the two-objectives MPC-based cost function (minimizing the loss

and penalization for SC SOC), the SC works during the power demand, which is a positive outcome.

However, without an SC SOC limit, the SC voltage reaches 6.5 V and 4.5 V when the LR finishes

its last two traction stages. Considering that the battery and SC losses cannot be measured in real

systems, here the losses are calculated in the simulation with these experimental parameters. The total
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loss of the battery and SC with the one-step predictive horizon optimization EMS and the SC SOC

penalty-based optimization EMS are 22.36 W and 22.89 W.

Table 3. Experimental platform parameters.

Parameter Description Value

mbat Number of battery cells in series 4
nbat Number of battery cells in parallel 1

Cbat [Ah] Battery cell rated Capacitance 1.1
Vbat [V] Battery cell rated Voltage 3.2

mSC Number of supercapacitor (SC) cells in series 9
nSC Number of SC cells in parallel 1

CSC [F] SC cell rated Capacitance 100
VSC [V] SC cell rated Voltage 2.7
L [mH] Inductor of the converters 450
C f [mF] Capacitor of the converters 220

fs [KHz] Switching frequency 20

v⋆bus [V] Bus voltage reference 20
Ts [s] Optimization step of the power mix 2

β Power demand reduced ratio 0.000027

A B

C

C

C
D

E

F

G

Figure 10. Experimental setup. A is the LiFePO4 battery pack, B is the SC pack, C is the buck/boost

converter, D is the sensor board, E is the dSPACE board, F is the simulation computer, and G is the

power of the sensor board and drive board.
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12V
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iSC

ibat
40s

1A
1.6A

Figure 11. Experimental results for one-step predictive horizon single-objective optimization EMS

with three typical stops in the driving cycle of the LR: SC current, SC voltage, and battery current.

12V

6.5V 4.5V
10V

VSC

iSC

ibat

40s

1A
-3.4A

Figure 12. Experimental results for MPC-based two-objectives cost function optimization EMS with

three typical stops in the driving cycle of the LR: SC current, SC voltage, and battery current.

In Figure 13, the proposed sliding forward window optimization EMS allows the SC SOC to

reach 6.0 V and 5.8 V in the end of the last two traction stages when t = 192 s and t = 288 s. The last

SC voltage is lower than 6.0 V because the inductor resistance is not considered in the optimization.

The total loss of the battery and the SC with the proposed EMS is 21.28 W. The experimental

results show that the proposed energy management strategy has a lower loss compared with the

penalty-based cost function optimization, as also shown in the simulation results.
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12V
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10V

40s
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Figure 13. Experimental results for the proposed sliding forward window optimization EMS with

three typical stops in the driving cycle of the LR: SC current, SC voltage, and battery current.

6. Conclusions

An onboard ESS as a power supply for LR vehicles can render urban transportation areas

catenary-free zones and minimize the effect of catenary systems losses. To combine high energy

density with high power density, an HESS with a battery and an SC is proposed in this paper.

Different energy management strategies have been compared in other studies, and it has been shown

that a multi-objective cost function that considers both the power loss and the deviation from an

SC SOC operating point needs to tune the penalty weights. The energy distribution result deviates

from the original single objective, minimizing the power loss, which is a drawback. To solve this

problem, this paper proposes a single-objective optimization EMS for an onboard HESS for light rail

vehicles. The main objective is to reduce battery and SC losses, while the SC SOC within specifics

limits based on a sliding forward window is maintained in each traction stage, and to charge the SC

as much as possible based on an RB-EMS at each braking stage. A series of SOC limits based on

the optimization at each traction stage, instead of the penalty term in the cost function, is used here

to prevent the SC from becoming exhausted prematurely. Moreover, a simplified method for this

optimization is proposed to reduce computational complexity. Simulation and experimental results

are used to verify that the proposed EMS has a 7.5% lower loss compared with the standard SC SOC

penalty-based cost function optimization and that the SC SOC always reaches its limitation by the

end of each traction stage.
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